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Abstract— This paper addresses the problem of checking the
consistency of experimental closed-loop frequency-domain data
with uncertainty models that are structured using coprime
factorizations. The uncertainty models presented in this paper
use the knowledge of a stabilizing feedback controller to
structure and formulate the uncertainty on a model. Subse-
quently, the controller dependent coprime factor uncertainty
model can be used to formulate model (in)validation tests
on the basis of closed-loop data. The model (in)validation is
performed on sample data from a flexible structure to illustrate
the presented model validation results. An open-loop based
uncertainty model is also used to demonstrate the benefits of
closed-loop uncertainty modeling over open-loop uncertainty
modeling.

I. INTRODUCTION

Model validation is a critical procedure to establish
whether or not a model can reliably predict the output of
a system. In model (in)validation a distinction must be made
between validating models on their open-loop or closed-loop
behavior. A model validated and suitable to predict open-loop
data may be different from a model that validates data ob-
tained under closed-loop or feedback controlled conditions.

In the last few years there has been much attention di-
rected towards various techniques of performing uncertainty
model validation. Specifically, the model validation of a
general Linear Fractional Transformation (LFT) of discrete
and continuous uncertain systems are studied in [1] and [2].
Model validation techniques using LFT’s are applied to the
frequency domain in [3] where the validation tests were
illustrated to have a low level of computational complexity
by formulating the model validation problem as a convex
optimization.

In this paper a fractional representation approach is pre-
sented to address the control oriented identification and
model validation problem. The work on fractional model
identification was initiated by [4] and further developed in
the work by [5] [6] and [7]. This approach allows for a
formulation of a unified method to estimate models for stable,
marginally stable or unstable systems via the estimation of
stable coprime factorizations on the basis of closed-loop data.
Moreover, the fractional representation approach preserves
convexity of the model validation problem by using the
knowledge of the controller.

The fractional approach forms an excellent framework

to address the identification of systems on the basis of
closed-loop data [8] and control oriented model validation
[9]. A model validation problem using open-loop frequency-
response data in a coprime factor framework was presented in
[10]. The results of [10] are specialized to the open-loop case
and cover the noisy and noise-free conditions. However, in
this paper the coprime factorizations of the uncertainty model
depend on the knowledge of a stabilizing feedback controller
to facilitate the closed-loop (in)validation of the uncertainty
model.

The model validation tests presented in this paper involve
the computation of a structured singular valueµ(·) over
a finite frequency grid. Model validation techniques using
(inverse)µ have also been studied in [11] with the application
towards aero-servoelastic systems. Model validation results
using µ for SISO and MISO systems were also studied
in [12]. Unfortunately, most of these results were applied
to open-loop model validation and this paper extends these
results to address the closed-loop model validation problem.
It should be noted that this application paper relies heavily on
the closed-loop model validation results developed in [13].

II. EXPERIMENTAL SETUP AND FREQUENCY
DOMAIN DATA

For the illustration of the model validation results pre-
sented in the subsequent section, the experimental data of a
flexible structure at the System Identification and Control
Laboratory at UCSD is used. The structure is shown in
Figure 1 and resembles a two-story building where the
bottom floor can be perturbed by a vibration disturbance and
the top floor has a spring/damper compensator that is used
to counteract the effects of the vibration disturbance.

The applied lateral force on the top floor is used to control
the vibration of the structure and dampen out the major reso-
nance modes. Implementing a controller between the second
floor lateral acceleration response and the top-level input
force reduces the vibration of the highly flexible structure.
The controller is used to actively reduce the motion of the
structure that is induced by the bottom floor disturbance.

Open-loop data is collected from the structure by measur-
ing the second floor lateral acceleration in response to the
applied force at the top of the structure. An amplitude Bode
plot of open-loop frequency response data of the plantΦol
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Fig. 1. Flexible test structure used for model validation comparison

and a nominal sixth-order model̂P is given in Figure 2. The
sixth-order model is used to describe the major resonance
modes of the structure.
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Fig. 2. Amplitude Bode plot of open-loop frequency domain data (solid)
and 6th order nominal open-loop model (dashed)

Once the open-loop data is measured and the nominal
model is known, the information can be used to develop
a controller and measure a closed-loop response from the
structure. On the basis of the sixth-order modelP̂ , a simple
discrete time lead-lag compensator

