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Abstract: This paper summarizes the organization of a graduate course on control
related topics in identification. The course is taught at the department of Mechanical
and Aerospace Engineering at the University of California, San Diego and analyzes
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1. INTRODUCTION

Experimental data and system identification tech-
niques can be used to estimate dynamical models
that are useful in control applications. Models use-
ful for control design are typically of low order and
capture the essential closed-loop dynamical behavior
needed for control design purposes. Instead of opti-
mizing models for standard prediction or simulation
objectives, control relevant models and control related
identification are optimized for closed-loop control
objectives.

The theory of Prediction Error methods can be ex-
tended to include the estimation of linear dynamical
models from time domain observations obtained under
closed-loop or feedback controlled conditions. Items
such as bias, variance, experiment design, and closed-
loop optimality are of concern during the experiments
and estimation of control-relevant models. The exper-
tise in the area on control relevant and closed-loop
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system identification can be combined in a graduate
course on system identification.

The graduate courseMAE283B Approximate Identi-
fication and Controlis a second course in System
Identification offered in the Mechanical & Aerospace
Engineering Department at the University of Califor-
nia, San Diego. Its place in the course sequence fol-
lows MAE283A Parametric Identification: theory and
methodsand, for many students,MAE284 Robust and
Multivarable Control. The prescribed text is Lennart
Ljung’s textbook (Ljung 1999), although some mate-
rial is also taken from the first edition (Ljung 1987).
Next to this standard material, various research pa-
pers are included in the course and the recently pub-
lished text book on Iterative Identification and Control
(Albertos and Sala 2002) which contains many theo-
retical results and relevant applications for this course.

The primary focus of the material in this course is to
provide students with understanding of the intercon-
nections between modeling and control with a con-
centration on approximate models derived and val-
idated using experimental data. Recently emerging
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techniques of iterative (closed-loop) system identifi-
cation and (model-based) control design were a fea-
ture using sophisticated practical examples as a central
pedagogical tool. Because of the emphasis on approx-
imation in modeling, the thrust of the material is to-
wards understanding compromises (bias and variance
versus excitation) of model fitting versus questions of
consistency or asymptotic normality.

2. PRESENTATION OF BIAS ANALYSIS

2.1 Frequency domain expressions

Although prediction errors methods provide a frame-
work for model estimation, challenging problems in
the field of system identification lie in the area of
approximation of complex systems for control design
purposes. Models intended for control design, may
require a good approximation of the critical closed-
loop behavior of the system to design reliable ro-
bust controllers. The objective of finding approximate
models becomes even more challenging when closed-
loop observations need to be used for identification
purposes.

The frequency-domain formulation of Linear System
Identification in a quasi-stationary setting is used. For
the filtered prediction error

"f (t; �) = L(q)"(t; �); "(t; �) := y(t)� y(tjt� 1; �)

wherey(t) is a measured output signal andy(tjt �
1; �) denotes the one-step ahead prediction, the quasi-
stationary setting allows variance properties of the
prediction error to be represented in the frequency
domain

�Ef"2f (t; �)g =
1

2�

Z �

��

�(!; �) d! (1)

where the frequency domain integral expression relies
on the asymptotic expressions for the variance of the
prediction error and application of Parseval’s formula.

2.2 Open-loop analysis

To present the bias results by means of the standard
integral expressions, first a slightly modified version
of the standard and intuitively appealing open-loop
bias expression from (Ljung 1987) is presented. In
the standard open-loop framework the data generating
system is represented by

y(t) = G0(q)u(t) + v(t); v(t) = H0(q)e(t)

where, for the moment, the additive noisev(t) =
H0(q)e(t) on the outputy(t) is assumed to be uncor-
related with the inputu(t). The prediction error"(t; �)
can be written as

"(t; �) = H(q; �)�1((G0(q) �G(q; �))u(t)+
(H0(q)�H(q; �))e(t)) + e(t)

(2)

wheree(t) is a white noise with variance�0. As both
H0(q) andH(q; �) are monic noise filters ande(t)

is a white noise,�Efe(t)~e(t)g = 0 where ~e(t) :=
(H0(q) � H(q; �))e(t). Due to the open-loop exper-
iments,�Efe(t)u(t� �)T g = 0 8� and as a result, the
spectrum�(!; �) of the (filtered) prediction error in
(2) is given by

jG0 �G�j2�u

jLj2
jH�j2 +

jH0 �H�j2�0 jLj2
jH�j2 + �0

(3)

where the arguments ofej! and� have been dropped
for brevity and clarity of the bias formula. The result in
(3) can be used to explain the tradeoff in approximate
open-loop identification:

� Optimization of� aims at ‘whitening’ the pre-
diction error, asG(q; �) = G0(q) andH(q; �) =
H0(q) (consistent estimation) makes�(!; �) =
�0.

