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Abstract: Commercially available mechanical systems are available to teach and demon-

strate the principles behind dynamics and control. A single system can be used for

basic dynamic analysis in an undergraduate class to teaching and applying sophisticated

identification techniques in a graduate class. In this paper it shown how a commercial

system is used at the undergraduate level to estimate lumped parameter coefficients using

multiple step responses and first principle modeling. At the graduate level, the same

commercial system is used to teach concepts of system identification for the estimation

of models for a multi-degree of freedom mechanical system.

Keywords: identification; education; lumped parameter models

1. INTRODUCTION

Dynamic models are important to illustrate the main

concepts in dynamic system analysis and linear con-

trol. With a mathematical description of a linear dy-

namic system, either in the form of a differential

equation, a transfer function or a state space model,

main concepts such as dynamic response, stability

and feedback control can be taught and demonstrated

(Dorf and Bishop 2000, Stefani et al. 2001, Franklin

et al. 2001). Consequently, derivation of a dynamic

model should be an integral part of a course on dy-

namic system analysis and control system design.

A fundamental step in constructing a dynamic model

is based on first principle modeling. Especially in un-

dergraduate engineering education where students de-

velop a background in analyzing equations of motion,

thermodynamics and circuit theory, dynamic models

are based on governing equations obtained from the

various disciplines (Bryson 1994, Morari and Zafiriou

1997, Franklin et al. 2001). With applications and

students coming from various disciplines, a challenge

in teaching control system design is to demonstrate

that dynamic models arising from different disciplines

have a similar dynamic structure and can be subjected

to the same dynamic system analysis needed in control

system design.

Important components in dynamic system analysis are

the transient response and the frequency response of a

model. Time and frequency domain analysis illustrate

the main dynamic concepts of a model, but also illu-

minate the similarities between dynamic models from

various disciplines. Unfortunately, in most undergrad-

uate courses on dynamic system analysis and control

system design, time and frequency domain analysis

is used only to illustrate the dynamic behavior of a

system. It is beneficial to include a reversal of this

information and use dynamic responses to derive the

dynamic behavior of the system.

Estimation of models on the basis of data can be

integrated in undergraduate education by providing

dynamic analysis of time and frequency response data

with the purpose of characterizing dynamic model
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properties. In this paper it is shown how this can be

done for a flexible mechanical system on the basis of

step response experiments.

2. ESTIMATION OF MODELS FROM DATA

Estimating models from data in general requires a

substantial background in the field of system identifi-

cation. This is one of the primary reason not to include

data based modeling techniques in basic undergradu-

ate courses on dynamic system analysis and control

system design. However, without a background in sys-

tem identification, estimation of models from data can

still be done by using relatively simple experiments.

Such experimentsmay include step responses that pro-

vide an intuitive understanding of the dynamic behav-

ior. Experiments of this nature are particular useful in

a laboratory environment where students are asked to

develop models for control system design on the basis

of measured data. When combined with first principle

modeling, data based modeling illustrates the possi-

bility to obtain parameters of a system from dynamic

experiments.

In this paper it is illustrated how a commercially avail-

able mechanical lumped parameter system is used to

teach the basic concepts of model parameter estima-

tion from experimental data. By combining first prin-

ciple modeling and standard vibration analysis, mass,

damping and spring parameters are estimated on the

basis of simple step experiments that are carried out

in an undergraduate laboratory course. At the grad-

uate level, the same commercial system is used to

teach concepts of system identification by estimating

of models for a multi-degree of freedom mechanical

system.

The objective of this paper is to illustrate the use of a

commercially available mechanical lumped parameter

system to estimate system parameters using multiple

step responses and first principle modeling. The ap-

plication of simple step experiments in a laboratory

environment enables students to derive models from

data, whereas the lumped parameter system can also

be used to derive a model from first principles. The

experiment is currently used in an undergraduate lab-

oratory course on control system design at the Me-

chanical and Aerospace Engineering department at the

University of California, San Diego.

