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Abstract. The identi�cation of dynamical systems on the basis of data, measured un-
der closed-loop experimental conditions, is a problem which is highly relevant in many
(industrial) applications. When using models as a basis for model-based robust control
design both nominal models and model uncertainty bounds are required. In this paper
it is shown how -in particular- model uncertainty bounds can be obtained from closed-
loop experimental data in the classical prediction error identi�cation framework. The
considered uncertainty structure is adjusted so as to allow direct evaluation of the
performance robustness of both the actual and a to-be-designed controller.
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1. INTRODUCTION

Many industrial processes operate under feedback con-
trol. Due to unstable behaviour of the plant, required
safety and/or e�ciency of operation, experimental data
can only be obtained under so-called closed-loop con-
ditions. Identi�cation methods for dealing with closed-
loop experimental data have been developed in the sev-
enties and eighties, see S�oderstr�om and Stoica (1989)
for an overview. These \classical" methods are typically
directed towards solving the consistency problem, con-
sidering the situation that plant and disturbance model
can be modeled exactly (system is in the model set).

Initiated by an emerging interest in the identi�cation
of models that are particularly suitable for model-based
(robust) control design, renewed attention has been given
lately to the problem of closed-loop identi�cation. There
is a number of arguments to prefer closed-loop experi-
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ments over open-loop ones, in case one is interested in
model-based control design. These arguments comprise
aspects of bias and variance, input shaping, and the fact
that a controller can linearize the (possibly nonlinear)
plant behaviour in a relevant working point, thus en-
abling accurate linear modelling.
Unlike the classical situation, attention is now also given
to properties of identi�ed approximate models, handling
the -more realistic - situation that plant and noise dy-
namics are not exactly present in the model set consid-
ered (Van den Hof, 1997).

For model-based control design, models are required that
accurately describe those plant dynamics that are most
essential for the subsequent control design. The ques-
tion how to determine those dynamcis, and how to ex-
tract them from experimental data is handled in the area
\identi�cation for control"of which accounts are given in
the survey papers Gevers (1993) and Van den Hof and
Schrama (1995). Whereas in these references main at-
tention is given to the construction of appropriate nom-
inal models, the area of \robust identi�cation" has been



directed more speci�cally towards the construction of
model uncertainty sets for use in robust control design,
see e.g. Ninness and Goodwin (1995).
In this paper particular attention will be given to the
role of closed-loop experiments in the identi�cation of
uncertainty models to be used in subsequent (robust)
control design. The experimental setup to be considered
is depicted in Figure 1.
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Fig. 1. Closed-loop con�guration.

In this con�guration r1 and r2 are external excitation
signals, uncorrelated to the �ltered white noise distur-
bance signal v = Hoe. The sensitivity function of the
closed-loop is denoted by S0 = (1 + CG0)

�1.

2. CLOSED-LOOP IDENTIFICATION

In the classical \direct" identi�cation method one sim-
ply applies a standard (prediction error) identi�cation
procedure without taking account of the presence of
a feedback controller. If the system S := (G0; H0) is
present in the model set M := f(G(q; �); H(q; �)); � 2
�g, then a consistent estimate is obtained under mild
conditions on the excitation of the closed-loop.

In recent years attention is given to generalizations of
other classical schemes, aiming at the consistent esti-
mation of G0 also in the case that H0 is not modelled
exactly. This concerns e.g. the two-stage method (be-
ing of the joint i/o type) and the method based on a
dual Youla/Kucera parametrization (being of the indi-
rect type). For details the reader is referred to e.g. Van
den Hof (1997). Analysis has shown that for these gen-
eralizations, asymptotic bias expressions result (Ljung,
1987) that are of the form:

�� = argmin
�2�

1

2�

�Z
��

jG0 �G(�)j2
jS0S(�)j

2�r1

jK�j2
d!:

where S(�) = (1 + CG(�))�1 and K� is a �xed noise
model used. This implies that the additive error on G0

is always weighted with S0, and thus emphasis will be
given to an accurate model �t in the frequency region
where S0 is large, being typically the region that deter-
mines the bandwidth of the control system.