� Choice of a fixed (stable and stably invertible)
noise filterH?(q) is equivalent to the choice of a
prediction error filterL(q) = H�1

? (q).
� In case joint parameters occur in the parametri-

zation ofG(q; �) andH(q; �), there is a tradeoff
between modelingH0 versusG0. It can be seen
from (3) that this tradeoff is highly determined
by the signal to noise ratio�u(!)=�0.

For control applications, the modeling and approxi-
mation ofG0 is often considered of more importance
than the noise dynamicsH0. Certainly, this is true for
stability as the estimated (low order) modelG(q; �̂)
is used for control design purposes and closed-loop
stability solely depends on the properties ofG0. The
tradeoff between modelingH0 versusG0 in approxi-
mate identification can be eliminated by either choos-
ing a fixed noise filter (Output Error model struc-
ture) or an independent parametrization (Box-Jenkins
model structure). Both come with the price of an un-
avoidable non-linear optimization, but allow an ex-
plicit bias tuning.

2.3 Closed-loop analysis

One of the problems in approximate closed-loop iden-
tification of plant and noise dynamics on the basis of
closed-loop data, is the correlation of the noisee(t)
with the signalsfu(t); y(t)g in the closed-loop. Due
to the noise correlation, an approximate identification
method that directly uses the input and output of the
plantG0 and ignores the feedback, will lead to biased
approximation results for the system dynamics.

The spectrum�(!; �) of the (filtered) prediction error
in (2) in caseu(t) is correlated withe(t) has been
summarized in (Ljung 1999) as follows

L

jH�j2
�
�G �H

� � �u �ue

�eu �0

� �
�G�

�H�

�
+ �0

where the arguments ofej! and� have been dropped
for brevity and �G := (G0 � G�), �H := (H0 � H�)
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and�ue indicates the correlation betweenu ande. By
using Schur’s complement�
�u �ue
�eu �0

�
=

�
I 0

�eu

�u
I

� �
�u 0

0 �0 � j�euj2
�u

� �
I �ue

�u

0 I

�
with respect to�u and definition of

B(ej! ; �) =
(H0(e

j!)�H(ej!; �))�ue(!)

�u(!)

allows the spectrum�(!; �) of the (filtered) prediction
error in (2) to be written as

jG0 +B� �G�j2�u

jLj2
jH�j2 +

jH0 �H�j2
�
�0 � j�uej2

�u

� jLj2
jH�j2 + �0

(4)

and illustrates the bias effect in case�ue(!) 6= 0:

� Optimization of� still aims at ‘whitening’ the
prediction error, asH� = H0 yields B� = 0
and G� = G0 (consistent estimation) makes
�(!; �) = �0.

� In an approximate identification whereH� 6=
H0, the modelG� will approximateG0 + B�

even in the case where there exists a parameter
� for which G� = G0. B� clearly indicates an
undesirable bias for the plant modelG�.

� Due to the ratio ofL andH� in (4), the choice
of a fixed (stable and stably invertible) noise
filter H? remains equivalent to the choice of a
prediction error filterL = H�1? .

In case joint parameters occur in the parametrization
of G(q; �) andH(q; �), there is again a tradeoff be-
tween modelingH0 versusG0 + B� in approximate
identification. Unfortunately, the tradeoff cannot be
eliminated by choosing a fixed noise filter (Output
Error model structure) or an independent parametri-
zation (Box-Jenkins model structure) to focus on the
approximate identification ofG0 only. The choice of
a fixed noise filterH? 6= H0 would be unable to
eliminate the bias term

B? =
(H0 �H?)�ue

�u

resulting in a biased estimation of the plant dynamics
G0 that highly depends on the chosen noise filterH?

and the (unknown) noise dynamics�ue.

y(t)r(t) u(t)
v(t)

?
e(t)

d d?- -

�
+ ++

G0(q)-

K(q) �

H0(q)

-
6

Fig. 1. Closed-loop system with reference signal

The bias effects can be illustrated to the students, by
analyzing the correlation between inputu(t) and noise

e(t) for a closed-loop system as indicated in Figure 1.
With Figure 1, the data coming from the plantG0(q)
and subjected to external reference signalr(t) and
additive noiseH0(q)e(t) operating under closed-loop
condition can be described as follows:

y(t) = G0(q)Sin(q)r(t) + Sin(q)H0(q)e(t)
u(t) = Sin(q)r(t) �K(q)SinH0(q)e(t)

(5)

whereSin(q) is the input sensitivity function defined
by

Sin(q) =
1

1 +K(q)G0(q)

With the reference signalr(t) uncorrelated with the
noisee(t)

B� = (H0 �H�)
�ue

�e

�e

�u

= (H� �H0)KSinHo

�0
�u

which clearly indicates the (implicit) character of the
biasB� in case of closed-loop experiments. The bias
B� depends on the noise modelH� being estimated,
the way in which the noise is present on the input
(KSinH0) and the signal to noise ratio�u=�0.