3. LABORATORY EXPERIMENT

3.1 Mechanical system

The rectilinear (and torsional) system used for the

laboratory experiments discussed in this paper are

mechanical systems with multiple mass, spring and

damper element with one-dimensional motion. The

systems consist of mass, spring and damper compo-

nents and a picture of the rectilinear system is depicted

in Figure 1. The systems are commercially produced

by Educational Control Products (ECPsystems.com)

and are equipped with a hardware interface and a user-

friendly software environment for data acquisition and

controller implementation purposes.

Fig. 1. Rectilinear 3 mass system used for dynamic

experiments

The mechanical system depicted in Figure 1 consists

of several carts with adjustable weights connected by

spring elements. Optional air-restriction dampening

devices can be added to increase the damping coeffi-

cients of the overall mechanical system. To simplify

the analysis, the mechanical system in Figure 1 is

equipped with only 2 charts connected via a spring

element. As a result, a 2 mass mechanical system is

created where each mass or inertia has a positioning

freedom. A schematic diagram of the 2 mass system

is depicted in Figure 2.

��

 

��

 �� ��

�
�

�� ��

� �
�� ��

Fig. 2. Schematic view of 2 mass rectilinear system

A force � can be applied to the first mass �� via

a linear DC-motor. The purpose of the laboratory

experiment is to model and control the vibrations of

the 2 mass system. The DC-motor is chosen such that

its dynamics is negligible compared to the dynamics

of the mechanical vibrations of the system. A dynamic

model is required to develop a controller to reduce the

residual vibrations and to change the position �� of

a mass/inertia �� as fast as possible by means of a

controlled force � .

3.2 First principle modeling

Using standard analysis based on 2nd Newton’s law,

the equations of motion for the lumped parameter

system in Figure 2 can be derived. The equations of

motion are given by

����� ������ � �� ��� � ����� � ��� � � (1)

����� � ����� � ���� �� ��� (2)

where ��, �� represent the mass or inertia, while

��, �� represent displacement of the masses. The
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coefficients ��, �� and ��, �� represent respectively
damping and stiffness parameters of the mechanical

system and � denotes the applied control force.

In order to find the dynamical relation between control

force � and the displacement �� of the first mass

��, ��, ��� and ��� are eliminated from (1) and (2).

By means of a Laplace transformation, the equation

of motions (1) and (2) for this 2 mass system can be

written in the matrix representation

� ���

�
�����
�����

�
�

�
� ���
�

�

with

� ��� �

�
���

� � ���� ��� � ��� ������ ���
� � ���� ��

�
(3)

From (3) it can be seen that the computation of a

solution of �� (and ��) involves the inversion of a
matrix � ���. For a 2 mass model, � ��� is a ���matrix
and the computation of the inverse only requires the

computation of the determinant of � ���. With the

determinant ���� of � ��� given by

����
� � ���� �� � �������

� � ���� ���� ��
�

it can be concluded that � ����� is given by

	

����

�
���

� � ���� �� ��
�� ���

� � ���� ��� � ���

�
�

With this analysis it follows that the resulting transfer

function 	���, that relates the control effort � ��� to
the position �����, is given by

	��� �

��

� � 
��� 
�
���� � ���� � ���� � ���� ��

(4)

where the coefficients are


� � ��


� � ��

� � ��

�� � ����

�� � ����� ������
�� � ����� � ��� � ����� � �����
�� � ���� � ����� � ����
�� � ����

For the accurate prediction of the flexibilities in the

2 mass lumped parameter model, the mass ��, ��,

the stiffness ��, �� and the damping ��, �� have to
be determined. Estimation of these parameters on the

basis of (dynamic) laboratory experiments provides

valuable insight in the basic concepts of model param-

eter estimation in an undergraduate course.

