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Abstract. This chapter illustrates the identi�cation of control-relevant models and
the subsequent robust control design applied to a wafer stage. A wafer stage is part
of a wafer stepper and used in chip manufacturing processes for accurate position-
ing of the silicon wafer on which the chips are to be produced. Accurate and fast
positioning requires a robust and high-performance multivariable servo controller
that enables a fast throughput of silicon wafers. An advanced servo controller is de-
veloped by an iterative procedure of control-relevant model identi�cation including
model uncertainty bounding, and robust control based on worst-case performance
optimization. Both stability and performance robustness can be monitored, en-
abling the possibility to guarantee performance improvement in a single step of the
iteration. This is shown to lead to a successful design and implementation on a
wafer stage set-up.

1 Introduction

The overlapping theme in the application discussed in this chapter, is the
robust and enhanced control of a mechanical positioning mechanism. The
methodology presented and illustrated in this chapter is applicable to many
mechanical systems that are subjected to high-performance servo position-
ing demands. The dedicated servo positioning mechanism considered in this
chapter can be found in a wafer stepper. Wafer steppers combine a high-
accuracy positioning and a sophisticated lithographic process to manufacture
integrated circuits (chips) via a fully automated process.

By means of a photolithographic process, the chip architecture is exposed
on the surface of a wafer, a silicon disk covered with photo resist. Typically,
the wafer can carry more than 80 chips and in order to expose the surface
of the wafer, each chip has to be processed sequentially. Such a sequential
process is needed as only one mask of the chip layout is available during the
exposure phase of the photolithographic process. In order to enable sequential
processing, the wafer is mounted on a wafer stage that needs to be accurately
moved (stepped) in 3 Degrees Of Freedom (3DOF).

Both the accuracy and the speed of the wafer stage will in
uence the
success and throughput of the production process of the chips on the wafer.
Sophisticated design and control of this multivariable servo mechanism can
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help in achieving a required throughput. An important design step is the
construction of a servo controller that is able to satisfy high-performance re-
quirements: fast positioning to within an accuracy of �52nm. The inherent
multivariable (3DOF) nature of the wafer stage and the high positioning per-
formance requirements require a servo design approach in which the dynamic
behavior of the positioning mechanism is characterized accurately.

The required accuracy of the dynamical model will be dictated by the
performance requirements imposed on the control system; additionally low
complexity (approximate) models are desired in order to limit the complex-
ity of the subsequent control design and implementation. As a result the
modeling procedure will be subjected to the following basic requirements.

� A (nominal) model should be of low complexity and approximate the
dominant dynamical behavior that is relevant for high-performance con-
trol design;

� to address stability and performance robustness and facilitate the design
of a robust performing controller, a nominal model should be accompa-
nied with a bound on its uncertainty;

� closely related to the development of a nominal model, the size and shape
of this model uncertainty is implicitly bounded by the requirements for
high-performance control design.

Inevitably, low complexity (nominal) models and a small model uncer-
tainty are con
icting requirements. For high-performance servo control re-
quirements, the trade-o� between approximation and uncertainty provides a
challenging modeling procedure. In the application of the wafer stage mecha-
nism discussed in this chapter, the above mentioned requirements are tackled
by adopting an identi�cation framework in which a control relevant set of
models is formulated and estimated on the basis of closed-loop experiments.
Subsequently this set is used as a basis for a robust control design, �nding
the best worst-case controller.

2 The Wafer Stepper Positioning Mechanism

2.1 Description of servo mechanism

The wafer stage servo mechanism is an integral part of a Silicon Repeater
3rd generation (SIRE3) wafer stepper. The wafer stage is used to accurately
position the silicon wafer on which the chips are to be produced. A schematic
picture of the stage is shown in Figure 1.

The wafer chuck is part of the wafer stage and is equipped with an air
bearing and placed on a large suspended granite block to reduce the e�ect
of external vibrations. The wafer chuck is used to position the wafer in 3
Degrees Of Freedom (3DOF) along the surface of the granite block. As part
of the mechanical positioning mechanism, three linear voice coil motors are
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Fig. 1. Schematic view of a wafer stage; 1: mirror block, 2: wafer chuck, 3: laser
interferometers, 4: linear motors, 5: granite block, 6: laser.

mounted in a H-shape on the granite block. The three linear motors are used
to position the wafer chuck in 3DOF along the surface of the granite block.
Independent steering of the motors enables free surface translation with a
relatively small rotational freedom.

The position in the horizontal plane is measured by means of laser inter-
ferometry. Relative movements are measured by determining the phase shift
of the laser beams re
ected on the mirror block depicted in Figure 2. As the
horizontal plane allows three degrees of freedom, three laser measurements
uniquely determine the horizontal position of the wafer.
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Fig. 2. The three position measurements on the mirror block
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The three position measurements can be used to reconstruct the position
of the stage in x-, y- and �-direction. From the three (relative) position mea-
surements given in Figure 2, the three degrees of freedom of the stage in x-,
y- en �- direction can be obtained via2

4 x

y

�

3
5 = T

2
4 x

y1

y2

3
5 with T :=

2
4 1 0 0
0 1=2 1=2
0 1=2 �1=2

3
5 :

The transformation matrix T statically decouples the two measurements y1

and y2 in the y-direction. However note that � = (y1 � y2)=2 is not the
actual rotation of the stage, as this would require the computation involv-
ing a sinusoidal term. However, the rotation of the stage is limited and for
small di�erence between y1 and y2, e.g., small rotations, the value of � is
proportional to the angular rotation of the stage.

The three independent linear motors and the laser positiong measure-
ments make the servo mechanism of the wafer stepper a multivariable system.
The inputs re
ect the currents to the three linear motors, whereas the out-
puts are the positions of the wafer chuck both in x-, y-direction (translation)
and in �-direction (rotation).

2.2 Experimental set up

In order to gather experimental data for system identi�cation purposes and
to test the servo control of the wafer stage, an experimental set up has been
provided by Philips Research Laboratories. A close up photograph of the set
up is provided in Figure 3; it the granite block and the wafer stage protected
by a glass surface on top.

