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Abstract

Recently bundle methods have been proposed for solv-
ing Semi-Definite Programming (SDP) problems which
consist of minimizing a linear objective subject to Lin-
ear Matrix Inequality (LMI) constraints. These meth-
ods are appealing especially for large scale problems.
Many control problems can be cast as SDPs. In con-
trast fixed order control problems in the LMI frame-
work require an additional rank constraint on the LMIs
which makes the problem insolvable with traditional
SDP methods. One way of imposing the rank con-
straint is to formulate the fixed order control problem
in terms of the eigenvalues of the LMIs. This makes
the problem nondifferentiable, but amenable to bundle
methods.

1 Introduction

Many control problems can be formulated as minimiz-
ing a linear objective subject to Linear Matrix Inequal-
ities (LMI) [15]. This is known as Semidefinite Pro-
gramming (SDP) and can be written as,

min
y

− bT y

s.t. −C +
n∑

j=1

yjAj = Z(y)

Z(y) � 0,

(1)

where y ∈ R
n, Z(y) is an affine mapping from R

n to
the space y ∈ S

m of m × m symmetric matrices and
� means that the left hand side is negative semidefi-
nite. In general for control applications Z(y) has block
diagonal structure which can be easily exploited.

SDPs are considered tractable because they are convex
programs and there are polynomial-time algorithms to
solve them. However, these algorithms are generally
expensive, since the number of decision variables is not
confined to only y, and become prohibitive for large
scale problems. This has motivated new research ef-
forts such as [7, 12, 13] that try to solve (1) directly by

1Dept. of Mechanical and Aerospace Engineering, University
of California San Diego, 9500 Gilman Drive, La Jolla CA 92093-
0411, U.S.A. e-mail: mrotunno@ucsd.edu

2e-mail: callafon@ucsd.edu

replacing the negative semidefinite constraint with the
equivalent constraint that the maximum eigenvalue of
Z(y) be less than or equal to zero. While these methods
have the advantage that the number of decision vari-
ables during the optimization is greatly reduced, their
main drawback is that the maximum eigenvalue is not
differentiable whenever its multiplicity is not unity. For
this reason the above methods are based on nonsmooth
optimization methods.

The fixed order control problem is one in which the
number of states in the controller is fixed. This prob-
lem can be formulated from (1) by adding a rank con-
straint to certain submatrices present in Z(y) and can
be expressed as:

min
y

− bT y

s.t. Z(y) � 0
Rank P (y) ≤ r

(2)

where P (y) is q×q submatrix of Z(y). The addition of
the rank constraint makes the fixed order control prob-
lem nonlinear and non convex. Methods of solution
of the rank constraint problem have been proposed in
[14, 3, 1, 6].

Since RP (y) is symmetric, the rank constraint is equiv-
alent to requiring that the smallest k = q − r eigenval-
ues of P (y) be zero. From a numerical point of view
the rank of a matrix is not completely well defined. In
many cases, such as in model reduction, one decides
the rank of a matrix when the kth smallest eigenvalue
(singular value) is sufficiently smaller than the kth + 1
eigenvalue (singular value). So in many cases enforc-
ing the k smallest eigenvalues to be exactly zero is not
necessary and could actually lead to conservative re-
sults. In [14] these facts are used to come up with a
method for synthesizing fixed order controllers by con-
straining the k smallest eigenvalues to be sufficiently
small. The main drawback of [14] is the use of a gen-
eral purpose constrained smooth optimization routine
to solve a nonsmooth problem.

This paper builds on the method presented in [14] in
that the solution is found using a constrained nons-
mooth bundle type optimization routine which is based
on [10]. The outline of the paper is as follows. First, an
example of a fixed order controller problem in terms of



LMIs is given for the case of H∞ optimal control case.
The fixed order controller problem is then cast as a
nonlinear programming problem in which eigenvalues
of certain matrices appear.

Section 3 gives the necessary theory on the nonsmooth
optimization is given. Subsequently, the algorithm is
given. Finally, conclusions are presented in Section 5.

The following notation will be used throughout the
paper. S

m denotes the Hilbert space of real m × m
symmetric matrices equipped with the inner product
〈X,Y 〉 = tr(XY ) where tr(A) is the trace of A. The
eigenvalues of a matrix A ∈ Sm are ordered λ1(A) ≥
· · · ≥ λm(A). The LMI function Z : R

n → S
m is affine

with its components given by Z(x) = −C+
∑n

k=1 xkAk.
The function λ̄(x) : R

n → R defined by λ̄ := λ1(Z(x))
is particularly important since Z(x) � 0 if and only if
(iff) λ̄(x) ≤ 0.

