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Abstract: Model (in)validation techniques are used to bridge the gap between models
used in robust control synthesis and uncertainty models obtained from identification
experiments. In most applications the aim is to design a robust controller and
therefore it is valuable to validate or invalidate an uncertainty model in view of
this application by considering a closed-loop model validation technique. In this
paper a model validation approach is presented that generalizes the (in)validation
of possibly unstable models on the basis of closed-loop experiments with a stabilizing,
but possibly unstable, controller. The approach is presented in a robust control
framework with an uncertainty model described with coprime factor perturbations.
It is shown that this approach yields an affine expression of the uncertainty model
in all possible transfer functions that can be measured via a closed-loop experiments,
which facilitates the optimization involved with a model invalidation.
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1. INTRODUCTION
1.1 Model invalidation

In trying to model a plant, a distinction can be
made between exact and approximate modeling.
In case of exact modeling, the attention is focused
on trying to model a plant meticulously by try-
ing to capture the dynamical behaviour of plant
exactly. Approximate identification is concerned
with system identification problems in which the
identification technique is used to find approxi-
mate models of the plant. Especially if models
have to be used for control design, deliberate
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undermodeling is often required as model-based
control design procedures tend to yield controllers
that have the same complexity as the model
used to compute the controller (Boyd and Bar-
rat, 1991; Zhou et al., 1996). By limiting the order
of the model, the order of the controller can be
limited during the control design.

In the event of a (deliberate) undermodeling,
i.e. models that are too simple to describe the
plant completely, a mismatch between the plant
and the model is unavoidable. Such a mismatch
can be captured in an uncertainty model that
consists of a nominal model and an additional
model uncertainty or allowable model perturba-
tion. Even if exact modeling is desired on the basis
of experimental data, such a model uncertainty



in inevitable due to incomplete knowledge of the
plant or the finite data sequence used during the
modeling.

For (robust) control purposes, it is important to
verify the validity of the uncertainty model. With-
out such a verification, the robustness of a con-
troller can not be guaranteed fully. Considering
the uncertainty model to be given, the validity of
the model can be verified on the basis of an (addi-
tional) experiment by a so-called model validation
procedure (Smith and Doyle, 1992). The model
validation procedure is used to determine whether
or not the experimental data could have been pro-
duced by the uncertainty model. In general, this
is done by determining the level of the smallest
model perturbation and the smallest noise signal
that could have produced the experimental data.
In case these levels exceed the assumed bounds
of the uncertainty model, the model is said to
be invalidated by the experiment. Although these
techniques allow only inwvalidation of uncertainty
models, the term model validation is being used
extensively.

Several techniques have been reported in the lit-
erature that are either based on time domain
(Poolla et al., 1994; Rangan and Poolla, 1996)
or frequency domain (Smith, 1995; Smith et al.,
1997; Token and Chen, 1998) characterizations
of the model (in)validation problem. In the time
domain approaches, a distinction can be made
between a strictly discrete time setting (Poolla et
al., 1994) and the more practical framework of
continuous time sampled data systems (Rangan
and Poolla, 1996; Smith and Dullerud, 1996). In
general, these techniques exploit a formulation for
the model validation problem that allows an affine
optimization to determine the level of the smallest
model perturbation and the smallest noise signal
that could have produced the experimental data.

Unfortunately, most of these existing techniques
focus on an open-loop type of model validation.
In the open-loop type of model validation, an
uncertainty model is being validated on the ba-
sis of open-loop experiments. The open-loop type
of model validation techniques exploit the linear
appearance of an additive or multiplicative model
uncertainty description to solve an affine opti-
mization that addresses the model (in)validation
problem (Smith and Doyle, 1992).

1.2 Closed-loop model invalidation

Obviously, in the case where the actual plant
and/or the uncertainty model are unstable, an
open-loop experiment and an open-loop model
validation are not desirable. In most situations,
open-loop experiments can not be performed as
normal operating conditions require a feedback

system to comply with safety or performance
requirements.

Additionally, in most situations one is specifically
interested in validating a model under closed-
loop or controlled conditions on the basis of data
obtained with a (stabilizing) feedback controller.
The reason for this lies in the possible approxima-
tions being made during the formulation of the
uncertainty model:

e An approximate model with model uncer-
tainty has been developed that specifically
aims at modeling the closed-loop behavior of
the plant.

e A validation of the uncertainty model under
operating conditions (with a feedback con-
troller) is more realistic and desirable.

However, in case of closed-loop experiments, the
uncertainty model may appear in a non-affine way
in any of the closed-loop transfer functions needed
for model validation (Dullerud and Smith, 1999).
As a result, the resulting affine optimization used
in the open-loop model validation might not be
convex when applied to closed-loop systems.