Fig. 3. Close-up of wafer stage displaying the three linear motors and the wafer
chuck with air bearing
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The experimental setup is equipped with a computer interface to measure
the position in x-, y- and �-direction of the wafer chuck on discrete time sam-
ples via a digital signal processor. Due to safety requirements and operating
conditions of the laser interferometers, the signals can be measured only if a
digital controller is used to control the positioning of the wafer chuck. Such a
digital controller can be implemented using the same digital signal processor.
A schematic overview of the signals that can be accessed is depicted in the
block diagram of Figure 4.
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Fig. 4. Block diagram of experimental set up of feedback controlled positioning
mechanism

As indicated in Figure 4, the positioning mechanism of the wafer chuck
is denoted by G0, while the (initial) feedback controller currently used to
control G0 is denoted by Ki. For notation purposes, the feedback connection
of G0 and Ki is denoted by T (G0;Ki).

The input u is used to indicate the three input signals to the linear motors
for position actuation in x-, y- and �-direction. In a similar way, the output
signal y consists of the three position signals in x-, y- and �-direction of the
wafer chuck. Besides providing suÆcient excitation of the feedback system,
the reference signals in Figure 4 can be used to move or step the wafer chuck in
a desired direction. As such, the signals r1 and r2 can be used to evaluate the
performance of the feedback controlled plant by applying a reference signal
r2 and a feed forward signal r1 in order to track a certain desired 3DOF
position signal y of the wafer chuck. The input signal uc to the controller Ki

re
ects the servo error between a desired reference r2 and the actual desired
position y.

2.3 Modeling and servo performance of the positioning

mechanism

In the conventional closed-loop servo control, the servo controller Ki consists
of 3 parallel PID controllers. In this situation the interaction in the 3DOF
positioning mechanism is clearly neglected, and the PID controllers are able
to achieve only moderate control performance.
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Servo performance requirements desire a minimization of the servo error,
while moving the chuck as fast as possible. The design speci�cation for the
SIRE3 wafer stepper is to bring the servo error within a bound of 52nm (4
times the measurement resolution) as soon as possible after a step trajectory
has been performed. This is due to the fact that the chuck must be kept in a
constant position before a chip can be exposed on the surface of the wafer.

In order to compare the servo performance of (newly designed) feedback
controllers, the reference signals r2 and r1 are �xed to some prespeci�ed
desired trajectory for servo performance evaluation. This prespeci�ed trajec-
tory is based on the dominating open loop dynamical behaviour of the wafer
stage G0 that is given by a double integrator, relating the force generated by
the linear motors to the position of the wafer chuck. Based on this relatively
simple model, r2 will denote a desired position pro�le, allowing a maximum
speed and a maximum jerk (derivative of acceleration), whereas r1 denotes
(a scaled) acceleration pro�le obtained by computing the second derivative
of r2. A typical shape of the reference signal r2 and the feed forward signal
r1 to position the wafer chuck in either the x- or y- direction over 1cm is
depicted in Figure 5.
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Fig. 5. Shape of reference signal r2 and feedforward signal r1 for servo performance
evaluations

Although optimal reference signals can be designed for �nite time optimal
control problems, it should be noted that step wise reference signals are being
used here only to compare the performance of the servo controllers being
designed and actually implemented on the wafer stage.

The speci�ed reference signals r1 and r2 in Figure 5 can be used to create a
step in the x-direction for the evaluation of the performance of the 3 parallel
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PID servo controllers. The resulting servo error uc;x for a step in the x-
direction is depicted in Figure 6.
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Fig. 6. Servo error response to a step in x-direction using conventional parallel PID
controllers

It can be observed from Figure 6 that the servo error uc;x is hardly within
the bounds of 52nm indicated by the dotted lines, even after 0.6 s. Further-
more, uc;x exhibits a low frequent vibration after the step has ended (after
0.12 s). As a result, the settling time of the positioning step is strongly in
u-
enced and both an improvement of the speed of decay and a reduction of the
low frequent vibration of the servo error is desired to improve the behaviour
of the servo mechanism. Clearly, the process under consideration exhibits
dynamic phenomena additional to the simple model of a double integrator.
Characterization of these dynamics in a way relevant for control design is
essential in achieving maximum control performance.

For both the design of the feedback controller Ki and appropriate refer-
ence signals, a dynamic model of the wafer stage is required. In this chapter
the attention is focused on the construction and use of dynamical models for
the design of a feedback controller Ki.

2.4 Experiment Design

Experimental data from the wafer stage are gathered from the feedback con-
nection T (G0;Ki) depicted in Figure 4. As mentioned in Section 2.3, the
reference signals r1 and r2 are used to specify respectively an acceleration
reference and a position reference pro�le to evaluate the servo performance
of a feedback controller. However, from an identi�cation point of view, the
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reference signals are used to excite the closed-loop system T (G0;Ki) to avoid
problems associated with closed-loop identi�ability.

Although the signals r1 and r2 can be used to conduct identi�cation exper-
iments, mostly low frequent information is contained in the signals depicted
in Figure 5. To get enough information on the system in the frequency range
of interest, di�erent reference signals have to be used. Furthermore, the 
ex-
ibility of the experimental set up and the speed of the mechanical system
allow the use of excitation signals to obtain a frequency response estimate of
the positioning mechanism in the frequency range from approximately 10 Hz
till 1 kHz.

For identi�cation purposes the reference signals are speci�ed as periodic
signals constructed via a sum of sinusoids

r(t) :=

lX
i=1

sin(!it+ �i) (1)

speci�ed at a prede�ned frequency grid 
 = f! j ! = !i; i = 1; 2; : : : ; ng.
The phase shifts �i in the sequence f�ig; i = 1; 2; : : : l of (1) are chosen
independently from a uniform distribution over the interval (��; �). In this
way, the six1 reference signals will be uncorrelated and a random phased
sequence of sinusoids is generated with favourable properties [15].
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Fig. 7. Time domain plot (left) and spectrum (right) of the reference signal r1 in
x-direction con�gured as a sum of 200 sinusoids with random phase

The designed excitation signals are periodic with a period length of 2048
data points sampled at Ts = 0:3ms. As a result, the frequency resolution
�f = 1=(2048 � 0:003) � 1:628 Hz. They are each composed of 200 sinusoids
distributed (approximately logarithmically) between 9��f � 14:65 Hz and
714��f � 1162:11 Hz.

