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Glossary

Approximate identification: Modeling of a dynamic system with identification techniques
where a model of limited complexity or limited model order is assumed to approximate
the dynamic behavior of the system.

Closed loop data: Data gathered from a plant under feedback controlled conditions.
Controller: A sub-system that generates a control signal on the basis of a feedback or a

feedforward connection.
Data: The time history measurement of the (possibly noisy) input and output of a plant.
Discrete time systems: Systems described in the discrete time domain. Typically used in

computer controlled systems or systems that are sampled for identification purposes.
Feedback: Feedback is an connection principle of sub-systems in which the output of a sub-

system is fed back to the input for control purposes.
Frequency response: The steady-state response of a system to sinusoidal signals of unity

amplitude and variable frequency.
Identification: Modeling of a dynamic system on the basis of experimental data obtained

from that system.
Identification for control: Modeling of a dynamic system with identification techniques

where a model of limited complexity is used specifically for feedback and feedforward
control design and evaluation purposes.

Model: Mathematical description of the dynamic behavior of a (sub)-system, e.g. in the form
of a transfer function.

Open loop data: Data gathered from a plant without control or under open loop control



Process: A sub-system that is considered to be unknown and is subjected to an identification
procedure in order to model the unknown sub-system.

SISO: Single-input-single-output.
System: A set of components, physical or otherwise, connected in a manner to form and act

as an entire unit.
Transfer function: A mathematical complex valued function that characterizes the transfer

behavior of a system in the complex plane. For discrete time systems it is the ratio of
the Z-transform of the output in the absence of initial conditions, to the Z-transform of
the input.

Z-Transform: A mathematical transformation that converts the calculus of time invariant
discrete time dynamical systems into an algebra in the complex plane.

Summary

Control systems are generally designed on the basis of a quantitative model of the dynamical
system or plant to be controlled. When identifying dynamical models for this particular purpose
on the basis of experimental data, care has to be taken that the model is particularly accurate
in those aspects that are most relevant for the model application, i.c. model-based control
design. In order to design control systems with manageable complexity, many advanced control
design algorithms require models of limited order. This stresses the necessity of identifying
reduced order models that are control-relevant. For the identification of such models, closed-
loop experiments have particular advantages. Additionally the interplay between modeling and
control has led to a wide variety of iterative modeling and control approaches, where control-
relevant identification is interleaved with control analysis and design, aiming at the gradual
improvement of controller performance.

1. Introduction

1.1. Relation between modeling and control

When designing a feedback control system for a dynamical process, model information on the
dynamical process generally plays a crucial role. The control system is basically designed and
analyzed on the basis of a model of the process at hand. Dependent on the particular design
procedure, different types of model information are required. Controller tuning methods as
e.g. PID, and frequency domain loop shaping methods are often based on non-parametric
(graphical) representations as e.g. step responses, frequency responses, disturbance spectra,
etcetera. However more advanced design strategies which typically also apply to systems having
multiple input and multiple output signals, require a full parametric dynamic model of the
underlying process, together with a model of the disturbances acting on the measurement
signals.

In the identification problem, as schematically depicted in Figure 1, measurement data of
particular experiments are used to identify a dynamical model. In the control design stage,
this model information is used to design a feedback control system, as schematically depicted
in Figure 2, aiming at typical control performance properties as stability, disturbance rejection,
tracking of particular reference inputs, etcetera.
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Figure 1: Identification on the basis of input-output data
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Figure 2: Feedback control system

When considering the question which identified model would be best suited to serve as a basis
for subseqeunt control design there is one obvious answer. If the model exactly represents the
process under consideration, including the disturbances acting on the process, then this model
will be optimal for all model applications, including model-based control design. This principle
of certainty equivalence (first construct an exact model, then use this model for control design)
is hard to justify when the model has to be identified from measurement data. In this latter
situation the identified model will contain uncertainties due to e.g.