The necessity and the problems associated to
closed-loop model validation have been recognized
in Dullerud and Smith (1999) and applied to a
closed-loop experimental situation in Chen and
Smith (1997) and Chen and Smith (1998). It has
been observed in these references that the con-
vexity of the model invalidation problem can be
preserved by using the knowledge of the controller
used in the closed-loop experiments. Furthermore,
it has been recognized that a closed-loop config-
uration has a positive effect on the model vali-
dation. This effect is caused by the closed-loop
configuration that weighs the effects of the model
uncertainties via a specific closed-loop transfer
function and addresses the fact that a validation of
the uncertainty model under operating conditions
(with a feedback controller) is more realistic and
desirable.

In the line of the requirements on closed-loop
model validation, this paper will generalizes the
results on the use of controller information to
facilitate closed-loop model validation techniques.
The results in this paper focus on the development
of model validation techniques that can be applied
to data obtained under closed-loop or feedback
controlled conditions. Furthermore, in order to
present a framework that is applicable to the
validation of stable and unstable models using
closed-loop experiments, a framework of fractional
model representations is being used (de Callafon
and Van den Hof, 1997; Van den Hof and de Calla-
fon, 1999). The model validation will be posed
as closed-loop validation criterion that involves
a closed-loop control objective. In this way, the



model is being (in)validated towards its intended
model application: robust control design.

2. THE MODEL VALIDATION PROBLEM
2.1 Problem definition

In order to provide a formal definition of the
model validation problem, it is necessary to pro-
vide more details on the uncertainty model, de-
noted by P, that consists of a nominal model P
and an additional model uncertainty or allowable
model perturbation A. A general description of
the uncertainty model P can be given by using an
LFT framework (Boyd and Barrat, 1991) that can
characterize the uncertainty model P via an upper
fractional transformation F,,(Q, A) as follows

P={P|P=F.,Q,A)} with
Fu(@Q,A) == Qo + Qu A(I — Q11 A) Q12

where the entries of () contain the information
on the nominal model P and how the uncertainty
A is characterized around the nominal model.
Typically, Q22 = P as for A = 0 the nominal
model should be obtained. For an (unweighted)
output multiplicative uncertainty description it
can be verified that Q11 = Q21 =0 and Q2 = I.

(1)

Given the LFT representation of the uncertainty
set P, the entries of @ are assumed to be LTI
discrete-time systems. Furthermore, A is assumed
to be a member of a class of perturbations with
A € RHyx and [|Alle < 1. Given these as-
sumption, the discrete time experimental data
{u(t),y(t)}, coming from the plant, consists of N
observations and is described by

y(t) = Fu(Q, A)u(t) + Hd(t) 2)

where d denotes an unknown but bounded noise
d € Iy with ||d||2 < 1 and H is a stable and stably
invertible noise filter.
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Fig. 1. Uncertainty and noise model

A block diagram of the uncertainty model and
the noise model that are subjected to model
(in)validation is depicted in Figure 1. The model
validation problem can be formalized as follows
(Smith and Doyle, 1992).

Problem 1. Given the @ of the uncertainty model
P in (1), the noise model H and observations

{u(t),y(t)} for t = 0,1,...,N — 1, does there
exists a discrete time signal d with ||d||> < 1 and
an uncertainty A with A € RHy and ||A]| < 1
such that (2) holds.

2.2 Model validation via optimization

The general approach taken in model validation is
an optimization where the value of the smallest
model perturbation A and the noise signal d(t) is
found that could have produced the experimental
data in (2). In case the smallest model perturba-
tion or noise signal exceeds the assumed bounds,
the model is invalidated by the experimental data.

Posing the condition A € RHo, and ||A]| < ais a
key step in solving the model validation problem
by optimizing the value of the smallest model
perturbation A. This condition has been solved
in Poolla et al. (1994) for the LTI case and can be
summarized as follows.

Lemma 2. Given the signals v(t) and z(¢) for
t =0,1,...,N — 1 with v = Az, as indicated
in Figure 1. Then there exists a A € RHy, with
|Al|oo < @ if and only if

Vv <a?277

where V and Z are block Toeplitz matrices de-
rived from v(t) and z(t).

With this result, the model validation can be
solved via a convex optimization. Crucial in this
convex optimization is the fact that the uncer-
tainty A appears linearly in (2). With the general
LFT form of the uncertainty model in (1), it can
be seen that this is the case for ;7 = 0 and
holds for example for an uncertainty model with
a multiplicative uncertainty description.