C(q) =
−1.878q + 1.484

q − 0.2201

is designed to reduce the second resonance mode of the

system. The controller is implemented on the structure at
a sampling frequency of 1kHz and a closed-loop frequency
response is measured for model validation purposes.
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Fig. 3. Amplitude bode plot of closed-loop frequency domain data (solid)
and nominal closed-loop model P̂

1+CP̂
(dashed)

The closed-loop data and the computed closed-loop model
are shown in Figure 3 where it can be seen that a small
reduction of the second resonance mode has been achieved.
Given the (noisy) experimental frequency domain data, the
sixth-order nominal model and the first-order lead-lag com-
pensator, a model validation is performed on the basis of
the closed-loop data that will confirm the validity of the
model. This is done by validating the sixth-order model
using a closed-loop relevant coprime factor based uncertainty
structure and a standard open-loop multiplicative uncertainty
model. It is shown in this paper that for this example only the
coprime factor based uncertainty structure is able to validate
the model successfully on the basis of closed-loop data. More
details on the coprime factor uncertainty structure and the
model validation technique are given in the following section.

III. PROBLEM FORMULATION AND MODEL
VALIDATION TECHNIQUE

A nominal modelP̂ is augmented with a perturbation or
uncertainty∆ that is used to capture bounded, but unknown
errors due to inaccurate or approximate modeling of the
actual plant P0. The nominal modelP̂ along with the
perturbation∆ constitutes an uncertainty modelP for which
model validation techniques can be used to verify ifPo ∈ P
is not invalidated by a set of measurements. Given a nominal
modelP̂ of a systemP0, an uncertainty structure∆, and a set
of input and output measurements(u, y) acting on the actual
systemP0, the model (in)validation problem is to determine
whether the measurements(u, y) could have been reproduced
by the modelP̂ with the uncertainty∆.
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It is important to note that the model (in)validation test
can be formulated as either an open-loop or closed-loop
problem [14]. The difference between open- and closed-
loop data is not only determined by the data used for the
model validation, but also depends on the way in which the
uncertainty modelP is structured. Knowing this, we present
the model validation problem and the considerations behind
the choice of the model uncertainty structure in the following.

A. Coprime Factor Uncertainty Structure

Following the developments of [13], an (upper) Linear
Fractional Transformation (LFT)

Fu(Q,∆) := Q22 + Q21∆(I − Q11∆)−1Q12

provides a general notation to represent all modelsP ∈ P
as follows

P = {P | P = Fu(Q,∆)
with ∆ ∈ IRH∞ and‖∆‖∞ < 1}

(1)

where ∆ indicates an unknown (but bounded) uncertainty.
The entries of the coefficient matrixQ in (1) is formed by
considering a model perturbation that is structured according
to a Youla-Kucera parameterization as in Figure 4.
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Fig. 4. Uncertainty Model Based on Perturbations on Coprime Factoriza-
tions

Following this general fractional formulation, the un-
certainty modelP will be characterized by employing a
fractional approach. A fractional based uncertainty model
P is characterized by specifically using the knowledge of
a controllerC that stabilizes the nominal model̂P . More
specifically, the uncertainty modelP proposed in this paper
is structured as follows

P = {P | P = ND−1 with
N = N̂ + Dc∆̄ , D = D̂ − Nc∆̄ and
∆̄ := V ∆, ‖∆‖∞ < 1}

(2)

where (Nc, Dc) and (N̂ , D̂) respectively denote a right
coprime factorization (rcf ) of the controllerC and a nominal
model P̂ . The weighting functionV is used to normalize
the unknown but bounded uncertainty. The reader is referred
to [13] for a detailed analysis of the development of these
techniques.

Note that the uncertainty modelP in (2) is different from
standard additive coprime factor perturbations as used in

[10]. In the uncertainty model of(2), the perturbation∆̄
is used to model a combined perturbation on thercf (N, D)
of the modelP . It can be observed that̂N is perturbed by
∆N = Dc∆̄ and D̂ is perturbed by∆D = Nc∆̄ where
the rcf (Nc, Dc) of the controller plays an important role
in assigning the common perturbations in thercf (N, D).
From this representation, the coprime factors (N, D) can be
expressed as

N = N̂ + ∆N andD = D̂ − ∆D (3)

where ∆N and ∆D are coupled and controller dependent
additive perturbations on the coprime factorization(N̂ , D̂)
of the nominal model.

