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Abstract: This paper addresses the problem of checking the consistency of experimental

closed-loop frequency-domain data with uncertainty models that are structured using

coprime factorizations. The uncertainty models presented in this paper use the knowledge

of a stabilizing feedback controller to structure and formulate the uncertainty on a model.

Subsequently, the controller dependent coprime factor uncertainty model can be used

to formulate model (in)validation tests on the basis of closed-loop data. Closed-loop

model validation results are developed for the cases of noise-free and noise perturbed

closed-loop data. The model validation tests involve the computation of a structured

singular value over a finite frequency grid. It is also shown that the computation of the

structured singular value simplifies considerablywhen the feedback controller used for the

closed-loop experiments is the same as the controller used for formulating the controller

dependent coprime factor uncertainty model.
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1. INTRODUCTION

Model validation is a critical procedure to establish

whether or not a model can reliably predict the out-

put of a system (Smith and Doyle 1992). In the last

few years there has been much attention directed to-

wards various techniques of performing uncertainty

model validation. Specifically, the model validation of

a general Linear Fractional Transformation (LFT) of

discrete and continuous uncertain systems are studied

in Poolla et al. (1994), Smith and Dullerud (1996) and

Chen and Wang (1996). Model validation techniques

using LFT’s are applied to the frequency domain in

Chen (1997)where the validation tests were illustrated

to have a low level of computational complexity by

formulating the model validation problem as a convex

optimization.

In model (in)validation a distinction must be made

between validating models on their open-loop and

closed-loop behavior. A model suitable to predict and

validate open-loop data may be different from a model

that approximates the closed-loop behavior of a sys-

tem. Closed-loop model validation techniques typi-

cally validates models on the basis of closed-loop data

to verify the model for robust control applications.

Control oriented or closed-loop model validation has

been applied in Chen and Smith (1998) where it was

observed that the convexity of the model validation

problem can be preserved by using the knowledge of

the controller.

In the line of development of closed-loop model

validation techniques, a fractional representation ap-

proach is presented in this paper to address the control

oriented identification and model validation problem.

The fractional approach eliminates the effect of corre-

lated noise on observed input and output signals that

is unavoidable in feedback controlled systems. This

approach allows enables a unified method to validate
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models for stable, marginally stable or unstable sys-

tems via the validation of stable coprime factorizations

on the basis of closed-loop data. The work on frac-

tional model identification was initiated by Hansen et

al. (1989) and further developed in the work by Lee et

al. (1993) de Callafon and Van den Hof (1997) and Lu

et al. (1996). The fractional approach forms an excel-

lent framework to address the identification of systems

on the basis of closed-loop data (Anderson 1998) and

control oriented model validation (de Callafon and

Van den Hof 2000).

In this paper the problem of checking the consis-

tency of experimental frequency-domain data is ad-

dressed with uncertainty models that are structured

using coprime factorizations. Model validation tech-

niques based on models formulated in a coprime fac-

tor framework have also been presented in Boulet

and Francis (1998). The results of Boulet and Francis

(1998) cover the noisy and noise-free conditions but

are limited to open-loop frequency-response data that

do not take into account the controller information.

In this paper the coprime factorizations used in the

uncertaintymodel depend on the knowledge of a stabi-

lizing feedback controller to facilitate the closed-loop

(in)validation of the uncertainty model.

The model validation tests presented in this paper in-

volve the computation of a structured singular value

���� over a finite frequency grid. Model validation

techniques using (inverse) � have also been studied

in Lind and Brenner (1999) with applications towards

aero-servoelastic systems. Model validation results

using � for SISO andMISO systems were also studied

in Kumar and Balas (1994). Unfortunately, most of

these results were applied to open-loop model valida-

tion and this paper extends these results to address the

closed-loopmodel validation problem. It is also shown

in this paper that the computation of the structured sin-

gular value for the model validation simplifies consid-

erably when the knowledge of the feedback controller

used for the closed-loop experiments is included in the

coprime factor based uncertainty model.

2. PROBLEM FORMULATION

Given a nominal model �� of a system ��, an uncer-
tainty structure�, and a set of input and output meas-
urements ��� �� acting on the actual system ��, the

model (in)validation problem is to determine whether

the measurements ��� �� could have been reproduced
by the model with the uncertainty. The nominal model
�� , along with the perturbation � will constitute an

uncertainty model � . Provided that � is constructed

in such a way that �� � � , such an uncertainty model
� allows one to perform model (in)validation tests to

verify the validity of �. It is important to note that the
model (in)validation test can be formulated as either

an open-loop or closed-loop problem. The difference

between open- and closed-loop data is not only de-

termined by the data used for the model validation,

but also depends on the way in which the uncertainty

model � is structured. In this paper we consider a

controller dependent coprime factor based uncertainty

model that is presented in the following section.