1 Both r1 and r2 consist of three reference signals, respectively in x-, y- and �-
direction.
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For illustration purposes, a time domain plot and the spectrum density
in the frequency range between 100 Hz and 1 kHz of one of the six references
signals is shown in Figure 7. It can be observed that the signal has a well
bounded amplitude. Although the signal looks like a noise in the time domain,
the spectrum is very well de�ned for the 200 frequency points in the frequency
grid 
. With these reference signals the identi�cation experiments have been
performed. They will be further explained and analyzed in the sequel of this
chapter.

3 Iterative Model Set Estimation and Control Design

3.1 Motivation of model set estimation

The motivation to apply an iterative procedure of identi�cation and control
is induced by the fact that a simultaneous (o�-line) optimization of both an
identi�cation and a model-based control design criterion can be highly non-
linear [2]. Although convergence and optimality of iterative schemes can not
be guaranteed in general, countless numerical simulation examples presented
in the literature show promising results [1,11,12,16,23].

From a practical point of view, it is valuable to monitor and guarantee
performance improvement of the servo control system, while performing a
step of subsequent identi�cation and model-based control design. In this way,
e�ort put into the steps of an iterative scheme can be justi�ed by assuring
an improvement of the feedback controlled plant.

Guaranteeing an improvement of the performance of a feedback controlled
plant cannot be achieved by iteratively trying to improve nominal perfor-
mance speci�cations alone. As the resulting model is just an approximation
of the system to be identi�ed, the controller based on the model has to be
robust against any dissimilarities between the model and the system. This
has been a motivation for the development of identi�cation techniques that
estimate an upper bound on the model uncertainty (model error), see for
example the survey [14] and the more recent contributions [10,3]. The result-
ing model uncertainty bounds constitute an allowable perturbation around
a nominal model being estimated and de�nes a set of models G where the
actual system G0 is assumed to be an element of. Subsequently, a robust con-
troller can be designed on the basis of this set of models [24]. In this approach
stability and performance requirements are guaranteed for the complete set
of models, that includes the actual system to be controlled.

3.2 Enhancement of control performance

To formalize the notion of a set of models and the characterization of robust
control performance for a set of models, the following notation is considered.
The notation G will be used to denote a linear time invariant system that
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may represent the actual wafer stage denoted by G0 or a (nominal) model of
the wafer stage denoted by Ĝ. Furthermore, let G be used to denote a set of
models and K to represent a feedback controller. To indicate the progress in
the iterative scheme of subsequent approximate modeling and model-based
control design, the subscript i will be applied to the variables Ĝ, G or K to
indicate that the variable depends on the ith step of the iterative scheme.
Finally, a control objective function is denoted by J(G;K) and the notion of
control performance will be characterized by the value of a norm kJ(G;K)k; a
smaller value of kJ(G;K)k indicates better closed-loop control performance.

Examples of commonly used control objective functions may include mixed
sensitivity, as well as LQG and IMC type of control objectives, see e.g., [18].
Throughout this chapter, the control objective function J(G;K) 2 RH1
and is restricted to H1-norm based performance speci�cations, allowing for
worst-case and robust performance control design methodologies to be used.

Guaranteeing an improvement of the servo performance of a feedback
controlled plant can be formalized by considering a feedback connection of
the wafer stage plant G0 and a controller Ki that satis�es a performance
speci�cation kJ(G0;Ki)k1 � 
i. To improve control performance, a new
and improved controller Ki+1 has to be designed such that the performance
kJ(G0;Ki+1)k1 satis�es

kJ(G0;Ki+1)k1 � 
i+1 < 
i: (2)

To make the design problem in (2) tractable for an unknown plant G0,
basically two main items should be considered. Firstly a procedure must be
found to access the performance 
i for kJ(G0;Ki)k1 a posteriori, i.e., when
the controller Ki is implemented on the plant G0. Secondly, the synthesis of
a controller Ki+1 must be formulated that satis�es the performance condi-
tion (2) a priori: before implementing the controller Ki+1 on the plant G0.
To accomplish both aspects, a set of models G will be identi�ed and used
for stability and performance robustness assessment. The following general
procedure is followed.

Procedure 1 Let a plant G0 and an initial controller Ki form a stable
feedback connection. To improve control performance undertake the follow-
ing steps:

(a) Performance assessment by model set identi�cation

Use experimental data and prior information on both the data and the
plant G0 to estimate a set of models Gi such that G0 2 Gi and determine


i = sup
G2Gi

kJ(G;Ki)k1: (3)

Subsequently, consider the following subsequent steps for performance robust-
ness improvement of the feedback controlled plant G0:
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(b) Robust control design on the basis of identi�ed model set

Design a new controller Ki+1 such that

kJ(G;Ki+1)k1 � 
i+1 < 
i 8G 2 Gi (4)

and, when achieved, implement the controller.

(c) Validate robust controller and identify a new model set

Use (new) experimental data and prior information on both the data and
the plant G0 to estimate a set of models Gi+1 such that G0 2 Gi+1 and

kJ(G;Ki+1)k1 � 
i+1 8G 2 Gi+1: (5)

The formulation of Procedure 1 is a rather general set-up to generate a se-
quence of model-based controllers that will satisfy (2). Within this set-up,
step (b) re
ects the design of a robust controller in order to ensure (2). Both
step (a) and (c) contain the estimation of a set of models G. These steps will
constitute an identi�cation problem to estimate the set G and/or a model
(in)validation problem [17] in order to guarantee G0 2 G. However, both
the identi�cation problem and the model (in)validation problem should be
control relevant. This is re
ected by the fact that the quality of the models
G within a set G is evaluated by the performance speci�cation kJ(G;K)k1,
where step (a) and (c) di�er only in the feedback controller K being used.