A similar weighting of the identi�cation results with S0
is present in the asymptotic variance expressions that

hold for all methods (Gevers et al., 1997; Ljung and
Forssell, 1997):

var(Ĝ(ei!)) �
n

N

�v(e
i!)

�ur (e
i!)

where �ur = jS0j
2�r1 . In the frequency range where the

controller dominates the plant (low frequencies), poor
process knowledge is obtained. According to Bode's sen-
sitivity integral,

R �
0 log jS0(e

i!)j d! = c, (constant); as
a result the attenuation of signal power in the low fre-
quency range, will always be "compensated" for by an
ampli�cation of signal power in the higher frequency
range.

As the dual-Youla/Kucera parametrization will be used
in the construction of model uncertainty sets later on,
brief attention will be given to this particular approach
of closed-loop identi�cation. It is based on the fact that
the set of all linear plant models that are stabilized by
a given C can be parametrized by

G =
Nx +DcR

Dx �NcR
(1)

where (Nx; Dx) is a coprime factorization of just any
model stabilized by C = Nc=Dc, and R varies over the
class of stable transfer functions. Coprimeness of the
factorizations means that the (rational) factors are sta-
ble and do not have any cancelling unstable zeros. The
parametrization is schematically depicted in Figure 2.
Analysis of the corresponding con�guration shows that
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Fig. 2. Dual Youla/Kucera representation of closed-loop
system

z(t) and x(t) can simply be reconstructed from mea-
sured data using knowledge of the controller, and that
x(t) and e(t) are uncorrelated. As a result, R0 (and pos-
sibly K0) can be identi�ed by standard open-loop tech-
niques, on the basis of available reconstructed signals x
and z.

One of the particular advantages of this approach, is
that every estimate R̂ that is stable, will provide a plant
model Ĝ that - by construction- is stabilized by the con-
troller C. This is due to the particular Youla/Kucera
parametrization.



3. IDENTIFICATION FOR CONTROL

3.1 Introduction

In many situations models are identi�ed for the purpose
of using them as a basis for subsequent model-based
(robust) control design. In that case the evaluation of
models has to be undertaken in the scope of the control
design. In other words: the best identi�ed model (within
a speci�c class) is that model that leads to a controller
that controls the plant best. This application-dependent
assessment of models is due to the fact that in practice
identi�ed models can only be an approximation of exact
plant dynamics.
In using identi�ed models for control design, there are
two paths to follow:

� Control-relevant identi�cation of nominal models
� Identi�cation of model uncertainty sets for robust
control.

The �rst issue addresses the problem of identifying a
reduced-order model to accurately �t those plant dy-
namics that are most essential for the subsequent -nominal-
control design based on the plant model Ĝ (and possi-
bly Ĥ). Based on a control performance cost function
kJ(G0; CĜ

)k (where J is a performance channel), this
has led to the formulation of a performance-induced
modelling criterion:

Ĝ = argmin
G

kJ(G0; C)� J(G;C)k

When restricting attention to the bias components of
the modelling errors, this criterion can be shown to be
equivalent to the identi�cation used in some indirect
closed-loop identi�cation methods (Gevers, 1993; Van
den Hof and Schrama, 1995).