2.1 Use of Fractional Models

An (upper) Linear Fractional Transformation (LFT)

������� �� ��� ������� �����������

provides a general notation to represent all models

� � � as follows

� � �� � � � �������
with � � IR�� and ���� 	 �	

(1)

where � indicates an unknown (but bounded) uncer-

tainty. The entries of the coefficient matrix � in ���
dictate the way in which the uncertainty model � is

being structured.

The uncertainty model � will be characterized by

employing a fractional approach. A fractional based

uncertainty model � is characterized by specifically

using the knowledge of a controller 
 that stabilizes

the nominal model �� . More specifically, the uncer-
tainty model � proposed in this paper is structured as

follows

� � �� � � � ���� with

� � �� ��
	� ,� � �� ��

	� and
	� �� �, ���� 	 �	

(2)

where ��� �� and � ��� ��� respectively denote a

right coprime factorization (rcf ) of the controller 

and a nominal model �� . The weighting function 
is used to normalize the unknown but bounded uncer-

tainty.

The uncertainty model � in �
� is different from

standard additive coprime factor perturbations as used

in Boulet and Francis (1998). In the uncertainty model

of �
�, the perturbation 	� is used to model a combined

perturbation on the rcf (���) of the model � . It can
be observed that �� is perturbed by �� � �

	� and
�� is perturbed by�� � �

	� where the rcf (�� ��
of the controller plays an important role in assigning

the common perturbations in the rcf (���). From
this representation, the coprime factors (���) can be
expressed as

� � �� ��� and� � �� ��� (3)

where�� and�� are coupled and controller depen-

dent additive perturbations on the coprime factoriza-

tion � ��� ��� of the nominal model.

The reason to consider a combined perturbation� on

rcf ( ��� ��) of the nominal model �� compared to in-

dependent perturbations ��� is two-fold. Firstly, inde-
pendent additive perturbations of �� and �� in ���
would yield two components to the uncertainty, while

it is the ratio of � and � that determines the model
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� . One way to account for this effect is to choose a
single weighting function  to bound both �� and

�� in ��� as done in Boulet and Francis (1998).

Such an approach might introduce conservatism in

the uncertainty model, in case the perturbation�� is

significantly different from the perturbation �� . The

second reason to introduce a combined perturbation�
in the uncertainty model �
� is to establish a link with
the Youla-Kucera parameterization (Anderson 1998)

that will facilitate closed-loop model validation of the

uncertainty model.

A close relationship with the Youla-Kucera parame-

terization is obtained when the nominal model �� is

required to create a stable feedback connection with

the controller 
 used in the uncertainty model �
�.
In this way, the coefficient matrix � in ��� is formed
by considering a model perturbation that is structured

according to a Youla-Kucera parameterization as in

Figure 1.

� ���� ��

��

	�

��

�

�� �

�

��

�

�-

+
u +

+
y

Fig. 1. Uncertainty model based on a controller related

perturbations of coprime factorizations

With the uncertainty structure presented in Figure 1,

the uncertainty model � can be written as follows

� � �� � � � ������� with Q given by

��� �  ��
��
� ��� �  ��

��

��� � � � �� ��
��
� ��� � �� ��

�� (4)

and� � IR��, ���� 	 �	

The coefficient matrix � in (4) is formed by using

the information of the rcf � ��� ��� of the nominal

model �� , the rcf ��� �� of the controller 
 and the

perturbation given in�
�. It can be observed that the
uncertainty model is a generalization of an uncertainty

description based on closed-loop transfer functions, in

case either �� or 
 is assumed to be stable and a trivial

choice � �� � �� or �
� �� is chosen for respectively the
rcf of �� or 
.

2.2 Closed-Loop Model Validation Problem

Consider a feedback connection of the system �� and

a feedback controller 	
, with � � ��� � � and � �
� � 	
�. It shoudl be noted that a distinction is made
between the controller 
 and 	
 . The notation 
 is

used to indicate the controller used in the construction

of the uncertainty set (4), whereas the notation 	
 is

used to denote the controller used in the closed-loop

experiments.

The input/output data ��� �	 of the system �� con-
trolled by the feedback 	
 can be described by�
�
�

�
�

�
��
�

�
��� 	
���

����

�
�
� 	


�
����� 	
�

���

(5)

where � denotes an external reference signal that pro-
vides sufficient excitation of the closed-loop system.