• disturbances acting on the measurement data

• finite observation times

• limited excitation of input signals

• the approximative character of the class of models used

Practically it is often impossible to exactly characterize all phenomena that describe the dy-
namical behaviour of the process. As a result, models will necessarily be approximative. Addi-
tionally, many control design methods provide controllers whos order is essentially determined
by the order of the underlying process model. In this way a high order process model will
also lead to a high order controller, which may be infeasible from an implementation point
of view. As a result, low order -approximate- models are needed for the control design. On
the other hand, many complex industrial processes are controlled satisfactorily be low order
(PID) controllers. This suggests that limited order models should suffice when serving as a
basis for control design. When identifying these models from data, dedicated experiments and
well chosen identification methods are required for control-relevant modelling.



1.2. When is a model good for feedback control?

Models that accurately describe the open-loop frequency response of the process, are not neces-
sarily good for control, and models that seem bad from an open-loop frequency response point
of view, can be good as a basis for control design. As a brief illustration of this we consider the
following example.

In Figure 3 the frequency response of a dynamical process is given in black, together with
two candidate models (red and blue curves). The blue model is very accurate in the lower
frequency range (ω < 0.2 rad/s), but shows moderate deficiencies in the higher frequencies.
The red model has a very poor low-frequent behaviour, but is accurate in the frequency range
0.2 rad/s ≤ ω ≤ 1 rad/s. The poor open-loop quality of the red model is also clearly visible in
Figure 4(left) where the open-loop step response of the process and the two candidate models
is shown.
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Figure 3: Frequency response of dynamical process (black) and two candidate models (red and
blue).

When evaluating the properties of process and models in a closed-loop configuration, determined
by a feedback controller achieving a closed-loop bandwidth of 0.7 rad/s, the red model appears
to exhibit a closed-loop step response that is very similar to the response of the process, whereas
the blue model deviates considerably from this. The closed-loop step responses are depicted
in Figure 4 (right). As a general rule-of-thumb it can be stated that for model-based control
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Figure 4: Open loop step response (left) and closed-loop step response (right) of the dynamical
process (black) and of two candidate models (red and blue).

design, the process model should be particularly accurate around the bandwidth of the closed-



loop system. However the required accuracy at other frequencies can not be specified on
beforehand.

A simple experiment that will reveal plant information in the important frequency region is
given by a relay feedback experiment, as depicted in Figure 5. A nonlinear feedback switch will
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Figure 5: Relay feedback system

cause the output of the closed-loop system to oscillate when the reference signal is held constant.
The frequency and amplitude of the oscillating signal carries the necessary information on the
plants amplitude and frequency at which its phase shift is −180 degrees, being the crossing
of the Nyquist curve of the plant with the negative real axis. For many industrial plants this
provides knowledge on the maximum controller gain that can be allowed while guaranteeing
stability of the closed-loop system.

2. Identification of approximate models

2.1. Prediction error identification

In the mainstream area of system identification, a prediction error approach is followed, con-
sidering a dynamical process description of the form

y(t) = G0(q)u(t) + v(t); v(t) = H0(q)e(t) (1)

where G0 and H0 represent two linear time-invariant systems, y and u represent the output and
input signal(s) of the process, e is a sequence of independent, identically distributed random
variables (white noise), and q denotes the forward shift operator q−1u(t) = u(t− 1). The noise
representation H0 is used to characterize the power spectral distribution of the additive noise v.
For a parametrized model {G(q, θ), H(q, θ)}, with θ a real-valued parameter vector, the filtered
one-step-ahead prediction error

εf(t, θ) = L(q)H(q, θ)−1[y(t) − G(q, θ)u(t)] (2)

is used as a basis for the parameter estimate, employing a quadratic (least squares) identification
criterion which is constructed on the basis of experimental data {y, u}t=1,···,N . The prefilter L
is an additional design variable to be chosen by the user. Under mild conditions the parameter
estimate will converge (for N tending to infinity) to a limiting estimate, which for model
structures with fixed noise models, i.e. H(q, θ) = H(q), and for u and v uncorrelated, is given
by

θ∗ = arg min
θ

1

2π

∫ π

π
|G0(e

iω) − G(eiω, θ)|2Φu(ω)|L(eiω)|2
|H(eiω)|2 dω. (3)



This shows that in this setup the process model Ĝ(q) = G(q, θ∗) is obtained as the result of a
minimization of an integrated quadratic error between G0 and G, weighted with a particular
weighting function determined by input spectrum, prefilter and noise model.