The effect of the bias can also be illustrated for the
extreme situation where no referencer(t) is present on
the closed-loop system to provide sufficient excitation.
For that purpose, an alternative formulation is used:
substitution of (5) in the formulation of the prediction
error (2) yields the following prediction error

"(t; �) = H�1� Sin(G0 �G�)r(t)+

H�1� Sin((I +G�K)H0 �H�)e(t) + Sine(t)
(6)

With at least one step delay in the productG�K, both
(1+G�K)H0(q) andH� are monic filters. As a result,
�Efe(t)~e(t)g = 0, as e(t) is a white noise signal,
where~e(t) := ((1 + G�K)H0 � H�)e(t). With the
reference signalr(t) uncorrelated withe(t) we also
find �Efe(t)r(t � �)T g = 0 8� and the spectrum
�(!; �) of the (filtered) prediction error in (2) can be
written as

jG0 �G�j2�r

jSinj2jLj2
jH�j2 +

j(1 +G�K)H0 �H�j2�0 jSinj
2jLj2

jH�j2 + jSinj2�0
(7)

which also gives clear insight in the bias effects. In
case of lack of external excitation of the closed-loop
system it can be seen that:

� The estimation of modelsG� andH� is done
such thatH0 �H� +HoG�K is minimized. As
a result, the actual plantG0 does not play a role
in the estimation ofG�.

� In case a fixed noise modelH? is chosen (OE
model structure), the optimal modelG� is given
by G� = �K�1, and we would be estimating
the inverse of the controller.

The analysis presented above demonstrates clearly to
the students that the lack of consistency and a tunable
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bias expression for the estimation of the modelG� and
H� in closed-loop identification.

3. PRESENTATION OF VARIANCE RESULTS

To complete the analysis and provide students with the
concepts on the tradeoff between bias and variance in
typical System Identification problems, the standard
variance result in (Ljung 1999) are presented. The
results are presented without going into the details of
the technical conditions involved with the formulation
of the variance results.

Consider estimatê�N determined by minimizing the
Least Squares criterion

VN =
1

2N

NX
t=1

"2(t; �)

and define

 (t; �?) =
��(t; �)

��

����
�=�?

then subject to the technical conditions:

� model structure is linear and uniformly stable
� data are generated by stable linear filtering of

quasistationary signals with finite moments of
4+Æ

� �N ! �? w.p.1 asN !1 for bounded�?

� �2V�
��2

> 0

� pN�E

(
1

N

NX
t=1

 (t; �?)�(t; �?)� �E (t; �?)�(t; �?)

)
!

0 asN !1
the following asymptotic variance expression of the
parameter estimatê�N can be given (Ljung 1999):

p
N(�̂N � �?) � N(0; P�)

P� = [V 00(�?)℄
�1Q[V 00(�?)℄

�1

Q = limN!1N �E
�
[V 0(�?; N)℄[V 0(�?; N)℄T

	 (8)

The background and technical implications behind
the variance expression formula are emphasized by
mentioning that the result deals with the asymptotic
normality and variance of the parameter error. Further-
more it must be stressed that it is possible to extend
the parameter variance expression to the frequency
domain in a direct way.

Cov

�
ĜN (ej!)

ĤN (ej!)

�
� n

N

�
�u(!) �eu(!)
�ue(!) �0

�
�1

(9)

The frequency domain expression of (9) treats the
transfer function estimation error distribution. The
limitations of the variance expression are pointed out
to the students by mentioning that the frequency do-
main variance expression in (9):

� is asymptotically valid only asN !1
� relies on weak convergence — no large devia-

tions

� fundamentally assumes(G0; H0) has a paramet-
rization with� = �0 and�N ! �0

� indicates that the covariance increases with the
number of parametersn, and decreases with the
number of data pointsN

� depends in a sensible way on noise to signal ratio
� the exact calculation depends on the criterion

used and provides the measure of asymptotic
efficiency of the estimator.