The signal � denotes the additive noise on the output
� that can be caused by sensor noise. For closed-loop
model validation purposes, the reference signal � is
considered as an input signal. The signal � and/or �
can be considered as measurable closed-loop output

signal. Without loss of generalization only the output

signal � is considered here for closed-loop model val-
idation to simplify the formulae.

Application of the feedback law � � � � 	
� to all
models � � � in (4) yields a set of closed-loop

models 
 that is structured as follows.


 � �� � � � ������� with M given by

��� �  � �� � 	
 ������ 	
 � 
��

��� �  � �� � 	
 �����

��� � �� � �� 	
����� � ��
��

��� � �� � �� 	
��� ��

(6)

and� � IR��, ���� 	 �	

The entries of � in ��� are all known quantities and
found by a rcf of a nominal model �� and a bound for

the unstructured uncertainty� in ��. As
 is required

to internally stabilize �� , it can be verified that all en-
tries of� are stable if and only if the controller 	
 also

internally stabilizes the nominal model �� . The entries
of the coefficient matrix � form the set of closed-

loop models 
 that is structured due to the uncertainty

model posed in (4) and application of the feedback law

� � � � 	
�. Note that in (6) the controller 
 is the

controller used to create the uncertainty structure of

(4), whereas 	
 is the controller used in the closed-

loop experiments. The availability of closed-loop data

��� �	 and the characterization of the closed-loop un-
certainty set 
 form the basis of the closed-loopmodel

(in)validation problem in this paper.

In case the feedback controller 	
 used in the closed-

loop experiments � � � � 	
� equals the controller 

used in constructing the uncertainty set (4), the entries

of � in (6) can be greatly reduced. In case 	
 � 
,
the set of closed-loop model 
 reduces to


 � �� � � � �������
with � � IR�� and ���� 	 �	

(7)

where the entries of� are given by

��� � � ��� �  � �� � 	
 �����

��� � � ��� � �� �� � 	
 �� ���

Note that for 	
 � 
, ��� � � and stability ro-

bustness is trivially satisfied for the uncertainty set


 in (7). However, when the controller 
 used to

parameterize the models is redesigned to 	
, ��� �
������ 	
� �� � and stability robustness is not trivially
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satisfied. The fact that��� � � is an immediate con-
sequence of the Youla-Kucera parameterization used

in constructing the fractional model based uncertainty

set (4). In case 	
 � 
, the controller 	
 used in the

closed-loop experiments, is the same as the controller


 used to create the uncertainty set.

Choosing 	
 � 
 also carries the interpretation of

performing closed-loop model validation for a set of

models � that is know to be stabilized by 	
 � 
.
This information is used beneficially, as only models

that are stabilized by 	
 are considered. As a final

remark it can be observed that��� � � yields an LFT
������� ������������ where the uncertainty

� appears linearly in the closed-loop map from � to �.
The affine representation of the uncertainty � can be

exploited to formulate an affine model (in)validation

problem on the basis of closed-loop data.

To account for noise during the observation of ���� we
assume an unknown but bounded additive perturbation

of the Discrete Fourier Transform � ���. In that case,
the uncertainty model can be written as

� ��� � �������� ������Æ�������� (8)

where������� is given in (6) and����� is a stable
and stably invertible weighting function. In (8) the

effect of the additive noise is bounded by Æ��� with
�Æ���� 	 � � � or �Æ�� 	 �, while ����� is
a frequency dependent weighting function to model

the spectral content of the noise. Using the above

assumptions with the knowledge of the uncertainty

model represented in � and the knowledge of the

noise contribution in �����, the closed-loop model
validation problem can be summarized as follows.

Closed-loop model validation problem: consider the

closed-loop measurements � ��� and ����, � � �.
The closed-loop uncertainty model is not invalidated

by the data if there exists a � with ���� 	 � and Æ
with �Æ�� 	 � such that (8) holds.

For the closed-loop model validation problem the ob-

jective is to determine whether there exists a stable

perturbation� with ���� 	 � and an additive noise
perturbation Æ with �Æ�� 	 �, such that (8) holds.
The model validation results are presented in the next

section.

