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1 The model validation problem RHoo with ||Alle < o if and only if

1.1 Problem definition

In order to provide a formal definition of the model val-
idation problem, it is necessary to provide more details
on an uncertainty model, denoted by P, that consists
of a nominal model P and an additional model uncer-
tainty or allowable model perturbation A. A general
description of an uncertainty model P can be given via
an upper fractional transformation F,(Q, A):

P ={P|P=F.Q,A)} with
Fu(@,8) := Q22 + Q1 A(I — Q11A)1Q12

where the entries of Q contain the information on the
nominal model P and how the uncertainty A is charac-
terized around the nominal model. Typically, Q22 = P
as for A = 0 the nominal model should be obtained.
The entries of Q in (1) are assumed to be LTI discrete-
time systems. Furthermore, A is assumed to be a mem-
ber of a class of perturbations with A € RH and
llAlloo < 1. Given these assumptions, the discrete time
experimental data {u(t),y(¢)}, coming from the plant
and consisting of N observations, is described by

y(t) = Fu(Q, A)u(t) + Hd(?) ()

where d denotes an unknown but bounded noise d € ls
with ||d||2 < 1 and H is a stable and stably invertible
noise filter. The model validation problem [1] can be
stated as follows.

Problem: Given the @ of the uncertainty model P
in (1), the noise model H and observations {u(t),y(t)}
fort =0,1,...,N —1, does there exists a discrete time
signal d with ||d||2 < 1 and an uncertainty A with A €
RH o and ||A]| < 1 such that (2) holds.
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1.2 Model validation via optimization

The general approach taken in model validation is an
optimization either in time domain [2, 3] or frequency
domain [4, 5, 6], where the value of the smallest model
perturbation A and the noise signal d(t) is found that
could have produced the experimental data in (2). In
case the smallest model perturbation or noise signal
exceeds the assumed bounds, the model is invalidated
by the experimental data.

Posing the condition A € RH and ||A|] < a is a
key step in solving the model validation problem by
optimizing the value of the smallest model perturbation
A. This condition has been solved in [2] for the LTI case
and can be summarized as follows.

Lemma 1.1 Given the signals v(t) and z(t) for t =
0,1,...,N —1 with v = Az. Then there exists a A €
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VTv < a?27Z.

where V and Z are block Toeplitz matrices derived from
v(t) and z(t).

With this result, the model validation can be solved via
a convex optimization. Crucial in this convex optimiza-
tion is the fact that the uncertainty A appears linearly
in (2). With the general LFT form of the uncertainty
model in (1), it can be seen that this is the case for
@11 = 0 and holds for example for an uncertainty model
with a multiplicative uncertainty description.

With an the uncertainty A appearing linearly in (2),
finding the smallest model perturbation A and the noise
signal d(t) is simply an additional linear constraint
added to the convex minimization. With Q;; = 0 and
z(t) = Q12u(t), the following convex optimization needs
to be solved.

min,, subjected to
VIV <a?2Z7Z, dTd < 1 3
#(t) = Quau(t) ®)
y(t) — Q22u(t) = Q21v(t) + Hd(t)

In case o > 1, the model is invalidated by the experi-
mental data {u(t),y(¢)}

Although the optimization mentioned above addresses
the model validation problem, the question arises
whether or not there are alternative uncertainty de-
scriptions that still allow the use of a convex optimiza-
tion. Moreover, it is preferable to perform the model
validation in closed-loop, in case a model needs to be
validated for control purposes. In case a feedback con-
nection is created around the signals u(t) and y(¢), the
resulting optimization involved with the model valida-
tion may not be convex.