2.2. Closed-loop process-model mismatch

In case the model Ĝ is to be used for model-based control design, the approximation of G0

by Ĝ should not be based on open-loop considerations. Instead, the approximation should
be directed towards a closed-loop match between process and model, taking account of the
controller C(q) to be designed.

When a controller CĜ is designed on the basis of a model Ĝ, the desired match between system
and model is reflected by a required similarity between the closed-loops of the controlled process
(achieved loop) and that of the controlled model (design loop), as indicated in Figure 6.
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Figure 6: Achieved closed-loop (upper), and design closed-loop (lower).

Denoting the sensitivity functions of the closed-loops:

S0 = [1 + G0CĜ]−1, Ŝ = [1 + ĜCĜ]−1

the (closed-loop) error to be considered is given by:

G0CĜ

1 + G0CĜ

− ĜCĜ

1 + ĜCĜ

= (G0 − Ĝ) · CĜS0Ŝ. (4)

This shows that from a closed-loop perspective the relevant process-model mismatch should
not be considered in a simple additive form, but the additive error should be weighted with a
weighting function given by W := CĜS0Ŝ. As a direct consequence the process model Ĝ should

be accurate in the particular frequency region where the weighting function CĜS0Ŝ is large.

A typical example is when the designed controller CĜ contains an integrating (I) action, i.e.
for low frequencies |CĜ(eiω)| >> 1. In this case the weighting function

|CĜS0Ŝ| ∼
∣∣∣∣∣ 1

CĜG0Ĝ

∣∣∣∣∣ << 1 for low frequencies ω << 1.

This implies that model errors G0(q)−Ĝ(q) in the low frequency region have almost no influence
on the closed-loop properties of the model. This is in accordance with the example that is shown
in Section 1.2.



2.3. Identification of control-relevant approximate models

The feedback control performance criterion (4) suggests an identification criterion to be used
for identifying the model Ĝ that (in a 2-norm setting) takes the form:

θ∗ = arg min
θ

1

2π

∫ π

π
|G0(e

iω) − G(eiω, θ)|2
∣∣∣∣∣ C(eiω)

1 + C(eiω)G0(eiω)

∣∣∣∣∣
2 ∣∣∣∣∣ 1

1 + C(eiω)G(eiω, θ)

∣∣∣∣∣
2

dω. (5)

When comparing this criterion with the identification criterion occurring in prediction error
identification (3), it appears that they can be made equivalent by choosing an identification
setup corresponding to e.g.

Φu(ω) =

∣∣∣∣∣ C(eiω)

1 + C(eiω)G0(eiω)

∣∣∣∣∣
2

and (6)

L(q) =
1

1 + C(q)G(q, θ)
(7)

H(q) = 1. (8)

In this setting the desired input spectrum is generated by u = CS0r. This input spectrum
is achieved by doing closed-loop experiments with a reference signal that has a flat spectral
density (Φr(ω) = 1), and the process is controlled by the controller C. The prefilter L that
is required is dependent on the model parameter θ and can be implemented via an iterative
update of the model estimation. The choice H(q) = 1 reflects a so-called output error model
structure.

The identification setup described will generate experimental data and a resulting identified
model that by construction has properties that reflect the control-relevant aspects of the un-
derlying process. The appealing principle that occurs here, is the observation that the optimal
experiment under which the process should be identified, is equal to the situation under which
the model is used (namely in terms of its model-based controller).