3. CLOSED-LOOP FREQUENCY RESPONSE

MODEL INVALIDATION

3.1 Noise-Free Case

For the closed-loopmodel validation problemwe con-

sider a closed-loop system where a reference signal

� is applied and a noise free system response � is

measured. The frequency domain data of the closed-

loop system can be described by

� ��� � ��� ���������� � � � (9)

where the entries of �� are given by

���� �� ���
���� �� ��������

���� �� ���
���� �� � ��������������

(10)

In ���� the entries �� �� are frequency dependent func-

tions where � � � and � ��� and ���� are the

respective Discrete Fourier Transforms of the (noise

free) signals ���� and ����.

The model validation problem is performed frequency

point-wise and decomposed into consistency prob-

lems evaluated over the frequency grid �. The con-
sistency problems check the existence of ���� with
������� 	 � for � � �. In order to guarantee

the existence of a � � IR�� with ���� 	 �,
a boundary interpolation result (Chen 1997, Boulet

and Francis 1998) should be used and the result is

summarized in the following lemma.

Lemma 1. Let ������� 	 � � � � �, then  � �
IR�� with ���� 	 �.

One is referred to Boulet and Francis (1998) for a

proof of this result. The boundary interpolation result

is used to formalize the model (in)validation result for

the closed-loop data in ��� in the following theorem.

Theorem 1. Let � ���, ���� with � � � denote the

noise free frequency response measurement of the

closed-loop system � ���� 
� and let �� be defined as

in (10). The closed-loop uncertainty model 
 in (6)

is not invalidated iff ��� ���� � ����
��
��

��
����� � �

where ����� is computed with respect to the uncer-
tainty structure� given in (6).

Proof: With Lemma 1 it suffices to show the exis-

tence of a���� with ������� 	 � for� � �. This is
equivalent to ��� ����	� � � for � � �. The inverse
of ���� ����	�℄

�� � ������	� where the entries of
� are given by

��� � ���� � ����
��
��

��
����

��� � � ����
��
��

��

��� � ��
��

��
����

��� � ��
��

��

With ���� invertible, it can be seen that ������	� is

ill-defined when ��� ������ ����
��
��

��
�������� is

ill-defined. This condition can be replaced by the com-

putation of the structured singular value ��� ���� �

����
��
��

��
����� � �. �

The evaluation of ��� ���� � ����
��
��

��
����� � �

is done frequency point-wise over � � �. In case

� is unstructured, ����� � � can be replaced with
	���� � �. The above model invalidation condition

of ��� ���� � ����
��
��

��
����� � � is actually the

inverse-� result as derived in Lind and Brenner (1999)
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and is an adaptation of the result mentioned in Boulet

and Francis (1998). Due to the noise free data, the

value of ���� can actually be computed over � � �.
The result is summarized in the following corollary for

an interpretation of the noise free closed-loop model

validation problem.

Corollary 1. Let ����� denote the closed-loop noise
free frequency response of the system and let �


be defined as �
 � �
���� � ��
������ �

����� 	
�
�������� �� � ��. Then the closed-loop un-

certainty model 
 in ��� is not invalidated by �����
iff ��
 ���� 	 � ����.

Proof: Let �� � ���� with � � �� ���
 and

� � �� � ��
 where � ��� ��� and ��� �� are
the respective right coprime factors of the model ��
and the controller 
. Rearranging terms leads to the
expression ��� ��� ��� � � �������. Substituting

�� � �� ��
��

and 
 � ��
��
 and with further rear-

rangement leads to the uncertainty expression �
 �
�
������
������� �� � ��. In the case of noise free

measurements, �������� 	
�
������� � �� and the

result simplifies to �
 � �
���� � ��
������ �

����� 	
�
�������� �� � ��. �

The result in Corollary 1 illustrates that an explicit and

computable expression for the uncertainty�
 can be

obtained. Note that the assumptions listed in Boulet

and Francis (1998) for the noise-free open-loopmodel

validation test are relaxed in our case. Since the valida-

tion test presented in this paper involves the measure-

ments of � ��� and ���� explicitly, it is unnecessary
to assume nonsingularity of ������ � � ��������.
The following corollary illustrates how the model val-

idation results simplify when the controller 	
 used to

gather the closed-loop experiments is equal to the con-

troller
 used to characterize the uncertaintymodel�.

Corollary 2. If the controller 	
 used in the closed-

loop experiments is equivalent to the controller
 used

in the uncertainty model � of �
� then the test on

the structured singular value mentioned in Theorem 1

reduces to

�� �����
��
�� � ��

� � �� 	

� 	 � (11)

Proof: Substituting ����, ����, ����, and ���� from

(10) and letting 
 � 	
 reduces the model in-

validation test to 	�� � �� � 	
 �������� � �� �
�� 	
��� �������� � �. Note that 	���� � �����
since we consider a full-block matrix � for the

closed-loop noise-free case. Simplifying and not-

ing that �
�

� �
��� ��

, the expression reduces to

	�� �
��
��
�� � 	
 �� ���� �

��� ��
�

�

�� � ��
��� � �.