In order to deal with closed-loop data, we consider a
feedback connection of a system, denoted byPo, and a
feedback controller̄C, with y = Pou + v andu = r − C̄y.
Note thatC was used in the construction ofQ in (1) and that
C̄ denotes the controller used in the closed-loop experiments.
Following this, application of the feedback lawu = r − C̄y
to all modelsP ∈ P in (1) yields a set of closed-loop models
S that is structured as follows.

S = {S | S = Fu(M, ∆) with M given by

M11 = V (D̂ + C̄N̂)−1(C̄ − C)Dc

M12 = V (D̂ + C̄N̂)−1

M21 = (I + P̂ C̄)−1(I + P̂C)Dc

M22 = (I + P̂ C̄)−1P̂

(4)

and∆ ∈ IRH∞, ‖∆‖∞ < 1}

Using the definition of the coprime factor uncertainty
model given above, the model validation problem can be
summarized next.

B. Model Validation Problem

To facilitate brevity of the results, only the model valida-
tion results for the case of an uncertainty due to undermod-
eling are mentioned here. In the application we will combine
the effects of noise and undermodeling into a single uncer-
tainty contribution. Results that separate undermodeling from
noise perturbations on the frequency domain measurements
can be achieved by extending the structure of the uncertainty
model with an additional bounded but unknown perturbation
that is used to model the effect of the noise [13].

Consider a closed-loop system where a reference signalr
is applied and a noise-free system responsey is measured.
For model validation purposes, the frequency domain data of
the closed-loop system can be described by

Fu(M̂, ∆) = 0, ω ∈ Ω (5)

where the entries of̂M are given by

M̂11 := M11(ω) M̂12 := −M12(ω)R(ω)

M̂21 := M21(ω) M̂22 := Y (ω) − M22(ω)R(ω)
(6)
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In (6) the entries ofM̂ are frequency dependent functions
where ω ∈ Ω and Y (ω) and R(ω) are the respective
Discrete Fourier Transforms of the signalsy(t) andr(t). The
uncertainty∆ models the effect of unknown but bounded
errors due to model approximation and can possibly include
unknown but bounded noise disturbances on the Discrete
Fourier Transforms of the signalsy(t) andr(t).

Using the above assumptions with the knowledge of the
uncertainty model represented inM , the closed-loop model
validation problem can be summarized as follows.

Closed-loop model validation problem: consider the
closed-loop measurementsY (ω) and R(ω), ω ∈ Ω. The
closed-loop uncertainty model is not invalidated by the data
if there exists a∆ with ‖∆‖∞ < 1 such that (5) holds.

For the closed-loop model validation problem the objective
is to determine whether there exists a stable perturbation∆
with ‖∆‖∞ < 1 such that (5) holds. In the next section, the
main model validation result is presented.

C. Main Result

The reader is referred to [13] for a complete analysis of
the closed-loop model validation results presented in this
section. Restricting the results to the noise-free case, or
more practically feasible, to the situation where the noise on
the closed-loop data is modeled as part of the uncertainty
∆ on the nominal modelP̂ , the following result can be
summarized.

Theorem 1:Model Validation
Let Y (ω) and R(ω) denote the frequency response meas-
urements of the feedback controlled systemP0 and let the
entries of M̂ be defined as in(6), then the uncertainty
model is not invalidated byY (ω) andR(ω) iff µ∆(M̂11 −

M̂12M̂
−1

22 M̂21) > 1 whereµ∆(·) is computed with respect
to the uncertainty structure∆.
The proof of this result is based on the fact that the inverse of
an LFT is again an LFT. In order for the inverse not to exist,
e.g.F(M̂,∆) = 0, M̂11 − M̂12M̂

−1

22 M̂21 must be singular.

Note, evaluation ofµ∆(M̂11−M̂12M̂
−1

22 M̂21) > 1 is done
frequency point-wise overω ∈ Ω. In case∆ is unstructured
µ∆(M̂11 − M̂12M̂

−1

22 M̂21) > 1 can be replaced with the

maximum singular valuēσ(M̂11−M̂12M̂
−1

22 M̂21) > 1 or the

minimum singular valueσ(M̂11−M̂12M̂
−1

22 M̂21) < 1. Since
the validation problem is performed frequency point-wise,
the model validation is decomposed into consistency prob-
lems evaluated over the frequency gridΩ. The consistency
problems check the existence of∆(w) with σ(∆(w)) < 1 for
w ∈ Ω. In order to guarantee the existence of a∆ ∈ IRH∞

with ‖∆‖∞ < 1, a boundary interpolation result [3], [10]
can be used where the result is summarized in the following
lemma.