Although limited in application, the variance expres-
sion results in (8) and (9) and the bias expressions in
(4) and (7) give insight in the variance and bias trade-
off in experiment design and system identification.
More detailed information on (closed-loop) variance
expressions are summarized in the paper by Gevers
et al. (2001) that is presented to the students during
the course. It is illustrated that the spectrum of the
reference or input signal can be used to influence bias
and variance aspects during experiment design. For
closed-loop experiments, the controllerK also pro-
vides a valuable tool to influence the signal properties.

Post processing of the data (after the actual experi-
ments) can be done by the choice of a suitable data
filter L and the choice of the model class in the iden-
tification of plant modelG� and noise modelH�.
Important design variables are the model structure
with the number of parameters and the possibility to
use an independent parametrization of plant and noise
dynamics. But it must be stressed that identification
on the basis of closed-loop data requires special at-
tention: standard open-loop identification techniques
that directly use the inputu and outputy signals of
the plant is bound to give biased result. What remains
is the motivation to perform closed-loop experiments,
despite the pitfalls of biased estimation.

4. IDENTIFICATION AND CONTROL

4.1 Why closed-loop experiments?

To argue for the role of experiments measured in
closed-loop, several basic results are mentioned to
the students that motivate the usefulness of closed-
loop experiments. One of the first steps towards the
interaction between identification and control has been
made in Åström and Wittenmark (1971) and Gev-
ers and Ljung (1986). In Gevers and Ljung (1986)
it is mentioned from a variance point of view that
optimal models can be found via a Prediction Error
estimation method that uses closed-loop experiments
and appropriate data filters. As such, the usefulness
of closed-loop experiments as opposed to open-loop
experiments to model a plant was shown to be fruitful.
Unfortunately, the desired closed-loop experiments
and the appropriate data filter contains knowledge of
the controller yet to be designed.

Argumentation of optimal models for control design
from a bias point of view is built on the observation
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that an approximate identification of a model is al-
lowed, as long as the approximate modelG� takes
into account its intended use – the design of a high
performing controllerK for the actual plantG0. In
case a norm function is used to characterize the per-
formance of a feedback system, the performance of
a controllerK applied to the actual plantG0 can
be delineated bykJ(G0;K)k. Even if a controller
K is available, the performancekJ(G0;K)k cannot
be evaluated precisely, as the plantG0 is unknown.
From a bias point of view, the role of the modelG�

can be seen as providing upper and lower bounds for
kJ(G0;K)k via triangular inequalities���kJ(G�;K)k � kJ(G0;K)� J(G� ;K)k

��� � kJ(G0;K)k
kJ(G0;K)k � kJ(G� ;K)k+ kJ(G0;K)� J(G�;K)k

that were presented in Schrama (1992). For a given
controller K, the minimization of kJ(G0;K) �
J(G�;K)k provides a tight upper and lower bound
for kJ(G0;K)k and constitutes a so-called control
relevant identification problem (Van den Hof and
Schrama 1995). In this identification problem, a model
G� is found by minimizing the difference between
closed-loop performance criteria. Obviously, closed-
loop experiments are required to solve such an identi-
fication problem.

4.2 Dealing with closed-loop experiments

Now that the setting and motivation for closed-loop
experiments has been established, the methodologies
for dealing with closed-loop data are presented. The
direct approach consists of applying a standard open-
loop prediction error method directly to the inputu(t)
and outputy(t) signals, ignoring any possible feed-
back and the reference signalr(t). From the analysis
in Section 2.3 it is obvious that this approach leads to
estimation results in case of approximate identification
for which the bias cannot be tuned explicitly.

Following the analysis of identification on the basis
of closed-loop data, possible solutions and methods to
the closed-loop identification problem are presented
in the course. The closed-loop identification methods
are presented by providing a short overview of the
method and a copy of the papers that summarize the
details of the methodology. It is beyond the scope of
this paper to present the methods detail, but it can
be mentioned here that in the presentation of these
methods, a distinction is made between the following
approaches:

� The first class of methods presented in the course
is based on a reparametrization of the closed-
loop identification problem.

� The second class of methods presented to deal
with closed-loop data are two-stage methods,
where the estimation of approximate models on
the basis of closed-loop data is solved in two
estimation steps.

For the first class of methods, reparametrization is
done by using the knowledge of the controller and
parametrizing the closed-loop transfer function in
terms of the controller and the open-loop model to
be estimated. Methodologies that are reviewed in the
course are the indirect estimation method, tailor-made
parametrization (Landau and Karimi 1997) and recur-
sive estimation methods (de Bruyneet al.1999).