In this line of reasoning, the optimal identification experiment is a closed-loop experiment with
the -yet to be designed- controller CĜ being implemented on the process. Since this controller
is unknown before the model is identified, this suggests an iterative scheme of identification
and control, which is further explained in section 4.

3. Identification from closed-loop data

The typical problem in closed-loop identification is the fact that the plant input signal u is
correlated with the output noise disturbance v. This distinguishes the situation from open-
loop experiments. In the so-called direct identification method one simply applies the standard
(prediction error) identification procedure without taking special measures for the presence of
a feedback controller. A parameter estimate is obtained similarly as in the open-loop case,
described in section 2.1. The asymptotic identification criterion in the frequency domain, now
is determined by the residual spectrum given by

Φε =
|S0|2|G0 − G(θ)|2

|H(θ)|2 Φr +
|H0|2|S0|2

|H(θ)|2|S(θ)|2λ0



where S(q, θ) = (1 + CG(q, θ))−1 is the sensitivity function of the parametrized model. This
expression is obtained by simply combining (1) and (2) with the controller equation u = C(r−y).
If G0 can be modeled exactly within the chosen model set, i.e. G0 ∈ G, the first term of the
residual spectrum can be made 0 but this is not necessarily a minimum solution because of the
presence of G(θ) in the second term; any misfit in H(q, θ) in this term will be compensated for
by G(q, θ) in S(q, θ).

The direct method can provide good estimates when one is willing/able to identify full order
models for both plant and noise dynamics. In case one is identifying approximate models or
when one refrains from modelling the full noise dynamics, the consequences are that G0 is not
identified consistently, and the criterion that governs the approximate identification of G0 is
not explicitly tunable by the user. I.e. it will not take a simple form as (3) with the additive
error in G0 weighted with a known weighting function.

Alternative methods are available that allow for a decoupling of the identification of G0 and
H0 in a closed-loop setting:

• Indirect identification. In this approach the closed-loop system

y(t) = T (q)r(t) + W (q)e(t)

is identified from measurements of y and r, leading to models T̂ (q) and Ŵ (q), that have
to be converted to equivalent plant models Ĝ and Ĥ by solving the equations

T̂ (q) =
C(q)Ĝ(q)

1 + C(q)Ĝ(q)
; Ŵ (q) =

Ĥ(q)

1 + C(q)Ĝ(q)

for Ĝ and Ĥ . This requires knowledge of the controller C.

• Two-stage method. In this approach one first identifies the system that generates the
plant input:

u(t) = M(q)r(t) + N(q)e(t)

from measurements u and r, leading to models M̂ and N̂ . A noise-free plant input signal
is then reconstructed by

ûr(t) = M̂(q)r(t)

which subsequently is used in the second stage to identify the system

y(t) = G0(q)u
r(t) + H0(q)S0(q)e(t)

where the non-measurable noise-free input signal ur := C(q)S0(q)r(t) is replaced by its
estimate ûr. For this procecure no explicit knowledge of the controller is required. Ex-
tensions are also developed for situations where the controller is nonlinear.

Both alternatives allow the separate identification of plant model G0 and noise model H0. In
the situations that plant and noise models are parametrized independently (or that a fixed
noise model W∗ is used) the asymptotic identification criterion for the estimation of G0 takes
the form (for the indirect method1):

θ∗ = arg min
θ

1

2π

∫ π

−π
|G0(e

iω) − G(eiω, θ)|2 |C(eiω)S0(e
iω)S(eiω, θ)|2Φr(ω)

|W∗(eiω)|2 dω

1The expression for the two-stage method varies slightly.



which exactly matches the required criterion formulated in (5).This implies that in this case
with an appropriate choice of Φr and W∗ the criterion that is requested from a control-relevancy
point of view, can be realized exactly by applying an indirect closed-loop identification.