With an the uncertainty A appearing linearly in
(2), finding the smallest model perturbation A
and the noise signal d(t) is simply an additional
linear constraint added to the convex minimiza-
tion. With Q11 = 0 and z(t) = Qq2u(t), the
following convex optimization needs to be solved.

min, subjected to
VTV <a?27Z
d'd<1 (3)
z(t) = Qr2u(?)
y(t) — Qaou(t) = Qo1v(t) + Hd(t)
In case a > 1, the model is invalidated by the

experimental data {u(t),y(t)}

Although the optimization mentioned above ad-
dresses the model validation problem, the ques-
tion arises whether or not there are alternative
uncertainty descriptions that still allow the use of



a convex optimization. Moreover, it is preferable
to perform the model validation in closed-loop, as
mentioned in the introduction. In case a feedback
connection is created around the signals u(t) and
y(t), the resulting optimization involved with the
model validation may not be convex.

The rest of the paper is devoted to the choice
of an uncertainty model that allows for a model
validation in closed-loop. The uncertainty struc-
ture and the resulting uncertainty model @) will be
based on perturbation on coprime factorizations,
which generalizes the approach to the validation
of stable and unstable models.

3. MODEL STRUCTURE FOR
CLOSED-LOOP MODEL INVALIDATION

3.1 Uncertainty model based on coprime factor
perturbations

For the purpose of the closed-loop model vali-
dation using coprime factor uncertainty models,
the nominal model P is represented in a coprime
factor representation
pP=ND"

where (N, D) denotes a right coprime factoriza-
tion (rcf) of the model P. The accompanying un-
certainty on the model is assumed to be modeled
as a perturbations in a dual-Youla parametriza-
tion (de Callafon and Van den Hof, 1997). This
perturbation uses the knowledge of the feedback
controller to characterize the model uncertainty
and yields a uncertainty model P that can be
characterized as follows.

Proposition 3. Let a nominal model P with a ref
(N, D) and a controller C with a ref (N, D.) form
an internally stable feedback connection. Then an
uncertainty model P is constructed by

P(N7ﬁ7N67D67V3W) =
{P|P=(N+D,Ag)(D— N.,Ag) 'with (4)
AR € RHo, A :=VArW and ||Alls < 1}

and ‘7, W are stable and stably invertible weight-
ing functions.

As indicated in the proposition, the uncertainty
model P essentially depends on the factoriza-
tion (N, D) of the nominal model P, the fac-
torization (N¢, D.) of the known controller C
and the weighting functions V, W that take
into account the shape and scaling of the uncer-
tainty. It can be observed that the uncertainty
Ap acts in a non-trival way on the (coprime
factors of the) nominal model P. It can be seen
in Figure 2 that the weighted uncertainty Ag =

WAV 1 appears in a similar way as a Youla
parametrization. To distinguish between the fa-
miliar Youla parametrization, the perturbation in
Figure 2 is indicated by a dual-Youla parametriza-
tion (de Callafon and Van den Hof, 1997).
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Fig. 2. Representation of P given in (4) with
Agr = WAV —L,

With little effort, the nominal model and the
perturbation Apg in the form of a dual-Youla
parametrization can be rewritten in a standard
LFT form of (1) with a norm bounded uncertainty
A € RH,. On the basis of Figure 2, a charac-
terization of the coefficient matrix @ in (1) can
be given and an alternative representation of the
uncertainty model P in (4) can be obtained.

Corollary 4. The uncertainty model P given in
(4) can be written as

P = {P | P = fu(Q:A)a ||A||oo <1 and

WD IN VWD (5)
(D. + PNV~ P

Q:

As mentioned in Section 2.2, it is crucial that
@11 = 0 in order to exploit a convex optimization
for the open-loop model validation problem. It can
be seen that this model structure does not exhibit
this property and is not suitable for an open-loop
model validation. However, in the next section
it will be illustrated that this model structure is
beneficial in a closed-loop model validation.

Although the coefficient matrix @ in (5) looks
complicated, it can be written as as simple multi-
plication
0= W= 0] [Qu Q2] [V'0
0 T][Qan Q2 0 I

where the entries of the (unweighted) coefficient
matrix () are given by

Dtol[I0][CI][D.O (©)

O I||PI||IO 01|
The multiplication of the transfer functions in
(6) indicates the construction of the (unweighted)
coefficient matrix (). Furthermore, it can be ob-

served that @ is invertible, as all the matrices in
(6) are known to be invertible, whereas

i



are unimodular. From the multiplication in (6)
it can be observed that () will have a McMillan
degree equal to the sum of the McMillan degree
of the (nominal) model P and the controller C.

3.2 Favorable properties of coprime factor based
uncertainty model

The appearance of the (unstructured) model un-
certainty Ag in the uncertainty model P in (5)
is more complicated than a standard additive
or multiplicative uncertainty. However, the only
knowledge needed to construct the uncertainty
model P is a coprime factorization of the nominal
model P and the controller C'. With this informa-
tion, the construction of the model uncertainty
ARp is not more complicated than a standard un-
certainty description. Due to the specific appear-
ance of the model uncertainty in the uncertainty
model of (5), the following favorable properties
can be summarized.

e All models in the uncertainty model P are
stabilized by the know feedback controller C,
irrespective of the size or shape of Ag.

e The uncertainty Agr in (5) will appear in
an affine way in any closed-loop transfer
function.