By iterating on the subsequent steps (b) and (c), an iterative scheme of
identi�cation and control is formulated, were (4) and (5) re
ect respectively
a controller and a model closed-loop validation test in order to enforce (2).
Starting from step (a), where Ki is the controller (initially) implemented on
the plant G0, (3) can be viewed as an initial closed-loop performance assess-
ment test to evaluate kJ(G0;Ki)k1 a posteriori. In the robust control design
of step (b), Equation 4 is needed to ensure (2) a priori. In this way, both per-
formance robustness and improvement of the upper bound on the closed-loop
performance can be guaranteed forKi+1. The performance kJ(G0;Ki)k1 can
be evaluated a posteriori, by implementation of Ki+1 on the plant G0 and
estimating a new set Gi+1. If indeed (5) is satis�ed, in step (b) again a new
controller can be designed on the basis of Gi+1.

Although the problem formulation in Procedure 1 is fairly general and
somehow trivial, it does provide a monotonic non-decreasing sequence of 
i.
A similar idea was proposed in [2]. Obviously, to provide a feasible procedure
for handling Procedure 1, the choice for the structure of the set of models G
should be addressed [19].

Summarizing, the following items will play an important role in the real-
ization of an iterative scheme as proposed here:

� The control objective function J(G;K). The objective function plays a
crucial role in the characterization of performance robustness and the
way in which a controller is designed.
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� Evaluation of the closed-loop performance (3) and the closed-loop vali-
dation test of (4) and (5) in a non-conservative way. A proper choice for
the structure of the set of models G will bene�t the evaluation of the
performance robustness.

� Identi�cation procedure to estimate a set of models G. Similar procedures
are needed in step (a) and (c) by considering respectively the feedback
controllers Ki and Ki+1 and the estimation procedure should take into
account the control design application of the set G.

� Robust control design method. The design of a controller on the basis of
a set of models G in step (b) is needed to ensure (2).

In the remaining part of this chapter, the iterative scheme of model set
estimation and robust control design will be described and applied to the
motion control system of the wafer stage. The items mentioned above will be
outlined in separate sections to clearly indicate the di�erent aspects.

4 Elements of the Iterative Scheme

4.1 Performance and control objective

The mapping from the reference signals (r2; r1) to the output and input
signals (y; u) of the plant in Figure 4 is given by the transfer function matrix
T (G0;Ki) with

T (G0;Ki) :=

�
G0

I

�
(I +KiG0)

�1
�
Ki I

�
: (6)

As a result, the data obtained from the feedback connection T (G0;Ki) of
Figure 4 can be described by�

y
u

�
= T (G0;Ki)

�
r2
r1

�
+

�
I

�Ki

�
(I +G0Ki)

�1v: (7)

The transfer function matrix T (G0;Ki) characterizes all closed-loop prop-
erties of a feedback connection of plant G0 and controller Ki. Note that a
feedback connection T (G;K) is internally stable if and only if T (G;K) is
stable.

In order to incorporate control design speci�cation for the map T (G;K),
the control objective function J(G;K) is taken to be a weighted form of the
matrix T (G;K) given in (6) and is de�ned as

kJ(G;K)k1 := kU2T (G;K)U1k1 (8)

where U2 and U1 are (square) weighting functions. These weighting functions
are chosen in such a way that the bandwidth of the resulting feedback connec-
tion can be adjusted, which will increase the speed of decay of the resulting
servo error depicted in Figure 6. Furthermore, the weighting functions can
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be used to design a controller K that allows for an additional suppression of
the low frequent vibration of the servo error.

In this particular situation the weighting functions are chosen to comply
with a loop shaped situation. By choosing:

U2 =

�
Ul 0
0 U�1r

�
U1 = U�12

the performance objective function J can be written as

J(G;K) =

�
UlG
U�1r I

�
[I +KG]�1[KU�1l Ur] (9)

= T (Gls;Kls) (10)

with Gls = UlGUr and K = UrKlsUl.
The performance characterization (8) is fairly general and will be used

for analyzing performance robustness and designing servo controllers for the
wafer stage.

4.2 Set of models and evaluation of performance robustness

The characterization of a set of models allows one to capture the actual sys-
tem G0 2 G. In this way performance robustness can be monitored via a
worst-case performance evaluation over the set of models G, whereas perfor-
mance robustness can be enforced via a robust controller design.

Employing the knowledge of the stabilizing controller Ki, a set of models
Gi can be characterized by using the algebraic theory of fractional model
representations [21]. The uncertainty structure used in our procedure is based
on a dual-Youla parametrization:

Gi = fG j G = (N̂ +Dk�)(D̂ �Nk�)
�1;

with � 2 RH1 and kV̂ �Ŵk1 < 
�1i g (11)

where (Nk; Dk) denotes a right coprime factorization (rcf ) of the controller
Ki implemented on the plant G0 during closed-loop experiments. Similarly,
(N̂ ; D̂) denotes a rcf of a nominal model Ĝi of the plant G0 that satis�es
T (Ĝi;Ki) 2 RH1. The (stable and stably invertible) weighting functions V̂ ,
Ŵ are used to normalize the upper bound on V̂ �Ŵ to 
�1i . A schematic
representation of the uncertainty structure is depicted in Figure 8.

The uncertainty structure in (11) has several attractive properties that
makes it useful for closed-loop identi�cation and worst-case performance anal-
ysis:

� All models G 2 Gi, including the unknown plant G0 are guaranteed to be
stabilized by the current controller Ki. This property indicates that the
dual-Youla based set of models exploits the information that the actual
plant G0 has been stabilized by the controller Ki during the closed-loop
experiments.
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Fig. 8. Block scheme of dual-Youla based uncertainty structure of models G 2 Gi

operating in closed-loop with a controller K

� The calculation of the worst-case performance of a controller K over
all models G 2 Gi can be done relatively easy. In fact, the worst-case
performance criterion reduces to an aÆne expression in � if the worst-
case performance needs to be evaluated for the controller Ki, also used
in characterizing the model set Gi in (11).

� The uncertainty term � is accessible from closed-loop data. This will be
utilized in actual estimation of an upper bound for the uncertainty on
the basis of closed-loop experiments.