Consideratons have so far been directed towards asymptotic approximative properties of esti-
mates. This refers to the asymptotic bias properties of identified models. For analyzing the
asymptotic variance of the transfer function estimates it is known that for both model order
and number of data tending to ∞:

cov

(
Ĝ(eiω)

Ĥ(eiω)

)
∼ n

N
Φv(ω)·

[
Φu(ω) Φeu(ω)
Φue(ω) λ0

]−1

, (9)

leading to

cov(Ĝ) ∼ n

N

Φv

Φr
u

cov(Ĥ) ∼ n

N

Φv

λ0

Φu

Φr
u

(10)

with Φr
u the power spectral density of ur. This shows that only the noise-free part ur of the input

signal u contributes to variance reduction of the transfer functions. Note that for ur = u the
corresponding open-loop results appear. The variance expressions hold for all of the closed-loop
identification methods. It gives an appealing indication of the mechanisms that contribute to
variance reduction. It also illustrates one of the basic mechanisms in closed-loop identification,
i.e. that noise in the feedback loop does not contribute to variance reduction. Particularly in
the situation that the input power of the process is limited, it is relevant to note that only part
of this input power can be used for variance reduction. This has led to the following results

• If the input power is limited, and the controller is designed only on the basis of Ĝ and not
of Ĥ, the optimal identification experiment to minimize the variance cost of the control
performance is an open-loop experiment with an input spectrum that is proportial to the
sensitivity function of the to-be-designed closed-loop system, as in section 2.3.

• If during identification experiments the output power is limited, a closed-loop experiment
becomes optimal.

• If the controller is designed on the basis of both Ĝ and Ĥ , then a closed-loop experiment
is optimal.

4. Iterative identification and control

The situation described in the previous subsections shows that control-relevant models are
obtained when identification takes place under closed-loop experimental conditions with the
-yet to be designed- controller CĜ being implemented on the process. As this controller is
unknown before the model is identified, an iterative scheme is required to arrive at the desired
situation:

• Step 1 Perform an identification experiment with the process being controlled by an initial
stabilizing controller C;

• Step 2 Identify a model Ĝ with a control-relevant criterion;

• Step 3 Design a model-based controller CĜ;



• Step 4 Implement the controller on the process and return to Step 1 while using the new
controller.

This iterative scheme is depicted in Figure 7. A second motivation for applying an iterative

Implementation
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Identification
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data

Experiment

Figure 7: Iterative scheme of (closed-loop) identification and control design

scheme is the fact that when designing control systems, the performance limitations are gener-
ally not known on beforehand. As a result the sketched iterative scheme can also be considered
to allow to improve the performance specifications of the controlled system, as one learns about
the system through dedicated experiments. In this way improved knowledge of the process dy-
namics allows the design of a controller with higher performance, thus enhancing the overall
control performance.

Another view towards the iterative scheme is obtained by considering a control performance
cost function ‖J(G0, CĜ)‖, related to a closed-loop system with process G0 and controller CĜ

2.
J can e.g. be a weighted sensitivity function:

J(G0, CĜ) =
V

1 + CĜG0
(11)

aiming at a control system that satisfies: |S0(e
iω)| < |V (eiω)|−1; alternative choices for J include

LQ/LQG criteria, model reference control, robustness optimization and H∞ control schemes.
It is the aim of the control system to achieve a minimum value of ‖J(G0, CĜ)‖, through an

appropriate choice of Ĝ and CĜ. Employing the triangle inequality:

∣∣∣‖J(Ĝ, CĜ)‖ − ‖J(G0, CĜ) − J(Ĝ, CĜ)‖
∣∣∣ ≤

≤ ‖J(G0, CĜ)‖ ≤
≤ ‖J(Ĝ, CĜ)‖ + ‖J(G0, CĜ) − J(Ĝ, CĜ)‖,

(12)

shows that the achieved performance cost ‖J(G0, CĜ)‖ can be minimized by minimizing each

of the two separate terms on the right hand side of (12). Since such a minimization over Ĝ
involves the control design CĜ, this will generally be intractable. In the iterative approach