The first property indicates the usefulness of the
uncertainty set P of (5). Basically, only those
models P are captured in the set P that are stabi-
lized by the controller C'. This is an appealing and
intuitive result as the plant, currently operating
in a feedback connection, is know to be stabilized
by the feedback controller C. Hence, only those
models can be validated that are known to be
stabilized by the controller C.

The second property will enable the application
of an affine optimization, similar to (3) to ad-
dress the closed-loop model validation problem.
Clearly, this generalizes the application of model
validation techniques to closed-loop systems. Fur-
thermore, the use of stable coprime factorizations
in the uncertainty model P of (5) generalizes the
approach to stable and unstable plants and con-
trollers.

For an explanation of these properties, consider
the transfer function matrix
P

I] (r+cp)y-t[cI1] (1)
which captures all possible closed-loop transfer
functions. With the general closed-loop transfer
function matrix 7'(P,C') given in (7) and the un-
certainty model given in (5), the following result
can be given.

T(P,C) := [

Lemma 5. Consider the uncertainty model P of
(5) and the controller C' used in the construction

of P. With the definition of the weighted closed-
loop transfer function matrix T'(P, C) given in (7),
the uncertainty model P satisfies

P={P|T(P,C)=Fu(M,A)
with A € RHy, ||Alleo < 1}
where the entries of M are given by
My, =0
My =W '(D+CN)™ [C 1]

B I ~1 (8)
- [ L]
My, = T(P,C)

The entries of M in (8) are all known quantities.
It can be verified that all these entries are stable if
and only if the controller C' internally stabilizes
the nominal model ]3, as mentioned in the con-
struction in the set P in Proposition 3. With V/,
W stable and stably invertible and A € RHoo, all
models P € P are stabilized by the know feedback
controller C, irrespective of the size or shape of
Ag.

It can also be observed that the uncertainty A ap-
pears affinely in all possible (weighted) closed-loop
transfer functions of T'(P, C). The affine represen-
tation of the dual-Youla based model uncertainty
A can be exploited to formulate a framework to
(in)validate uncertainty models on the basis of
closed-loop data.

4. APPLICATION TO CLOSED-LOOP
MODEL VALIDATION

With the LFT representation of the uncertainty
model P in (5) and the application of the feedback
controller C' to the models in P, a closed-loop
uncertainty model depicted in is obtained.
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Fig. 3. Closed-loop uncertainty model

In Figure 3 the signals ry and 7; indicate external
closed-loop reference signals, whereas u and y
denote the input and output of the plant. On the
basis of this closed-loop representation, a closed-
loop model validation problem can be formulated
where the affine appearance of the model un-
certainty A in (8) is used. The discrete time
experimental data {u(t),y(t)}, coming from the



closed-loop plant, consists of NV observations and
is described by

y(t) ra(t)
=Fu(M,A Hd(t 9
1] = rons [ v raw o
where d denotes an unknown but bounded noise
d € Iy with ||d||z < 1 and H is a stable and stably
invertible noise filter. The closed-loop model vali-
dation problem can now be formalized as follows.

Problem 6. Given the M of the uncertainty model
P in (8), the noise model H and observations
{ra2(t), r1(t),y(t),u(t)} for t = 0,1,...,N — 1,
does there exists a discrete time signal d with
lld|] < 1 and an uncertainty A with A € RHo,
and [|A[] < 1 such that (9) holds.

Along the lines of Section 2.2, the closed-loop
model validation problem can be solved via a
convex optimization, as M7; = 0. With the un-
certainty A appearing linearly in (8), finding the
smallest model perturbation A and the noise sig-
nal d(t) is simply an additional linear constraint
added to the convex minimization:

min, subjected to
V'V <a®Z"Z
d'd<1

2(t) = My [7"2(’5)]

r1 (t)

28] s ] =

In case a > 1, the model is closed-loop in-

validated by the close-loop experimental data

{ra(), r1.(8), y(), u(t)}-

5. CONCLUSIONS

In this paper a model validation approach is
presented that generalizes the (in)validation of
possibly unstable models on the basis of closed-
loop experiments with a stabilizing, but possibly
unstable, controller. The approach is presented in
a robust control framework with an uncertainty
model described with coprime factor perturba-
tions. It is shown that this approach yields an
affine expression of the uncertainty in all possible
transfer functions that can be measured via a
closed-loop experiments. This allows the model
validation problem to be solved via standard con-
vex optimization techniques.
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