2 Uncertainty models based on coprime factor
perturbations

For the purpose of the closed-loop model validation
using coprime factor uncertainty models, the nominal
model P is represented in a coprime factor representa-
tion P = ND ™" where (N, D) denotes a right coprime
factorization (rcf) of the model P. The accompanying
uncertainty on the model is assumed to be modeled as a
perturbations in a dual-Youla parametrization [7]. This
perturbation uses the knowledge of the feedback con-
troller to characterize the model uncertainty and yields
a uncertainty model P that can be characterized as fol-
lows.
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Proposition 2.1 Let a nominal model P with a rcf

(N,D) and a controller C with a rcf (N, D,) form an
internally stable feedback connection. Then an uncer-
tainty model P is constructed by

P(N,D,N,, D, V,W) :=
{P | P=(N+ D.Ag)(D — N.Ag) ' with
AR € RHoo, A :=VARW and ||A]je < 1}

(4)

and V, W are stable and stably invertible weighting

functions.

As indicated in the proposition, the uncertainty model
P essentially depends on the factorization (1\7 ,D) of
the nominal model P, the factorization (N, D.) of the
known controller C and the weighting functions V, W
that take into account the shape and scaling of the un-
certainty.

3 Closed-loop Model validation using coprime .

factorizations

3.1 Favorable properties

Although the uncertainty model P in (?7) looks more
complicated than a standard additive or multiplicative
uncertainty, the only knowledge needed to construct
the uncertainty model P is a coprime factorization of
the nominal model P and the controller C. With this
information, the construction of the model uncertainty
Ap is not more complicated than a standard uncer-
tainty description and due to the specific structure of
the uncertainty model, the uncertainty Apg in (?7) will
appear in an affine way in any closed-loop transfer func-
tion. For an explanation of this property, consider the
transfer function matrix

T(P,C)::[II’](HCP)—I[C ISNG

which captures all possible closed-loop transfer func-
tions. With the general closed-loop transfer function
matrix T{P, C) given in (5) and the uncertainty model
given in (?7?), the following result can be given.
Lemma 3.1 Consider the uncertainty model P of (77)
and the controller C used in the construction of P.
With the definition of the closed-loop transfer function
matriz T(P,C) given in (5), the uncertainty model P
satisfies

P ={P|T(P,C) = Fu(M,A)

where the entries of M are given by
My =0 Mp=W (D+CN)-'[ CI ]
I A -1 . 6
M21=—[ _c ]DcV , My =T(P,C) ©

The entries of M in (6) are all known quantities. It
can be verified that all these entries are stable if and
only if the controller C internally stabilizes the nominal
model P. It can also be observed that the uncertainty
A appears affinely in all possible (weighted) closed-loop
transfer functions of T(P,C).
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3.2 Closed-loop model validation

On the basis of the closed-loop representation in
Lemma 3.1, a closed-loop model validation problem can
be formulated where the affine appearance of the model
uncertainty A in (6) is used. The discrete time exper-
imental data {u(t),y(t)}, coming from the closed-loop
plant, consisting of IV observations is described by

[ y(t) r2(t)
u(t) ri(t)

where r;, 72 denote reference signals and d denotes an
unknown but bounded noise d € I with ||d}|z < 1 and
H is a stable and stably invertible noise filter. The
closed-loop model validation problem can now be for-
malized as follows.

Problem: Given the M of the uncertainty model
P in (6), the. noise model H and observations
{r2(t),r1(t),y(t),u(t)} for t = 0,1,...,N — 1, does
there exists a discrete time signal d with [|d||2 < 1 and
an uncertainty A with A € RH and [|A]| < 1 such
that (7) holds.

Along the lines of Section 1.2, the closed-loop model
validation problem can be solved via a convex optimiza-
tion, as My; = 0. With the uncertainty A appearing
linearly in (6), finding the smallest model perturbation
A and the noise signal d(t) is simply an additional lin-
ear constraint added to the convex minimization:

] = Fu(M,A) [ ] +Hd(t) (7

min,, subjected to
VIV <2272, dTd < 1

_ ra(t)
2(t) = Mio ri(t)
t t
[ 48 ] - aan | 72 | = Mot + e
In case @ > 1, the model is closed-loop in-

validated by_the closed-loop experimental data
{r2(2),m1(2), y(2), u(?) }.
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