2 Fixed Order H∞ Controllers

Let a minimal realization of a linear time invariant
(LTI) discrete time plant P be given by the following
state space realization:

x(k + 1) = Ax(k) + B1w(k) + B2u(k)
z(k) = C1x(k) + D11w(k) + D12u(k)
y(k) = C2x(k) + D21w(k)

(3)

Where A ∈ R
n×n, (A,B2, C2) is stabilizable and de-

tectable and k is used to denote the sample instant.
Let the servo controller C to be designed be given by
the following minimal (LTI) state space realization

xc(k + 1) = Acxc(k) + Bcy(k)
u(k) = Ccxc(k) + Dcy(k)

(4)

where Ac ∈ R
nc×nc and nc is the order of the controller

to be designed.

The closed-loop transfer function Twz from w to z is
obtained as

Twz = Dcl + Ccl(zI − Acl)−1Bcl (5)

where

Acl =
(

A + B2DcC2 B2Cc

Bc Ac

)
Bcl =

(
B1 + B2DcD21

BcD21

)

Ccl =
(
C1 + D12DcC2 D12Cc

)
Dcl = D11 + D12DcD21

By means of the Bounded Real Lemma [2], the closed-
loop transfer function Twz satisfies an H∞-norm per-
formance bound ‖Twz‖ < γ if and only if Acl is stable in
the discrete time sense (|λi(Acl)| < 1) and the matrix

inequality


−X−1

cl Acl Bcl 0
AT

cl −Xcl 0 CT
cl

BT
cl 0 −γI DT

cl

0 Ccl Dcl −γI


 < 0 (6)

holds for some Xcl > 0.

For a given value of γ > 0 finding a controller C for
which the expression (6) holds leads to the so called
suboptimal H∞ control design. The optimal H∞ con-
trol design problem consists instead in finding the min-
imum value of γ > 0 such that (6) holds. The existence
of H∞ optimal or suboptimal controllers of order nc is
fully characterized by the following result [2].

Theorem 1 Let Nx and Ny denote orthonormal bases
of the null spaces of (BT

2 ,DT
12) and (C2,D21), respec-

tively. There exists a controller of order nc which sta-
bilizes the system and yields ‖Twz‖∞ < γ if and only
if

M := Ñ T
x

(
AXAT − X AXCT

1 B1

C1XAT C1XCT
1 − γI D11

BT
1 DT

11 −γI

)
Ñx < 0,

(7)

N := Ñ T
y

(
AT Y A − Y AT Y B1 CT

1
BT

1 Y A BT
1 Y B1 − γI DT

11
C1 D11 −γI

)
Ñy < 0,

(8)

P :=
(

X I
I Y

)
≥ 0,

(9)

where

Ñ T
x =

(Nx 0
0 I

)
and Ñ T

y =
(Ny 0

0 I

)
.

Furthermore the following rank condition has to be sat-
isfied,

Rank
(

X I
I Y

)
≤ n + nc. (10)

Proof: See [2].

For a fixed value of γ the constraints (7)–(9) are Linear
Matrix Inequalities (LMI) and define a convex set in the
variables (X,Y ). The suboptimal H∞ problem with
performance γ is solvable if and only if this set is non
empty. It should be noted that the rank constraint is
satisfied trivially when nc = n, which corresponds to
the design of a controller that has the same order as
the plant P . This case will be denoted in this paper by
the full order case or full order controller. In the design
of a reduced order controller or reduced order case, the
rank constraint makes the problem non convex, so that
efficient semi–definite programming (SDP) techniques
are not applicable and other methods are needed.



Given any solution (γ,X, Y ) of (7)–(10), it is possi-
ble to construct a matrix Xcl [2]. Then a H∞ con-
troller of order nc can be computed by solving the
Bounded Real Lemma inequality (6) for the controller
data (Ac, Bc, Cc,Dc). This problem can be solved us-
ing SDP.