In order to explain the favorable properties listed above, a Linear Frac-
tional Transformation (LFT) description of the set Gi in (11) is used to
simplify the algebraic manipulations. An (upper) LFT Fu(Q;�) is de�ned
by

Fu(Q;�) := Q22 +Q21�(I �Q11�)
�1Q12 (12)

provided that (I �Q11�)
�1 exists. The set of models Gi in (11) can then be

characterized by

Gi = fG j G = Fu(Qi; �); with � 2 RH1 and k�k1 < 
�1i g

where � indicates the same unknown (but bounded) uncertainty as in (11).
The entries of the coeÆcient matrix Qi in (12) dictate the way in which the
set of models G is being structured. For the set Gi in (11) it can be veri�ed
that the entries of Qi are given by

Qi =

�
Ŵ 0
0 I

�"
D̂
�1
Nk D̂

�1

(Dk + ĜiNk) Ĝ

# �
V̂ �1 0
0 I

�
: (13)

As a special entry one can recognize the nominal model Ĝi = F(Qi; 0) = Q22.
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Since Gi is characterized by an LFT, the connection between any controller
K and the set of models Gi can also be characterized by an LFT, thus enabling
a relatively simple calculation of worst-case performance when K is applied
to all models within Gi. It appears that for all models G 2 Gi the control
objective function J(G;K) can be written as

J(G;K) = Fu(Mi; �)

with the entries of Mi given by (see [8]):

M11 = �Ŵ
�1
(D̂ +KN̂)�1(K �Ki)DkV̂

�1

M12 = Ŵ
�1
(D̂ +KN̂)�1

�
K I

�
U1

M21 = �U2

�
�I
K

�
(I + ĜiK)�1(I + ĜiKi)DkV̂

�1

M22 = U2

�
N̂

D̂

�
(D̂ +KN̂)�1

�
K I

�
U1:

(14)

Note that in this formulation the controller K can be given by either
the present controller K = Ki referring to the situation of posterior stabil-
ity/performance assessment, or by a newly designed controller K = Ki+1,
related to a prior stability/performance robustness test.

The entry M11 plays an important role in stability robustness analysis of
a controller K applied to all models in the model set. For K = Ki, M11 = 0
implying that all controller/model pairs resulting from Gi are stable, irre-
spective of the size of �. This property of the dual-Youla parametrization
has been indicated before. For K = Ki+1, stability robustness can be guar-
anteed by verifying if kM11k1 < 
i. This pertains to a test on a lower LFT:
kFl(Qi;�K)k1 < 
i (see [8]).

For performance evaluation we distinguish again between the posterior
and the prior situation.

� Performance assessment for implemented controller.
For posterior performance assessment (step (a) of the procedure), we
have K = Ki, and the worst-case performance kJ(G;Ki)k1 over all
models G 2 Gi is evaluated by calculating

kFu(Mi; �)k1 = kM22 +M21�M12k1

for all � 2 RH1 with k�k1 � 
�1i . This test can be performed non-
conservatively.

� Robust performance test for designed -not yet implemented-

controller.
For a prior performance robustness test (step (b) of the procedure), we
have K = Ki+1, and the necessary evaluation becomes

kFu(Mi; �)k1 = kM22 +M21�(I �M11�)
�1M12k1 � 
�1i (15)
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for all � 2 RH1 with k�k1 � 
�1i . Note that evaluation of (15) can be
done via the application of the main loop theorem and by computing an
upper bound for the structured singular value of �(Mi), see e.g., theo-
rem 11.7 in [24]. With the result of the main loop theorem, Fu(Mi; �) is
well-posed, stable and kFu(Mi; �)k1 � 
�1i for all � with k�k1 < 
�1i ,
if and only if

�(Mi) � 
i (16)

where the structured singular value �(Mi) is computed with respect to
the block diagonal structure of Mi given in (14).

For step (c) of the procedure the prior performance assessment test is used
similar to the situation of step (a), albeit now with the known controller
Ki+1, and an updated Mi+1.

4.3 Control relevant estimation of a set of models

As indicated in (11), the structure of a set of models G is determined by a
rcf (N̂ ; D̂) of a nominal model Ĝ and the weighting functions (V̂ ; Ŵ ) that
normalize the uncertainty or modeling error. The control relevant estimation
of a set of models G should address the minimization

(N̂ ; D̂; V̂ ; Ŵ ) = arg min
N;D;V;W

sup
G2G

kJ(G;K)k1 (17)

subjected to both G0 2 G and internal stability of the feedback connection
T (Ĝ;K). At the current state, the minimization of (17) using the variables
(N̂ ; D̂; V̂ ; Ŵ ) simultaneously, cannot be solved directly. Therefore, the control
relevant identi�cation of a set of models in (17) is addressed by estimating
the rcf (N̂ ; D̂) and the pair (V̂ ; Ŵ ) separately:

� Estimation of a nominal model

This involves the estimation of Ĝ = N̂D̂
�1

such that (17) is being
minimized using the rcf (N;D) only, subjected to internal stability of
T (Ĝ;K). The pair (V̂ ; Ŵ ) is unknown and assumed to vary freely in
order to satisfy G0 2 G.

� Estimation of uncertainty
This consists of the characterization of an upper bound on � in (11) via
(V̂ ; Ŵ ) such that (17) is being minimized using (V;W ) only, subjected
to G0 2 G. The rcf (N̂ ; D̂) is �xed to the estimate of the nomianl model
obtained previously.

By the separate identi�cation of the rcf (N̂ ; D̂) and the weighting functions
(V̂ ; Ŵ ) only an upper bound on (17) can be minimized. However, it should
be stressed that precise minimization of (17) is not needed. If suÆces to �nd
a set of models that passes the a posteriori performance robustness test of



Motion Control of a Wafer Stage 17

(3) or (5). Furthermore, (standard) tools to estimate a nominal model and to
characterize uncertainty can be applied as indicated in the application to the
wafer stage. Finally it can be noted that due to the separation being made,
the attention can be focused on �nding models of limited complexity [18]. The
rationale is to avoid the computation of controllers on the basis of highly com-
plex models as much as possible, since this will lead to high-order controllers
for which the computation may be badly conditioned.