2In this notation it is presumed that the controller C can be a function of the noise model Ĥ also.



both terms are minimized separately: minimizing the designed performance cost ‖J(Ĝ, C)‖
over C for a fixed model Ĝ (control design), and minimizing the performance degradation term
‖J(G0, C) − J(G, C)‖ over G for a fixed controller C (control-relevant identification). In that
case this degradation term can be given the interpretation of a control-performance induced
modelling criterion:

Ĝ = arg min
G

‖J(G0, C) − J(G, C)‖
which for the choice of J as given in (11) takes the form:

Ĝ = arg min
G

∥∥∥∥∥ V (G0 − G)C

(1 + CG0)(1 + CG)

∥∥∥∥∥ .

Note that for a 2-norm this criterion has the same structure as the bias expression for the
closed-loop identification methods as shown in (5).

By minimizing the performance degradation term, and making it much smaller than the de-
signed cost ‖J(Ĝ, CĜ)‖, it follows from the two triangle inequalities (12) that the achieved
performance is forced to be close to the designed performance, i.e.

‖J(Ĝ, CĜ)‖ ∼ ‖J(G0, CĜ)‖

which is exactly what a control design engineer is aiming at: designing a model-based controller
that -after implementation on the real process- shows a performance cost that is similar to the
performance of the controlled model.
In general no convergence guarantees are available for the iterative schemes as described,
although robust versions (see next section) can be designed that guarantee non-divergence
through monitoring the controller results before implementation.

The iterative scheme considered relates to so-called adaptive control where recursively at each
time step a model update is identified and a new controller is designed. In the situation
described above, there is no necessity to design model and controller updates at each time step,
but only after seperate experimental runs. In this respect it reflects “extremely slow” adaptive
control.

5. Extensions

When models are used as a basis for robust control design, both a nominal model and a model
uncertainty characterization are required. In recent years attention has been given to the
quantification of model uncertainty on the basis of experimental data. A starting point for a
model uncertainty set, would be to collect all models that are not invalidated by the data and
the prior information on the system, sometimes called the Feasible System Set (FSS) or the set
of unfalsified models:

Punf := {G | y(t) − G(q)u(t) = v(t), v ∈ V}

where V is a hypothesized set of disturbance signals on the output. Dependent on the particular
character of V:

• hard-bounded, as e.g. V = {v | |v(t)| ≤ c ∀t}, or



• soft-bounded, as e.g. V = {v | v a stationary stochastic process with rational spectrum,
not correlated with u},

the uncertainty set Punf will be of a deterministic (hard-bounded) or a probabilistic (soft-
bounded) nature. In the latter situation confidence bounds on estimated model parameters
(parametric) or the model frequency response (non-parametric) are provided. Although the
preference in robust control design goes to hard-bounded sets, the commonly used hard-bounded
noise paradigms lead to uncertainty sets that in many cases are overly conservative. This is
due to the fact that the correlation between input signal and noise signal is not bounded.

Incorporating estimated model uncertainty bounds in the iterative scheme of the previous
section leads to an iterative scheme of identification and robust control, where the estimated
model is composed of both a nominal model and an uncertainty bound, and the control design
is a robust control design. Implementation of the controller is then preceded by a robustness
test on stability and performance of the designed control system.

6. Conclusions

It is possible to design an identification setup in such a way that the resulting models auto-
matically reflect those aspects of the undelying process that are most relevant for a subsequent
model-based control design. In this situation the identification setup is a result of a chosen
control performance cost. Optimization of the control and identification design can be achieved
by iteratively estimating models (possible accompanied by uncertainty bounds) and designing
and implementing enhanced controllers. Such an iterative procedure appeals to the learning
principle, where subsequent experiments allow the better understanding of the relevant process
dynamics, and the design of controllers with gradually improving performance.
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