2.1 Solution via Numerical Optimization
From Theorem 1 above, it is evident that H∞ con-
trollers of order nc < n can be obtained if one finds a
trio (γ,X, Y ) so that the LMI’s (7)–(9) and the rank
constraint (10) are satisfied. Since the matrix P is
symmetric its rank can be determined directly from
its eigenvalues: λ1(P ) > λ2(P ) > . . . > λk(P ) >
λk+1(P ) > . . . > λ2n(P ).

Since P is of order 2n, the rank constraint (10) is equiv-
alent to requiring that the k = n − nc smallest eigen-
values of P be zero. From a numerical point of view
rounding errors and fuzzy data make rank determina-
tion a nontrivial exercise. Following [5] we will assume
P as having rank n + nc if λk+1 > δ ≥ λk where the
value of δ is chosen based upon the precision with which
data is known.

The optimal fixed order H∞ controller can be found by
solving the following optimization problem:

min
γ,X,Y

γ

s.t. λ1(M(γ,X)) < 0
λ1(N(γ, Y )) < 0

λ1(−P (X,Y )) < 0
λk(P (X,Y )) ≤ δ

(11)

The following facts should be noted:

• The last two constraints in (11) effectively impose
the rank constraint: requiring P to be positive
definite and requiring that the eigenvalue λk(P )
be sufficiently small, forces the k smallest eigen-
values of P towards zero.

• By forcing P to be rank deficient at the optimal
point makes the problem nonsmooth since P will
have k eigenvalues equal to zero and thus have a
multiplicity of k.

• (11) can be cast as (2) by defining the block di-
agonal matrix,

Z = blkdiag (M(γ,X), N(γ, Y ),−P (X,Y )) .

• The numerical value of δ can be chosen as δ =
10p‖P (X0, Y0‖ where p is the precision with
which the data is known and (X0, Y0) are the ini-
tial values with which the optimization routine is
started.

A initial point can be obtained by first solving the fol-
lowing semi-definite problem for a fixed value of γ:

min
X,Y

tr(X + Y )

s.t. (7) − (9)

This minimization is guaranteed [4] to give a controller
of order at least n − 1, and generally does better.

In [14] (11) was solved using a standard smooth con-
strained optimization code, even though the minimiza-
tion problem (11) is non-differentiable. Results re-
ported in [14] were encouraging even though the num-
ber of iterations and function evaluations tended to be
high, thus making the method inefficient.

3 Bundle Methods for Constrained
Nonsmooth Optimization

Bundle methods were originally developed in the con-
text of unconstrained nonsmooth convex optimization.
They were then further extended to constrained and
non-convex problems [9]. The method proposed in this
section is based on [9] and [11].

In this section the optimization problem (11) is rewrit-
ten as:

min
x

bT x

s.t. c(x) ≤ 0
(12)

where x = vec(γ,X, Y ) ∈ R
n i.e. all the unknowns are

stored in a vector and

c(x) = max(λ1(M(γ,X)), λ1(N(γ, Y )
λ1(−P (X,Y )), λk(P (X,Y )) − δ)

We will assume that for each x ∈ R
n we can compute an

arbitrary subgradient gc(x) ∈ ∂c(x) and that the gen-
eralized Slater constraint qualification holds: c(x̃) ≤ 0
for some x̃ ∈ R

n. In these terms the optimization prob-
lem is nonsmooth due to the fact that the constraint
c(x) involves the max function and that at any given
x the eigenvalues of the matrices involved may have a
multiplicity greater than one. In this case one has to
consider the subdifferential ∂c(x) of c(x) at x.

The algorithm to be described will generate a sequence
of points x1, x2, · · · , search directions d1, d2, · · · and
stepsizes t1L, t2L, · · · in (0, 1], related by xk+1 = xk+tkLdk

for k = 1, 2, · · · , where x1 is the given staring point.
The method will also calculate a sequence of trial points
yk+1 = xk + tkRdk for k = 1, 2, · · · and subgradients
gk

c = gc(yk) of the constraint c(x) for k ≥ 1, where
y1 = x1.