Lemma 1:Let σ(∆(w)) < 1 ∀ w ∈ Ω, then ∃ ∆ ∈
IRH∞ with ‖∆‖∞ < 1.

This boundary interpolation result is used in the model
validation problem addressed in this paper and a complete
proof of Lemma 1 is given in [10].

Note that the continuity property of Lemma 1 ap-
plies to Theorem 1 and illustrates that ifµ∆(M̂11 −

M̂12M̂
−1

22 M̂21) > 1, ∃ ∆(w) with σ(∆(w)) < 1∀ w ∈ Ω
and with Lemma 1,∃ ∆ ∈ IRH∞ with ‖∆‖∞ < 1. Hence,
it is sufficient to evaluateµ∆(·) > 1 only at a specific
frequency grid. When each frequency-wise evaluation of
σ(∆(w)) < 1 holds, we correctly conclude that the model
cannot be invalidated by the data.

IV. APPLICATION AND COMPARISON OF
CLOSED-LOOP MODEL VALIDATION

The model validation technique presented in the previous
section is tested on sample data obtained from the flexible
structure to illustrate the model validation results for closed-
loop based uncertainty models. For comparison, both the
coprime factor based uncertainty model and an open-loop
based uncertainty model is used. The open-loop uncertainty
model does not use the knowledge of the feedback controller
and employs a multiplicative perturbation to describe the
modeling errors and noise on the data.

A. Uncertainty Modeling

For comparison, we create two uncertainty models: one
based on a multiplicative perturbation and one based on the
coprime factor perturbation model discussed in this paper.
The multiplicative uncertainty model is described by

Pm = {P | P = P̂ (1 + Vm∆) with ‖∆‖∞ < 1}

and the coprime factor uncertainty modelPcf has been
described in (2). Combining modeling errors and noise on the
open-loop frequency domain data in the uncertainty model,
the multiplicative uncertainty perturbation is found by

∆m = (Φol − P̂ )/P̂

using the open-loop frequency domain dataΦol(ω). Sim-
ilarly, the coprime factorization based uncertainty can be
found relatively easily via

∆cf = D−1

c (I + ΦolC)−1(Φol − P̂ )D̂

using the open-loop frequency domain dataΦol(ω). The am-
plitude bode plot of the resulting multiplicative and coprime
factor perturbation∆m and∆cf are shown in Figure 5.

The weighting filters that over-bound the respective un-
certainty∆m and ∆cf for each uncertainty model are also
shown in Figure 5. To complete the development of the
uncertainty modelsPm andPcf , it is necessary to determine
appropriate parametric over-bounds of the estimated uncer-
tainty ∆m and ∆cf . For that purpose, stable and stably in-
vertible weighting filters are used to normalize the unknown
but bounded uncertainty. In describing the multiplicative over
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Fig. 5. Amplitude bode plot (solid) of perturbation and parametric upper
bound (dashed)∆m (top) and∆cf (bottom)

boundVm it is important thatVm maintains a tight bound of
∆m in order to satisfy the standard robust stability test

‖Vm(I + C̄P̂ )−1C̄P̂‖∞ < 1 (7)

for a multiplicative uncertainty description. Obviously, if the
robust stability condition is not met, thenPm is not able to
guarantee stability robustness and the uncertainty modelPm

could be invalidated by closed-loop data.
The evaluation of the robust stability test(7), forcesVm to

be a tight overbound of the multiplicative uncertainty∆m as
indicated in Figure 5. As a result, a high (fourteenth-order)
stable and stably invertible transfer function has to be used to
over-bound the uncertainty∆m, without compromising the
robust stability condition evaluated forVm in Figure 6.
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Fig. 6. Robust stability test for multiplicative uncertainty modelPm

Comparatively, for the coprime factor uncertainty∆cf a
low order weighting functionVcf can be used to over-bound

the uncertainty data∆cf . Since the controller used in the
development of the coprime factor uncertainty model is the
same controller used to check the robust stability condition,
robust stability is trivially satisfied. With the Youla-Kucera
parameterization all models are initially parameterized so
that they are stabilized by a known feedback controllerC,
irrespective of the size or shape of∆. Since the magnitude
of Vcf does not play a role in the trivially satisfied robust sta-
bility condition, it is acceptable to use an overly conservative
weighting filter, as indicated in Figure 5.