3.2 Identi�cation of model uncertainty sets for robust
control

A starting point for constructing a model uncertainty
set, would be to collect all models that are not inval-
idated by the data and the prior information on the
system, sometimes called the Feasible System Set (FSS)
or the set of unfalsi�ed models:

Punf := fG j y(t)�G(q)u(t) = v(t); v 2 Vg

where V is the hypothesized set of disturbance signals
on the output. Dependent on the particular character of
V the uncertainty set Punf will be of a deterministic or
a probabilistic nature.
The set Punf will generally not be in a format that is
manageable for a robust control design procedure. For

this purpose attention is restricted to -unstructured- un-
certainty sets of a prechosen nature, such as e.g. additive
or multiplicative norm-bounded uncertainties, situated
around a nominal model. A general characterization of
such a set is:

Pf (Ĝ; 
) = fG j G = f(Ĝ;�); j�(ei!)j � 
(!); 8!g

with 
 a positive real-valued function of ! and f a linear
fractional transformation (LFT):

f(Ĝ;�) = Ĝ+ P21�(1� P11�)
�1P12: (2)

Although such an uncertainty set generally is denoted as
\unstructured", the choice of f does provide the set with
a particular uncertainty structure. Note that an additive
uncertainty results through the choice P21 = P12 = 1,
P11 = 0.

For a particular choice of f and Ĝ, the \size" 
 of the
set has to be chosen as small as possible so as to con-
tain the real plant G0. This situation is depicted in an
abstract way in Figure 3, where the shaded area re
ects
the set Punf which is encapsulated in the uncertainty set
Pf . Note that the former set is principally implied by
the measurement data, whereas the latter set is partly
just chosen by the user. It is clear that there are many

Pf

G0 Ĝ

Fig. 3. Uncertainty set Pf (Ĝ; 
) (ellipsoid) and set of
unfalsi�ed models (shaded area).

options for choosing Pf such that all unfalsi�ed models
are contained. However in choosing this Pf it is appar-
ent that one should take account of the performance cost
function J , by avoiding the incorporation of (falsi�ed)
models (in the white area of Figure 3) that lead to poor
performance costs. Such incorporation would lead to a
control design with considerable conservatism.

The question now is, whether there are performance-
cost-relevant uncertainty structures. Given that f(Ĝ;�)
has the form of an LFT, and given the fact that J(G;C)
will be some closed-loop performance channel, it will
generally be possible to rewrite J in the form of an LFT:

J(G;C) =M22 +M21�(I �M11�)
�1M12 (3)

as re
ected in �gure 4.
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Fig. 4. Linear fractional transformation, re
ecting per-
formance channel J(G;C).

Considering the expression (3) for a �xed frequency !,
it follows from the basic properties of an LFT that the
circular area j�(ei!)j � 
(!) in the complex plane is
mapped to a circular area for J . However there is no
guarantee that when 
(!) becomes smaller, the radius of
the corresponding circle for J also becomes smaller. This
latter situation is only guaranteed if J(G;C) becomes
a�ne in �, i.e.

J(G;C) =M1 +M2�: (4)

In this case there is a direct linear relationship between
the \size" 
 of the uncertainty set and the (frequency-
dependent) worst-case performance cost jJ(G;C)j over
the set, in terms of

sup
G2Pf (Ĝ;
)

jJ(G;C)j = jM1(e
i!)j+ 
(!) � jM2(e

i!)j 8!:

In this way the \shape" of the uncertainty set is directly
tuned towards the performance criterion. Most combi-
nations of uncertainty sets and performance functions
will not deliver the above mentioned a�ne structure.

Example 1. (Additive uncertainty set). An additive un-
certainty is characterized by f(Ĝ;�) = Ĝ +�. Substi-
tuting this expression for G in the performance function

J(G;C) = V=(1+CG) delivers J(G;C) =
V

1 + CĜ+ C�
which apparently is not a�ne in �.

For a general class of closed-loop performance functions,
an a�ne structure can be obtained, as indicated in the
following proposition.