4. EXPERIMENTS FOR PARAMETER

ESTIMATION

4.1 Single mass experiments

To facilitate the estimation of the parameters of the

2 mass mechanical system, experiments with only a

single mass system are used. Performing the experi-

ments on a single mass is possible, due to the nature

of the lumped parameter system. By either physically

disconnecting the masses or restricting the displace-

ment of one of the masses, a single mass system is

obtained.

The rationale behind the usage of single mass exper-

iments is the ability to isolate the various resonance

modes in the lumped parameter system. For a standard

2nd order mass/spring/damper system, the relation be-

tween force input� and displacement � is given by the
transfer function

	��� �
	

��� � ��� �
�  � ��

�

�� � ������ ��
�

(5)

where

 �
	

�
steady state gain

�� �

�
�

�
undamped resonance frequency

� �
�

�
�
��

damping ratio

The relationship betweenmass�, damping �,stiffness
�, the (undamped) resonance frequency �� and the

damping ratio � is taught at the undergraduate level

in standard vibration analysis. This knowledge can

be exploited to estimate the model parameters by

a sequence of well-planned experiments, where in

each experiment only one degree of freedom of the

mechanical system is analyzed.

Following the schematic diagram in depicted in Fig-

ure 2, the following three experimental conditions can

be constructed:

� Disconnect mass�� and�� by removing spring

��, resulting in a single mass system with mass

��, stiffness �� and damping ��.
� Connect mass �� and �� by spring ��, but
restrict motion of mass ��. This results in a

single mass system with a mass�� and stiffness

�� � ��.
� Restrict motion of mass ��. This results in a

single mass system with mass ��, stiffness ��
and damping ��. It should be noted that no con-
trol force � can be applied to mass �� in this

configuration.

The first experiment can be used to gather information

about the the parameters��, �� and �� by observing
the steady stage gain  � 	���, the undamped

resonance frequency�� �
�
����� and the damping

ratio � � ��
�
�
����

. As no control force can be applied

to ��, the second experiment is used to estimate the

sum of the stiffness from which �� can be computed
by using the knowledge of �� obtained from the first

experiment. With the knowledge of the stiffness ��,
the last experiment is used to estimate the mass ��

and damping �� parameters by again observing the

undamped resonance frequency �� �
�
����� and

the damping ratio � � ��
�
�
����

.
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4.2 Step response experiments

The dynamic behavior of the lumped 2 mass system in

Figure 2 can be determined by performing relatively

simple single mass experiments. The parameters esti-

mated in each experiment are combined to form the

complete model of the mechanical system.

For the estimation of the parameters , �� and � in

each experiment based on a single mass system, a step

experiment will be used. The response to a step input

signal can be computed analytically for a 2nd order

system and gives rise to a straightforward estimation

of the parameters of a single mass system from the

observed data.

The displacement ���� due to a step input � ��� �
�� � � � is given by

���� � ���
�
 � ��

�

�� � ������ ��
�

� �
�

�

� �
�
	� e������������ � ������

� (6)

where
�� � ��

�
	� ��

� �
��

	� ��

The step response of a single mass system with damp-

ing � � � � 	 is an exponentially decaying sinusoidal
function. As a result, the damped resonance frequency

��, the damping � and the static gain or DC-gain �

�

can be estimated from an observed step response.

5. ESTIMATION OF MODEL PARAMETERS

5.1 Direct estimation

For the estimation of the parameter, consider the step

response depicted in Figure 3. From the observed step

response the following parameters can be estimated.
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Fig. 3. Typical step response of single mass system

� The steady state behavior is given by

��
���

���� �� �� � �

and with � known as the step size of the input

signal
� �

��
�

(7)

is an estimation of the parameter .
� From the oscillation in the step response ����,
the damped resonance frequency �� can be esti-

mated. For that purpose, consider the time mea-

surements �� and �� to distinguish two subse-

quent maximum values of oscillations in the out-

put ����, then

��� � ��
�

�� � ��
(8)

gives an estimate for the damped resonance fre-

quency �� of the single mass system, where �
is the number of oscillations between the two

subsequent maximum values of output ����.
� From the decay of the oscillation in the step re-

sponse ����, the damping coefficient � can be es-
timated. For that purpose, consider the difference

of the steady state value �� with two subsequent

maximum values �� and �� of oscillations in the
output ����. With the analytic solution of the step

response given in (6) it can be verified that

���� �
	

�� � ��
��

	
�� � ��
�� � ��



(9)

is an estimate for the product of the damping ra-

tion � and the (undamped) resonance frequency

��.