Each trial point yj will define a linearization of c

�j
c(x) = c(yj) + 〈gj

c , x − yj〉 ∀x (13)



At the kth iteration, we shall have a subset Jk
c of

{1, · · · , k} and the corresponding linearizations �j
c, j ∈

Jk
c , given by the N + 1 vectors (gj

c , c
k
j ) in the form

�j
c(x) = cj

k + 〈gj
c , x − xk〉 ∀x (14)

where ck
j = �j

c(xk). The above form will enable us not
to store the points yj . The available linearizations will
define a polyhedral approximation of c(x)

�k
c (x) = max(ck

j + 〈gj
c , x − xk〉 : j ∈ Jk

c ) ∀x (15)

If the constraint c(x) in (12) is replaced by its polyhe-
dral approximation �k

c in (15) we obtain

min
x

bT x

s.t. �k
c (x) ≤ 0

(16)

which may be regarded as a local approximation to the
original problem (12). However the above problem may
have no finite solutions. Therefore we shall choose the
next trial point yk+1 to satisfy

min
y

bT y +
1
2
‖y − xk‖2

Bk

s.t. �k
c (y) ≤ 0

(17)

where the regularizing 1
2‖y − xk‖2

Bk
term is introduced

so as to keep yk+1 in the region where �k
c (x) is a close

approximation to c(x) and ‖x‖Bk
= (xT Bkx)1/2 is an

ellipsoidal norm, where Bk is a positive-definite sym-
metric matrix. The direction dk = yk+1 − xk can be
found by solving the following quadratic programming
problem

min
y

bT d +
1
2
dT Bkd

s.t. ck
j + 〈gj

c , d〉 ≤ 0 j ∈ Jk
c

(18)

In order to guarantee global convergence of the method
it is necessary to define a merit function so as to eval-
uate if a current iterate is better than the previous.
In the case of problem (18) a natural merit function is
given by P∞(x, ρ) = bT x+ρmax(c(x), 0) the exact L∞
penalty function associated with problem (12). This
can be seen by Lemma 2.1 in [10] where it is shown
that if d solves (18) then it also solves

min
d

P̂∞(d, ρk) +
1
2
dT Bkd (19)

where

ρk ≥
∑
j∈Jk

c

λj
k

P̂∞(d, ρk) = bT d + ρk max(�k
c (d), 0)

and λj
k are the Lagrange multipliers associated with

the solution to (18) and P̂∞(x, ρ) is an approximation

to P∞(x, ρ). This result is particularly insightful, since
it shows that d will be approximately a direction of
descent for P∞(·, ρ) at xk. In particular, the following
approximate directional derivative of P∞(·, ρ) at xk in
the direction dk

vk = P̂∞(xk + dk, ρk) − P∞(xk, ρk) (20)

will be negative. The algorithm will take a serious step
from xk to xk+1 = yk+1 if yk+1 is significantly better
that xk in the sense that

P∞(yk+1, ρk) ≤ P∞(xk, ρk) + mvk (21)

where m ∈ (0, 1) is a parameter. Otherwise, a null step
xk+1 = xk will occur. In both cases the new subgra-
dient gk

c = gc(yk+1) information collected at yk+1 will
be added to the bundle and will enable the method to
generate a new search direction dk+1.

Algorithm:

Step 0 (Initialization) Select a starting point x1 and
matrix B1, a final accuracy εf ≥ 0, a final infeas-
bility tolerance εc ≥ 0 and a line search parame-
ter m ∈ (0, 1). Set y1 = x1, J1

c = 1, g1
c = ∇c(y1)

and ρ0 = 0.

Step 1 (Direction Finding) Find the solution dk to
subproblem (18) and the corresponding Lagrange
multipliers λk and compute ρ̃k =

∑
j∈Jk

c
λj

k

Step 2 (Penalty Updating) If ρ̃k ≤ ρk−1, set ρk =
ρk−1; else set ρk = max(ρ̃k, 2ρk−1)

Step 3 (Stopping Criterion) Compute vk by (20). If
vk ≥ −εf and c(xk) ≤ εc, terminate; otherwise,
continue.

Step 4 (Line Search) Set yk+1 = xk+dk. If (21) holds,
set xk+1 = yk+1 (serious step); otherwise xk+1 =
xk (null step).

Step 5 (Linearizations Updating) Select Jk+1
c ⊃ Jk

c ∪
{k + 1}. Set gk+1

c = ∇c(yk+1) and

ck+1
j = ck

j + 〈gj
c , xk+1 − xk〉

ck+1
k+1 = c(yk+1) + 〈gk+1

c , xk+1 − yk+1〉

The algorithm given above is in its most basic form as
presented in [10] and the reader is referred to [10] for
proof of convergence of the above algorithm.