Proposition 1. (de Callafon and Van den Hof, 1997a). Let
J(G;C) be a frequency weighted closed-loop transfer
function:

J(G;C) = U2

�
G
1

�
[1 + CG]�1

�
C 1

�
U1

with U1, U2 square weighting functions, and consider an
uncertainty set

P(Ĝ;W ) = fG j G =
N̂ +Dc�R

D̂ �Nc�R

; jW�1�R(e
i!)j � 1g

with C = NcD
�1
c and Ĝ = N̂D̂�1, then for all G 2

P(Ĝ;W ), J(G;C) satis�es

J(G;C) =M1 +M2�R

with

M1 =U2

�
Ĝ
1

�
[1 + CĜ]�1

�
C 1

�
U1 = J(Ĝ; C)

M2 =�U2

�
�1
C

�
DcW (D̂ + CN̂)�1

�
C 1

�
U1

2

Note that the uncertainty set is written in the format of
a dual Youla/Kucera parametrization, where the auxil-
iary model is given by the nominal plant model. This
uncertainty structure is depicted in �gure 5. The per-
formance cost function J is a very general (combination
of) closed-loop transfer function(s), that can be tuned
by specifying the weighting functions U1 and U2.
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Fig. 5. Dual Youla/Kucera uncertainty representation.

For the particular choice of J as in Example 1 the re-
sulting expression becomes

J(G;C) =
V

1 + CĜ
+M2�R

with M2 =
�V NcW

D̂(1 + CĜ)
, being a �lter dependent on

known quantities only.

A data-based uncertainty modelling procedure, should
provide the smallest bound 
(!) (or equivalently jW (ei!)j)
that is required to guarantee that G0 is an element of
the set Pf (Ĝ;W ). This minimization of 
(!) can be
performed in a closed-loop experimental setup, by ap-
plying a model uncertainty estimation procedure to the
Youla/Kucera parameter. In terms of the mechanism
discussed in section 2 this refers to choosing the aux-
iliary model Gx = Ĝ, and identifying an upper bound
for the transfer function between x and z. This moti-
vates the use of closed-loop experimental data not only
for nominal model identi�cation, but also for control-
relevant uncertainty bounding. The indicated mecha-
nism also extends to more general performance cost func-
tions, as shown in de Callafon and Van den Hof (1997a).



4. UNCERTAINTY SET ESTIMATION

A dual Youla/Kucera uncertainty set, as discussed in
the previous section, can be constructed on the basis
of (closed-loop) measurement data, and prior assump-
tions on plant and noise. There is no restriction here
on the uncertainty bounding approach that is chosen
(hard-bounded or soft-bounded). Actually, any uncer-
tainty bounding procedure designed to handle open-loop
experiments can be used, as the required signals x and z
for bounding �R satisfy open-loop conditions (see sec-
tion 2).
In almost all uncertainty bounding procedures in the
literature use is made of linearly parametrized models
as e.g. FIR models. However, for an accurate modelling
of moderately damped systems it may require a large
number of parameters. This can be overcome by using
dynamical (orthogonal) basis functions fk(q), leading to
a model structure:

G(q; �) = c0 + c1f1(q) + � � � cnfn(q):

Generalized orthogonal basis functions can be constructed
to contain a priori chosen dyanamics. This allows more
accurate modelling with a limited number of parame-
ters. For details on this parametrization and its use in
identi�cation one is referred to Van den Hof et al. (1995)
and Ninness and Gustafsson (1997).

A combined worst-case/probabilistic approach for bound-
ing model uncertainty is presented in Hakvoort and Van
den Hof (1997). It is based on the following main line of
reasoning.

� It is assumed that measurement data y; u satis�es
the system equations:

y(t) = G0(q)u(t) + v(t)

with v a stationary stochastic process, indepen-
dent of u, and that G0 allows a series expansion
G0(z) =

P1

k=0 g0(k)fk(z) with the expansion coef-
�cients bounded by an a priori known bound
jg0(k)j � �g(k), k > 0.

� A linearly parametrized model G(q; �) is chosen,
and a �nite number of expansion coe�cients is iden-
ti�ed with a Least Squares (linear regression) algo-
rithm.