4.4 Robust control design

A new and improved robust performing controller controller Ki+1 can be
designed on the basis of the estimated set of models Gi by the minimization

Ki+1 = argmin
K

sup
G2Gi

kJ(G;K)k1: (18)

Basically, (18) is a robust performance control design, wherein a controller
Ki+1 is constructed such that the worst case performance J(G;Ki+1) for
all G 2 Gi is being optimized. In order to use the available standard re-
sults on H1- and �-controller synthesis, the transfer function Mi of the
LFT Fu(Mi; �) in (14) is represented as a lower fractional transformation
Fl(Pi;K) as illustrated in Figure 9.
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K �

-
-

DlD�1rmin
K
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w e
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Fig. 9. Controller synthesis via H1 optimization for �xed D-scaling

The entries of the standard plant Pi in Figure 9 can be found by extracting
the controllerK from the expression ofMi given in (14). Considering the map
Mi given in (14), then Mi = Fl(Pi;K) where Pi is given by

Pi =

2
4 Ŵ�1 0 0

0 U2 0
0 0 I

3
5
2
6664

D̂
�1
Nk D̂

�1
0 D̂

�1

(Dk + ĜiNk) Ĝi 0 Ĝi

0 I 0 I

�(Dk + ĜiNk) �Ĝi I �Ĝi

3
7775
2
4�V̂ �1 0 0

0 U1 0
0 0 I

3
5 :

The control design problem (18) can be tackled via a �-synthesis that solves

min
K

inf
Dl;Dr2D



DlFl(Pi;K)D�1r



1

(19)
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iteratively for the scaling matrices Dl, Dr and the controller K, subjected to
internal stability of the feedback connection of K and Ĝi.

Finally it can be noted that the control design used here is a generalization
of the robust controller synthesis as presented in e.g., [4] or [13]. It can be
veri�ed that by ignoring the map from d onto z (representing the uncertainty),
P reduces to

�
U2 0
0 I

�24 Ĝi 0 Ĝi

I 0 I

�Ĝi I �Ĝi

3
5 �U1 0

0 I

�

and Mi = Fl(Pi;K) = U2T (Ĝi;K)U1. In the special case of a diagonal
weighting function U = diag(Uin; U

�1
out) with U2 = U and U1 = U�1, the

controller Ki+1 that minimizes kUT (Ĝi;Ki+1)U
�1k1 can be found by loop

shaping techniques [4, pp. 107-108]. Explicit state space formulae of the op-
timal controller for this special case can be found in [4] or [13].

5 Estimation of Model Set for the Wafer Stage

5.1 Access to coprime factorizations

The �rst step in the characterization of the set of models G, is the (approx-
imate) identi�cation of a stable nominal factorization (N̂ ; D̂) of a (possibly
unstable) nominal model Ĝ. Access to a rcf of the system G0 for identi�ca-
tion purposes can be obtained by a simple �ltering of the signals present in
the feedback connection T (G0;Ki).

As indicated in [20] or [7], a �ltering of the reference signal r := r1+Kir2 =
u +Kiy via x := Fr enables access to the various rcf of the system G0 on
the basis of closed-loop data. With (7) it can be seen that

x = F
�
Ki I

� � r2
r1

�
= F

�
Ki I

� � y
u

�
(20)

and (7) reduces to�
y
u

�
=

�
G0SinF

�1

SinF
�1

�
x+

�
(I +G0Ki)

�1

�Ki(I +G0Ki)
�1

�
v (21)

where (G0SinF
�1; SinF

�1) with Sin = (I +KiG0)
�1 can be considered to

be a (right) factorization of the system G0. In order for this factorization to
be right coprime, the �lter F in (20) is restricted to the form

F = [Dx +KiNx]
�1 (22)

where (Nx; Dx) is a rcf of any auxiliary model Gx that is stabilized by the
(initial) controller Ki used in the closed-loop experiments. For more details
on this characterization, see [20]. This includes choices for F that achieve
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normalization of the factorization (No;F ; Do;F ) which has the additional ad-
vantage that redundant dynamics in the two factors is removed.

Consequently, a simple �ltering (20) of the signals present in the feedback
connection T (G0;Ki) allows the access to a rcf of the system G0. The system
equation (7) can then be written in the form�

y
u

�
=

�
No;F

Do;F

�
x+

�
I

�Ki

�
[I +G0Ki]

�1v (23)

where x is given in (20), F is given in (22) and (No;F ; Do;F ) is the rcf of the
plant G0 given by�

No;F

Do;F

�
=

�
G0

I

�
[I +KiG0]

�1[I +KiGx]Dx: (24)

Since x in (20) is uncorrelated with v, (23) gives rise to an equivalent
open loop identi�cation problem of the rcf (No;F ; Do;F ) of the system G0.

5.2 Feedback relevant estimation of coprime factorizations

In the estimation of the rcf (N̂ ; D̂), minimization of (17) must be taken into
account when estimating a nominal factorization (N̂ ; D̂). Furthermore, Ĝ =
N̂D̂�1 is subjected to internal stability of the feedback connection T (Ĝ;Ki)
in order to characterize the set of models G given in (11).

Clearly, at this stage the set of models is unknown and (17) cannot be
computed. In fact, the set of models is arbitrarily large as the norm bounded
uncertainty � in (11) has not been characterized. Consequently, for any nom-
inal model there exists a norm bounded uncertainty � that forms a set of
models G for which G0 2 G. As G0 2 G, for any nominal model G0 2 G the
following upper bound for kJ(Ĝ;Ki)k1 can be given.

kJ(Ĝ;Ki)k1 � kJ(G0;Ki)k1 + kJ(Ĝ;Ki)� J(G0;Ki)k1

As kJ(G0;Ki)k1 in the above expression does not depend on the nominal
model Ĝ, the upper bound can be minimized by an estimated rcf (N̂ ; D̂) of
a nominal model that minimizes

kJ(Ĝ;Ki)� J(G0;Ki)k1 (25)

thus constituting a control-relevant identi�cation criterion.
With the expressions introduced above, it can be shown [7] that

J(G0;Ki)� J(Ĝ;Ki) = U2

��
No;F

Do;F

�
�

�
N̂

D̂

��
F
�
Ki I

�
U1 (26)

where (N̂ ; D̂) satis�es the constraint D̂ +KiN̂ = F�1. The estimation of a
nominal factorization for the positioning mechanism of the wafer stepper will
be illustrated in the next section.
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5.3 Estimation results of nominal factorizations

To estimate a nominal factorization (N̂ ; D̂), frequency domain measurements
of the factorization No;F (!), Do;F (!) along a prespeci�ed frequency grid
are used. The external signals r1 and r2 are designed accordingly to the
experiment design discussed in Section 2.4.