Combining the estimates in (8) and (9) yields

��� �

�
���

� � � ������

�� �
����
��

and gives estimates for the undamped resonance fre-

quency �� and the damping ratio �. With the values

of the estimates � , ��� and ��, the values of the mass
�, damping � and stiffness � in (5) (up to a scaling

constant) are computed via

�� �
	

�
(stiffness constant)

�� �
	

� ���
�

(mass/inertia)

�� �
��

� ���
(damping constant)

(10)

which concludes the estimation of the system param-

eters from a single step experiment. The parameter

estimates in (10) are unbiased estimates of the sys-

tem parameters, provided step experiment are used.

To improve the variance properties of the estimates in

case of noise experiments, averaging of the estimates

over multiple step experiments can be performed. The

simple step experiments provide means to estimate

the unknown parameters in the 2 mass system. The

parameters are estimated by a sequence of step exper-

iments that only require the knowledge of the dynamic

behavior of a standard 2nd order system.
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5.2 Estimation via step response realization

It can be observed that the estimation of the param-

eters in (7)-(9) is based on only three discrete data

points: ��, �� and �� with the corresponding time el-

ements ��, �� and ��. With the help of the (continuous

time) analytic solution of the step response in (6), an

explicit expression for the parameters estimates of the

single mass/spring/damper can be obtained. Although

the parameter estimation gives insight in determining

system parameters from dynamic experiments, the pa-

rameter estimation is highly influenced by noise. An

extra level of complexity can be added to the esti-

mation by including all the data points of the step

response in the parameter estimation.

One possible solution would be to pose an optimiza-

tion using a parametrized continuous model (Ljung

and Glad 1994, Ljung 1999) to find the optimal values

for the mass �, stiffness � and damping � param-

eters. Although this is a viable solution, non-linear

optimization techniqueswould be required to solve the

parameter estimation technique. An alternative would

be to construct a model using realization techniques

(Ho and Kalman 1966, Kung 1978), which only re-

quires standard matrix manipulations to estimate a

model (Vandewalle and de Moor 1991). Matrix ma-

nipulations such as singular value decompositions are

taught at the undergraduate level. Therefore, realiza-

tion based techniques can be easily adapted to the dis-

crete time step response measurements obtained from

the laboratory experiments.

For the estimation via the step response realization,

consider the step response data ����. Since ���� is
(discrete time) step response data,

���� �

��
���

����

where ���� indicates the (unmeasured) discrete time
impulse response data. By forming the matrix

� ��


����
��	� ���� � � � ����
���� ���� � � � ���� 	�
...

...
...

...

���� ���� 	� � � � ����� 	�

�
�����


����

���� ���� � � � ����
��	� ��	� � � � ��	�
...

...
...

...

���� 	� ���� 	� � � � ���� 	�

�
����

from the step response measurement ����� � �
	� � � � � ��� 	, it can be observed that

� � ��	 (11)

where� is the standard impulse response based Han-

kel matrix

� �


����
��	� ���� � � � ����
���� ���� � � � ���� 	�
...

...
...

...

���� ���� 	� � � � ����� 	�

�
����

and �	 is an upper triangular matrix with ones on

the diagonal and in the upper triangular part. Due to

the structure of � and �	 in (11) it can be verified

that ������� � �������. With ������� � �, a
decomposition

� � ����

�

�
� �� � ����� ������


�
� � �������� � �

(12)

can be computed via a singular value decomposition

of the matrix � similar to the realization algorithm of

Kung (1978).