Comparison of the two uncertainty models also highlights
the increased complexity of the multiplicative uncertainty
modelPm verses the coprime factor uncertainty modelPcf .
Although both the controller and weighting functionVcf

are used in formulatingPcf , the very high order weighting
function Vm considerably increases the total complexity of
the multiplicative modelPm.

B. Comparison of Closed-Loop Model Validation

After noting that the stability robustness test was satisfied
for both uncertainty modelsPm andPcf , the models were
then used to perform closed-loop model validation as de-
scribed in Theorem 1. Following this, for the multiplicative
model validation test consider theM matrix given by

M11 = −Vm(I + C̄P̂ )−1C̄P̂

M12 = Vm(I + C̄P̂ )−1P̂

M21 = (I + P̂ C̄)−1

M22 = (I + P̂ C̄)−1P̂

(8)

where (8) describes how the nominal model is struc-
tured within a multiplicative uncertainty description. The
model validation test for both uncertainty models determines
whetherσ̄(M̂11 −M̂12M̂

−1

22 M̂21) > 1 whereM̂ is given by
(6). For the multiplicative uncertainty description consider
M given by (8) and for the coprime factor uncertainty de-
scription considerM given in (4). Note that the uncertainties
∆m and ∆cf are unstructured soµ(·) can be replaced by
σ̄(·). Note also thatY (ω) and R(ω) denotes the frequency
response measurement of the closed-loop systemΦcl.

By comparing the model validation results in Figure 7,
it can be seen that the closed-loop data invalidates the
multiplicative uncertainty modelPm for the entire frequency
range. Since the coprime factor uncertainty model validation
test holds for every frequency point,Φcl does not invalidate
the coprime factor uncertainty modelPcf .

C. Summary of Results

The model validation of the flexible structure illustrates
the practical application and benefits of uncertainty mod-
eling using coprime factorizations. It can be seen that the
multiplicative uncertainty model is invalidated by the closed-
loop dataΦcl, whereas the coprime factor uncertainty model
cannot be invalidated. This indicates that the coprime factor
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Fig. 7. Model Validation Test, multiplicative uncertainty description (top)
and coprime factor uncertainty description (bottom)

uncertainty model is more suited for the closed-loop model
validation problem presented in this paper.

Since the coprime factor based uncertainty set is parame-
terized using the knowledge of a controller, robust stability
is trivially satisfied for this feedback controller. As a result,
coprime factor uncertainty modeling allows more freedom
in choosing a weighting filter that over-bounds the coprime
factor uncertainty. It can be observed from the application
that there is a significant discrepancy between the frequency
domain data and the nominal model at high frequencies.
Since high frequency modeling errors are not important
for the lead/lag feedback controller used in the closed-loop
experiments, it is not necessary to insure a close fit between
the data and the model in that region. Note that this effect
also carries over into the model validation results.

V. CONCLUSIONS

The model validation problem presented in this paper de-
termines whether a model is capable of reproducing closed-
loop measurement data and whether a model is appropriate
for control design purposes. The closed-loop relevant model
(in)validation problem is solved using uncertainty models
with coprime factor perturbations and a frequency point-wise
evaluation of the singularity of a Linear Fractional Trans-
formation. Important in this formulation of the uncertainty
model is the dependency on the controller, creating a closed-
loop oriented model (in)validation of the uncertainty model.

The procedure is illustrated on the experimental data of a
flexible structure, where both the coprime factor uncertainty
model and a standard open-loop multiplicative uncertainty
model are subject to a closed-loop validation problem. It
is shown in the application example that only the coprime
factor based uncertainty structure is able to validate the model
successfully.
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