Subsequently, the curve �tting procedure described in [6] is used to tackle
the weighted minimization of (25) frequency wise. As the curve �tting proce-
dure is a non-linear optimization, an initial estimate is required to start the
optimization. For that purpose, a multivariable least squares curve �tting
procedure is used [5].
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Fig. 10. Amplitude Bode plot of estimated coprime factors N̂ (|) and D̂ (- -)

An amplitude Bode plot of the rcf (N̂ ; D̂) being estimated can be found
in Figure 10. The resulting estimate of col(N̂ ; D̂) is an 18th-order discrete
time multivariable model having 6 inputs and 3 outputs. Computing Ĝi =
N̂D̂�1 yields a 18th-order nominal model, having 3 inputs and 3 outputs.
The amplitude Bode plot of the model Ĝi, along with the available frequency
domain data computed via No;F (!)Do;F (!)

�1 is depicted in Figure 11.

Although stability of the feedback connection T (Ĝi;Ki) is not enforced
during the estimation of the coprime factorization (N̂ ; D̂), the model Ĝi is
stabilized by Ki. This is mainly due to the fact that the control-relevant
estimation of the coprime factors yields a nominal model Ĝi with a good
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Fig. 11. Amplitude Bode plot of computed nominal model Ĝi (|) and frequency
domain data (� � �)

�t of the control relevant dynamical behavior of the plant G0 around the
closed-loop relevant frequency area of 200Hz.

With the knowledge of the 18th-order curve-�tted nominal plant model
Ĝi, the weighting functions U1 and U2 for the control objective function
J(G;K) are designed. They are chosen to achieve decoupling of the multi-
variable plant at 90 Hz and to achieve a nominal bandwidth of approximately
90 Hz. Furthermore 2 integrators are incorporated in each diagonal transfer
of the loop-shaped plant to ensure low frequent disturbance rejection and
tracking of the servo positioning mechanism.

5.4 Access to model uncertainty

Once a rcf (N̂ ; D̂) of the nominal model Ĝi is obtained, an estimation of
the model(ling) uncertainty � in (11) can be performed. This involves the
characterization of an upper bound on � in (11) via the stable and stably
invertible �lters (V̂ ; Ŵ ) such that (17) is being minimized and G0 2 Gi. For
that purpose, �rst (an upper bound on) the allowable model perturbation �
is determined by applying a model error bounding estimation technique. The
uncertainty estimation routine described by [9] is used to obtain a frequency
dependent upper bound for �

k�(!)k � Æ(!) with probability � � (27)



22 R.A. de Callafon and P.M.J. Van den Hof

where � is a pre-chosen probability. In the multivariable case, the upper
bound (27) can be obtained for each transfer function. Subsequently, stable
and stably invertible weightings V̂ and Ŵ can be determined that overbound
the estimated upper bound Æ(!).

In order to estimate a frequency dependent upper bound on �, the map
� must be accessible from data. This can be achieved by de�ning the �ltered
closed-loop signal

z := (Dk + ĜiNk)
�1
�
I �Ĝi

� � y
u

�
(28)

which can be shown to satisfy

z = �x+Dk(I +G0Ki)
�1v: (29)

As x is uncorrelated with v this points to an open loop bounded error identi-
�cation problem to �nd an upper bound for a stable �. The estimated upper
bound of � in (27) can then be used to complete the characterization of the
set of models Gi.

5.5 Feedback relevant estimation of model uncertainty

It can be observed from (14) that knowledge of the controller Ki used during
the closed-loop experiments is taken into account in the construction of the
set of models. Application of the same controller K = Ki to the uncertainty
set for a posteriori robust performance evaluation greatly reduces the entries
of the matrixM . Substitution of K = Ki in (14) yieldsM11 = 0. This implies
that when the controller Ki is applied to the estimated set of models Gi, the
upper LFT Fu(M;�) modi�es into

M22 +M21�M12 (30)

which is an aÆne expression in �.
Substituting M21 and M12 in (30) with � = V̂ �Ŵ yields the following

expression

M22 +M21�M12 =M22 +W2�W1

where

W2 = �U2

�
�Dk

Nk

�
; W1 = D̂

�1
(I +KiĜi)

�1
�
Ki I

�
U1: (31)

Consequently, the e�ect of replacing an accurate (and high-order estimate)
of the upper bound � by a low-order upper bound approximation ~� on the
(robust) performance kJ(G0;Ki)k = kM22 +W2�W1k can be bounded by
the following triangular inequality

kM22 +W2�W1k � kM22 +W2
~�W1k+ kW2(�� ~�)W1k (32)
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From (32) it can be observed that, similar to identi�cation of a control rel-
evant and low complexity factorization of a nominal model, a weighted dif-
ference between the actual and highly complex uncertainty � and the low
complexity approximation ~� must be taken into account for a control rel-
evant approximation of the model uncertainty. The weightings W2 and W1

are given in (31) and are known, once a nominal factorization (N̂ ; D̂) has
been estimated. With the (frequency dependent) weightingsW1 and W2, low
frequent weighting �lters (V̂ ; Ŵ ) can be used to parametrize and overbound
the freuency dependent bound of the modeling uncertainty.

5.6 Estimation results of model uncertainty

Given the nominal factorization (N̂ ; D̂) and a normalized rcf (Nk; Dk) of the
controller Ki, an estimation of the allowable model perturbation � in (11) is
performed. For that purpose, the uncertainty estimation as presented in [9]
has been applied to estimate a frequency dependent upper bound on �. A
complete discussion on the uncertainty estimation procedure of [9] is beyond
the scope of this paper. Here we will just point to its main characteristics:

� it combines a worst-case bounding of unmodelled dynamics with a prob-
abilistic bound on the variance error;

� it employes linearly parametrized models (basis functions) for which least-
squares or IV estimates are constructed;

� uncertainty regions for frequencies in any user-chosen frequency grid are
computed from bias and variance errors.

The result of the uncertainty bounding procedure is summarized in Fig-
ure 12. In Figure 12 the amplitude bodeplot of the frequency domain data
of � in (29) is compared with the estimated upper bound Æ(!). It can be
observed from Figure 12 that the upper bound of the frequency domain esti-
mation of � is crossing the upper bound Æ(!). Partly, this is due to the fact
the upper bound only holds within a prespeci�ed probability of 95%.