Remark 3.1 It should be observed that Step 1 is
solved more efficiently by solving the dual problem as-
sociated with (18), since in the dual case the problem
size depends on the size of the bundle of information
which in general is much smaller than the length of d



We have not until now discussed the choice of the ma-
trix Bk. In [11] the matrix is chosen as Bk = µkI and
µk has the function of controlling a trust region around
the point xk. In our limited numerical experimentation
so far conducted, it was found that it was most efficient
to update Bk using a Quasi Newton BFGS update:

sk = yk+1 − xk

zk = gc(yk+1) − gc(xk)

Bk+1 = Bk − BksT
k skBk

sT
k Bksk

+
zkzT

k

zT
k sk

4 Numerical Results

To evaluate the performance of the method described
in the previous sections, the two-mass/spring system
from [15] is considered. The system has the following
state-space form:

ẋ =




0 0 1 0
0 0 0 1
−1 1 0 0
1 −1 0 0


 x +




0 0
0 0
0 0
1 0


 w +




0
0
1
0


u

z =
[

0 1 0 0
]
x +

[
0 0

]
w + [0]u

y =
[

0 1 0 0
]
x +

[
0 1

]
w

The full order optimal H∞ controller has an H∞ norm
of γ = 1. The objective is to find a second order
(nc = 2) controller (the plant cannot be stabilized with
a controller of order one) with the smallest possible γ.
In order to evaluate the performance of the proposed
method, a comparison is made with the method found
in [14]. This comparison is shown in Table 1 where in
the first column is the the achieved H∞ performance
γ, in the second column is the number of (outer) it-
erations and the third column shows the number of
function evaluations necessary for the specific method
to converge. The comparison between the two meth-
ods is quite fair due to the following reasons: firstly,
both methods use the same subroutine to compute the
constraint function and it’s gradient. Secondly, both
methods solve a Quadratic Programming (QP) prob-
lem at each iteration. Finally, both methods are es-
sentially programmed in Matlab. A comparison on the
CPU time taken by both methods would be misleading
since the present method makes use of QP solver which
is already compiled. The same problem has also been

Method H∞ Perf. Iter Nf
Bundle 4.109 138 192
[14] 4.102 185 524

Table 1: Comparison of numerical methods for reduced
order controllers for two mass system

solved in [15] and [8] in which the achieved values of

γ were 4.96 and 4.14 respectively. In this particular
case the bundle method did exceptionally well, espe-
cially in the number of function evaluations. This is
particularly important because in this particular case
function evaluations are expensive.

A second test example is a four disk control system
studied by Enns and taken from [16]. The full 8th order
optimal H∞ controller has an H∞ norm of γ = 1.1272.
Table 2 shows the results obtained applying the present
method and the method from [14] to Enns problem. In
[16] several weighted controller reduction methods are
applied to Enns problem, the best H∞ performance of
all the methods for each controller order is also given
in Table 2. In this example the bundle is still superior

Order Method Iter. Nf γ

nc = 6
Bundle 651 1134 1.140
Ref.[14] 566 3122 1.164
Ref.[16] - - 1.196

nc = 5
Bundle 643 1229 1.140
Ref.[14] 594 2901 1.164
Ref.[16] - - 1.195

nc = 4
Bundle 779 1566 1.180
Ref.[14] 552 1867 1.239
Ref.[16] - - 1.195

nc = 3
Bundle 742 1589 1.576
Ref.[14] 620 2238 1.351
Ref.[16] - - 1.488

nc = 2
Bundle 769 1526 1.292
Ref.[14] 551 2001 1.297
Ref.[16] - - 1.417

nc = 1
Bundle 971 1802 1.75
Ref.[14] 596 2128 1.656
Ref.[16] - - 2.467

Table 2: Comparison of numerical methods for reduced
order controllers

from a number of function evaluations point of view.
It does, however, typically involve more iterations with
respect to [14].

Another important observation can be made from the
data relative to the H∞ performance γ. Except for
nc = 3 ( we have not yet investigated why this happens)
both methods always obtain a value of γ less than the
ones obtained in [16].

5 Conclusions

In this paper we have presented a novel approach to
computing fixed order controllers. The method makes
use of the bundle method for nondifferentiable opti-
mization. Our limited computational experience has
shown that the method in its current from is more ef-



ficient than the method proposed in [14]. Future work
will involve further optimization of the code and more
numerical experiments.
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