� Then for a �xed frequency ! the estimated model
Ĝ(ei!) can be shown to satisfy

Ĝ(ei!)�G0(e
i!) = �1(!) + �2(!) + �3(!)

where
� �1 re
ects the neglected tail of the expansion;
this term can be worst-case bounded;

� �2 re
ects a bias term on the estimated coe�-
cients due to the neglected tail; this term can
also be worst-case bounded;
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Fig. 6. Nyquist diagram with identi�ed uncertainty
bounds (rectangles, ellipsoids).

� �3 re
ects a variance contribution, which can
be bounded in a probabilistic way by using the
asymptotic theory according to Ljung (1987).

� The uncertainty bounds can be computed in any
user-chosen frequency grid, and lead to a Nyquist
curve with uncertainty regions in user-speci�ed fre-
quencies, as illustrated in �gure 6. In all cases the
three di�erent sources of uncertainty can be distin-
guished, which allows the user to determine which
part is dominant, and to adjust the experimental
setup so as to reduce the overall uncertainty bound.

� A similar procedure can be followed to quantify un-
certainty bounds on step responses, pulse responses
etcetera.

When applying this uncertainty bounding procedure to
a closed-loop experimental situation as described in sec-
tions 2 and 3.2, this results in an uncertainty bound

j�R(e
i!)j � 
(!) with probability � �

in a user-de�ned frequency grid 
, and for a user-speci�ed
choice of �. On this basis a �nite-dimensional weighting
functionW can be constructed to satisfy kW�Rk1 � 1,
being a format that can be handled in robustness issues
in robust control.

5. IDENTIFICATION AND ROBUST CONTROL
TOWARDS PERFORMANCE ENHANCEMENT

The mechanisms and results as discussed in the previ-
ous sections, can now be combined to construct an in-
tegrated procedure for performance enhancement of a
controlled plant. Given the situation of a plant G0 be-
ing controlled by a controller Ci, the task is to design a
new controller Ci+1 on the basis of experimental data,
such that the new controller achieves a better perfor-
mance. Using the notation and concepts of this paper,
this problem can be split in two parts:

(a) Estimate Pi and specify 
i such that G0 2 Pi and



kJ(G;Ci)k � 
i 8G 2 Pi (5)

(b) Design Ci+1 such that

kJ(G;Ci+1)k � 
i+1 < 
i 8G 2 Pi (6)

Part (a) is a problem of identifying an uncertainty set in
such a way that the performance cost function is mini-
mized over the set (
i is minimal). This can be obtained
by choosing a control-relevant uncertainty set, as dis-
cussed in section 3.2, in combination with an appropri-
ate uncertainty bounding procedure, as e.g. presented in
section 4.
Part (b) of the problem is a robust control design prob-
lem. For the choices of J as discussed in this paper, this
will generally require the solution of a �-synthesis prob-
lem.

A performance enhancement procedure along the lines
sketched above is presented in De Callafon and Van den
Hof (1997a), and a succesful application to a multivari-
able wafer stepper motion control system is reported in
De Callafon and Van den Hof (1997b).

6. CONCLUSIONS

In this paper basically two messages are being conveyed.
The �rst one is that closed-loop experimental conditions
should not necessarily be considered as a degenerate
or unfavourable situation for identifying dynamical sys-
tems. There are good methods available, both for iden-
tifying consistent models, as well as for handling the
situation of unmodelled dynamics (approximate mod-
elling). Although some dynamical aspects of the plant
(typically the low-frequent behaviour) may be harder to
identify in closed-loop, other aspects will typically be
ampli�ed in the data. The second message is that it is
possible to direct the identi�cation of models towards a
control performance cost function, induced by a particu-
larly chosen control objective. This implies that models
can be identi�ed that re
ect the control-relevant aspects
of the plant dynamics. It has been shown that this mech-
anism applies to identi�cation of both nominal models,
and model uncertainty bounds. This allows the formu-
lation of an integrated approach to control-relevant un-
certainty bounding and robust control design.
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