In the prediction error framework, the reparametriza-
tion of the closed-loop transfer function involves the
minimization of a closed-loop prediction error

"
l(t; �) = y(t)� P (q; �)r(t)

whereP (q; �) can be parametrized using a customized
parametrization

P (q; �) =
G(q; �)

1 +K(q)G(q; �)
(10)

using the explicit knowledge of the controllerK(q).
Alternatively,P (q; �) can be freely parametrized and
the knowledge of the controller is used to recompute
the modelG(q; �) via

G(q; �) =
P (q; �)

1� P (q; �)K(q)
(11)

In the customized parametrization (10) the order of the
modelG(q; �) can be controlled. The computation of
the modelG(q; �) via (11) in general increases the
model order due to the free parametrization of the
closed-loop transfer functionP (q; �).

For the second class or the two-stage methods, the
first step is used to create a (noise free) instrument
that will used in the second step to recast the closed-
loop identification problem into an open-loop one. The
instrument in the first step of the two-stage methods is
typically a filtered closed-loop signal. With the closed-
loop data given in (5), an estimate of the (input) sensi-
tivity functionSin can be obtained by minimizing the
closed-loop prediction error

"1(t; �) = u(t)� S(q; �)r(t)

in the first step of the method, whereS(q; �) is used
to model the (input) sensitivity functionSin(q) as
accurately as possible. The estimated modelŜ(q) =

S(q; �̂) can be used to create a filtered input signal

û(t) := Ŝ(q)r(t)

that will be uncorrelated with the noisee(t) present
on the (unfiltered) input signalu(t). The (noise free)
instrument can be used to perform an equivalent open-
loop identification problem by minimizing the predic-
tion error

"2(t; �) = y(t)�G(q; �)û(t)

in the second step of the method. Closed-loop iden-
tification method that fall under this category are
presented in the course and include the instrumental
variable method (Ljung 1999), the two-stage method
(Van den Hof and Schrama 1993) and the coprime fac-
tor based methods (Van den Hofet al.1995, Anderson
1998).
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4.3 Link between identification and control

Estimating approximate models suitable for control
requires closed-loop experiments to approximate the
closed-loop and control-relevant aspects of the sys-
tem. This is illustrated by evaluating the bias expres-
sions associated to the different the closed-loop identi-
fication methods. It is shown that for most of the meth-
ods presented in the course, the closed-loop prediction
error exhibits a spectrum�(!; �) that is given by

jG0 �G�j2�r

jSinj2jLj2
jH?j2 (12)

for a prediction error model estimation with a fixed
noise filterH?. It can be observed that (12) is equal to
the first term in (7) and the closed-loop identification
methods have eliminated the bias effects due to the
closed-loop noise. This allows for an explicit tuning
of the bias expression of the modelG�.

The merits of approximate identification and the use
of closed-loop data in estimating approximate mod-
els can be found in the triangular inequalities that
represent the interaction between model based con-
trol and identification of models for control. The idea
of alternately minimizingkJ(G�;K) � J(G0;K)k
in via system identification andkJ(G�;K)k via a
control design problem forms a basis for many of
the iterative schemes or control relevant identification
approaches listed in the literature (Van den Hof and
Schrama 1995). In such an iterative scheme, the con-
trol relevant identification of a (nominal) modelG�

and the design of a model-based controlledK are
applied iteratively with the aim to minimize the overall
performancekJ(G0;K)k of the feedback controlled
plantG0.

4.4 Case studies

To illustrate the work that has been done in the field
of control relevant identification and model based
control design, a short overview of iterative methods
is presented at the end of the course. The iterative
identification and control methods are presented by
means of applications and case studies that illustrate
the effectiveness of closed-loop identification methods
and model-based control design to obtain high perfor-
mance feedback control systems.

The case studies that are presented at the end of
the course are the “control relevant identification and
servo design for a compact disc player” and the “itera-
tive identification and control: a sugar cane crushing
mill” that both can be found in Albertos and Sala
(2002). Both case studies illustrate the use of closed-
loop experiments and model-based control design to
enhance the performance of a feedback controlled sys-
tem. The case studies are used to demonstrate in con-
crete form the principles of closed-loop identification
presented during the course.

5. SUMMARY

This paper shows the organization of a course that
focuses on estimation techniques for closed-loop or
feedback controlled systems. The course gives both
a theoretical and practical introduction to closed-loop
identification methods and control relevant experi-
mentally based modeling. Instead of focusing on mod-
els that are optimized for standard prediction or sim-
ulation objectives, models are optimized for closed-
loop control objectives. As part of the course, two
case studies are reviewed: a sugar cane crushing mill
and the identification of a marginally stable electrome-
chanical system.
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