As Æ(!) is only a frequency dependent upper bound for �, low frequent
weighting �lters (V̂ ; Ŵ ) are needed to parametrize and overbound the es-
timated uncertainty bound Æ(!) depicted in Figure 12. In this way, the es-
timated upper bound can be taken into account during a robust controller
design.

In the construction of (V̂ ; Ŵ ) the weightingsW1 andW2 given in (31) are
used to emphasize the frequency range for the upper bounding of Æ(!) by the
parametric stable and stably invertible weightings (V̂ ; Ŵ ). It can be observed
from (31) that the input sensitivity (I+KiĜi)

�1, based on the nominal model
Ĝi, is incorporated in the weightings given in (31). As a consequence, the
weightings emphasize (again) the closed-loop relevant frequency area around
200Hz.
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Fig. 12. Amplitude Bode plot of estimated uncertainty bound Æ(!) (|) of � and
frequency domain estimate of � (� � �)

6 Model Set Based Robust Control Design

On the basis of the identi�ed set of models, a robust controller can be designed
via a �-synthesis. As indicated in Section 4.4, a robust performance control
design is used wherein a controller Ki+1 is constructed such that the worst
case performance J(G;Ki+1) for all G 2 Gi is being optimized. The control
design is done via a �-synthesis using an alternating iteration between a
H1 controller optimization with �xed D scalings and an adjustment of the
scalings D for a �xed controller.

The �-synthesis is invoked with 2nd-order D-scalings and four D-K it-
erations are performed to compute a robust performing controller. The �-
synthesis yields a high-order multivariable feedback controller is obtained
and in order to implement the controller, an additional closed-loop controller
reduction [22] was used to reduce the controller to a 32nd-order state space
realization. A comparison between the initial controller Ki previously imple-
mented on the wafer stage system and the newly designed controller Ki+1 is
given in terms of the amplitude Bode plot depicted in Figure 13.

Compared to the initial controller Ki it can be seen that the newly de-
signed Ki+1 is a multivariable servo controller. Furthermore it has addi-
tional dynamics to account for the modelled (uncertain) mechanical resonance
modes of the wafer stage G0.
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Fig. 13. Amplitude Bode plot of conventional parallel PID controller Ki (- -) and
newly designed 32nd-order multivariable controller Ki+1 (|)

Before implementing the new controller the robust performance and sta-
bility needs to be evaluated. This can be done with the estimated set of
models Gi by evaluating kJ(G;Ki+1)k1 for all models G 2 Gi. Both stabil-
ity and performance robustness of Ki+1 can be evaluated with the structured
singular value �fMg as indicated in (16). In Figure 14 the structured singular
value is plotted point wise over the frequency range between 10 Hz and 1000
Hz for both the initial Ki and the newly designed feedback controller Ki+1.
It can be observed that the newly designed controller Ki+1 has improved
the performance robustly, as the maximum of the structured singular value
�fM(ei!)g has been lowered with a factor of approximately 4.

As a result, the performance index kJ(G;Ki+1)k1 evaluated for all mod-
els G 2 Gi with the new controllerKi+1 is guaranteed to be four times better
and as a result the performance of the closed-loop system has been improved
robustly.

For presentation purposes, the weighting functions V̂i and Ŵi that com-
plete the set of models Gi in (11) are scaled to normalize the uncertainty
�. As a result, performance robustness of the closed-loop system is guar-
anteed if max! �fM(ei!)g < 1. It can be seen from Figure 14 that this is
not that case, but by adjusting the performance weighting functions U1 and
U2 used in the performance characterization (8), performance robustness can
be guaranteed for a speci�c choice of the weighting functions U1 and U2 in
the performance criterion kU2T (P;C)U1k1. Whether or not the performance
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weighting functions U1 and U2 are adjusted to guarantee performance robust-
ness, the performance of the newly designed controller Ki+1 has shown to be
improved over the initial controller Ki.
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Fig. 14. Structured singular value �fM(ei!)g for initial controller Ki (dashed) and
newly designed controller Ki+1 (solid)

The newly designed controller Ki+1 has been implemented on the posi-
tioning mechanism of the wafer stage and the performance robustness im-
provement can be clearly seen from the time domain plots. In order to il-
lustrate the improved performance of the positioning control, the reference
signals r1 and r2 depicted in Figure 5 are put on the newly designed feedback
connection T (G0;Ki+1). A comparison with the servo error of Figure 6 ob-
tained with the initial controller Ki is depicted in Figure 15. It can be seen
from Figure 15 that both the speed and the accuracy of servo positioning
have been improved successfully.

7 Summary

A wafer stage is part of a wafer stepper and used in chip manufacturing
processes for accurate positioning of the silicon wafer on which the chips
are to be produced. The wafer stage discussed in this application is a 3 de-
gree of freedom (3DOF) positioning mechanism and the accurate positioning
requirements of the wafer stage demand a robust and high-performance mul-
tivariable servo controller that enables a fast and accurate positioning of the
wafer stage in 3DOF for a high throughput of silicon wafers.

This chapter illustrates the approximate and feedback relevant parametric
identi�cation of a wafer stage and shows how models along with an uncer-
tainty characterization can be used to characterize a set of models. The set of
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Fig. 15. Servo error response to a step in x-direction with initial parallel PID
controller Ki (- -) and newly designed multivariable controller Ki+1 (|)

models is constructed within a framework of algebraic model representations
that allows the incorporation of the controller information into the construc-
tion of the model set. It is shown that the set of models is particularly useful
for the closed-loop and control relevant estimation of both the nominal model
and the accompanying modeling error.

With the control relevant estimation of a model set and the use of ro-
bust control synthesis tools, both stability and performance robustness of
the model-based robust control design can be monitored. Additionally, mon-
itoring of the performance robustness enables the possibility to guarantee
performance improvement in an iterative scheme of a control relevant esti-
mation of a set of models followed by a robust control design. The procedure
is shown to be suitable for the model-based robust control design of the wafer
stage and is illustrated by a successful design and implementation of a robust
controller.
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