For a discrete time system the impulse response ����
satisfies ���� �  ���!, where � �!�� denote
the matrices of a state space realization of the system.

With the elements of ���� present in � and the struc-

ture of �	 in (11) it can also be verified that

�� � �� ��

where

�� ��


����

���� ���� � � � ���� 	�
���� ���� � � � ���� ��
...

...
...

...

���� 	� ���� �� � � � �����

�
�����


����
��	� ��	� � � � ��	�
���� ���� � � � ����
...

...
...

...

���� ���� � � � ����

�
����

As a result, the  -matrix of the state space realization
can be computed by

 � ��� �� ��� (13)

where ��� and ��� indicate respectively the left and

right inverse of the matrices �� and �� in the decom-
position (12).

The step response realization technique can be applied

to any step response measurement to find a state

space model based on standard realization techniques

(Kung 1978). For the step response experiment of a

single mass system considered in Section 4 of this

paper, the rank of � in the decomposition (12) will be
2. As a result, a ���matrix will be estimated on the

basis of the step response experiments from which the

(continuous time) system parameter �, � and � have
to be computed.

For a lightly damped single mass system, the eigenval-

ues of the matrix will appear in a complex conjugate

pair. Since the matrix is the discrete time equivalent

of the continuous time system, the eigenvalue "� �
can be used to estimate the equivalent continuous time

natural frequency �� and damping ratio � via

��� �

���� ��"� ���

����
�� � � �� �����

#��� ��"� �

�$�% ��"� �

(14)

by assuming a zero order old discrete time equivalent

model with a sampling time of �� seconds. With an
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estimate of � based on the steady state value of the

step response ����, the estimates in (14) can be used
to compute the estimate of the mass �, spring � and
damping � parameters in (10).

6. ILLUSTRATION OF PARAMETER

ESTIMATION

Consider the measured step response of a one of the

single mass experiments depicted in Figure 4. The

data is obtained from the rectilinear ECP system by

applying a 0.8 Volt step input on the DC-motor and

measuring the position of the mass in encoder counts

with a sampling time of 9 msec.

0 0.5 1 1.5 2 2.5 3 3.5 4
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Fig. 4. Measured step response of a single mass using

the ECP rectilinear system

Using the first and third peak in the step response

oscillations for estimation purposes one finds

��� � � ��
�

	���� ���	
	 �����

���� �
	

����
��

	
����� ����

����� ����



	 	���

giving the estimated values:

��� �

�
���� � � �����

� 	 �����

�� �
����
���

	 ������
(15)

Estimation of a � � � state space matrix  using

the step response realization yields a step response

matrix � with 2 singular values significantly larger

than the remaining singular values. Computation of a

rank 2 decomposition �� and �� via a singular value
decomposition gives a  -matrix via (13) that is given
by

 �

�
������ �����	�
������ ������

�

Computation of the complex conjugate eigenvalue

pair "� � and the equivalent continuous time natural
frequency �� and damping ratio � via (14) yields the
estimates

��� 	 ����	��
�� 	 ������

(16)

The differences between (15) and (16) can be at-

tributed to the difference in information used from

the data to estimate the parameters. In case of noise

free data obtained from an actual 2nd order system,

both estimation results would be similar. However,

due to the friction present in the mechanical system,

the damping is not consistent throughout the experi-

ment.

7. CONCLUSIONS

Without a comprehensive background in system iden-

tification, estimation of lumped parameters in a me-

chanical system from experimental data can be done

by using relatively simple experiments. Such experi-

ments may include step responses that provide an in-

tuitive understanding of the dynamic behavior. In this

paper it shown how a commercial educational lumped

parameter system with two degrees of freedom is used

at the undergraduate level to estimate mechanical pa-

rameters using multiple step responses and first princi-

ple modeling. By a series of well thought experiments,

students find the parameters in a first principle model

and compare these results to simulations based on the

first principle model.
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