Cancelling common terms and noting that 	���� �
� � ������ 	 �, the model invalidation test is

written as �� �����
�� �� �
��� ��

� 	 �. �

The above result is expected as we note a dependence

on the closed-loop sensitivity function and a weighted

dependence on the difference between the system and

nominal model. As mentioned earlier in the case 	
 �

, the term ��� � � and robust stability is trivially
satisfied. This follows directly from (7) and is the

result of the dual-Youla parameterization.

3.2 Noisy Case

The noise free case was used to illustrate the main

results and ideas of the closed-loop model validation

problem. For practical application of themodel valida-

tion techniques, the noisy measurements of the closed-

loop data in ��� need to be considered. In ��� the quan-
tity �����Æ��� models an additive perturbation of

the closed-loop measurement � ��� and incorporates
both the effect of an additive noise during a measure-

ment and also the effect of initial conditions. The noise

Æ��� is unknown, but bounded by �Æ���� 	 � � � �
�.

In structuring the closed-loop uncertainty model as

in (6), the closed-loop model validation problem for

the noisy case can be determined. In order to take

into account the effect of the unknown but bounded

additive noise, we can recast the uncertainty model as

an LFT ������	� where

�	 �

�
� �
� Æ

�
with ���� 	 � and �Æ�� 	 �

(12)

and the entries of� are given by

��� �

�
��� �
� �

�
��� �

�
���

��

�

��� �
�
��� �

�
��� �

�
���

� (13)

In structuring the closed-loop uncertainty model in

this form, (8) can be written as

� ��� � ��� ����	����� (14)

where the entries of �� are given by

���� �� ������ ���� �� �����������
���� �� ������ ���� �� � ���������������

(15)

Similar as in the noise-free case, ���� are frequency

dependent functions of � � �. With this LFT formu-

lation, a result similar to Theorem 1 can be formulated

for the closed-loop model validation problem on the

basis of noisy data.

Theorem 2. Let � ��� and ���� denote the closed-
loop noisy frequency response measurement of the

closed-loop system � ���� 
� and let �� be defined

as in (15). The closed-loop uncertainty model in

(14) is not invalidated by the data iff ���
� ���� �

����
��
��

��
����� � � where ���

��� is computed with
respect to the uncertainty structure�	 given in (12).
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The proof of Theorem 2 is similar to the proof of

Theorem 1 and is omitted here for brevity. Consider

again the case where the controller 	
 used to gather

the closed-loop experiments is equal to the controller


 used to characterize the uncertainty model � . With


 � 	
, a direct calculation of � can be obtained by

using the reduced rank � problem (Fan and Tits 1985).

Using the model invalidation result of Theorem 2,

substitute the values of ����, ���� and ���� from (15)

and note that 
 � 	
 � ��� � � � ���� � �. As a
result, the model invalidation test is reduced to

���
�

�
���

��

�
��� ������������ �℄ � � � (16)

where �	 is computed with respect to the uncertainty

structure given in (12). Note that the dependency

of � is dropped for notational simplicity from the

expression of ���
��� in (16). Since the argument of

���
��� in (16) is a diadic matrix (Fan and Tits 1985),

it satisfies

���
�

�
�
 

�
� "℄ � � ���� � "� (17)

and the model invalidation test can be rewritten as

������� �������������
������ ���������� � �

(18)

It can be seen from (18) that for 
 � 	
 the

closed-loop model invalidation test involves checking

whether the sum of two transfer functions is less than

�, which greatly simplifies the computation of the

structured singular value for the model (in)validation

problem.

4. CONCLUSIONS

Uncertainty models that are structured using coprime

factorizations are used to address closed-loop relevant

model (in)validation on the basis of closed-loop fre-

quency domain data. Important in the formulation of

the uncertainty model is the knowledge on the con-

troller used to create a closed-loop oriented model

(in)validation of the uncertainty model.

The controller dependent uncertainty model is used to

formulate model (in)validation tests on the basis of

closed-loop data. The model validation tests involve

the computation of a structured singular value over a

finite frequency grid. It is also shown that the com-

putation of the structured singular value reduces to

the sum of two transfer functions when the feedback

controller used for the closed-loop experiments is the

same as the controller used for formulating the con-

troller dependent coprime factor uncertainty model.
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