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ABSTRACT

In this paper, a new on-line damage identi�cation method is proposed
for monitoring the behavior of a dynamical system for structural dynamical
changes. The method uses (approximate) knowledge of the dynamical system
to be monitored in the form of a so-called linear dynamical reference model.
The reference model is then used for two purposes. Firstly, the model is used
to formulate a linear combination of model based orthonormal functions. This
linear combination can be estimated and updated via a simple least squares
optimization that can be implemented recursively for an on-line implementa-
tion. Secondly, the model with its model based orthonormal functions are used
to detect plant parameter variations by monitoring the estimated parameters.

INTRODUCTION

In many of the existing fault detection or damage identi�cation algorithms,
in general both a parameter estimation technique and a reference model are
used to detect plant parameter variations and to formulate an algorithm for
plant damage detection [1, 12]. As can be seen from the methods presented in
e.g. [2] or [7], a separation is made between the parameter estimation technique
and the reference model or reference parameters.

This separation is indicated in Figure 1, where a schematic picture of the
possible con�guration of a monitoring or detection algorithm has been given.
From Figure 1 it can be seen that a parameter estimation technique is used to
analyse on-line measured data of input/excitation signal u and output signal
y coming from the (unknown) dynamical system G0 to be monitored. Subse-
quently, a reference model �G = G(��) is used to monitor the system behavior
of G0. This can be done by monitoring parameter residuals �" (di�erences be-
tween reference model parameters �� and estimated parameters �̂) and/or signal
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residuals " generated by the reference model �G.
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Figure 1: Parameter estimation (identi�cation) and reference model �G in a
monitoring or detection algorithm

The parameter estimation technique may require an optimization to come
up with a parameter estimate �̂. Depending on the parametrization used dur-
ing the optimization and the nature of the parameters present in the reference
model �G, this optimization might require a number crunching non-linear op-
timization that is hard to implement in an on-line algorithm. Although the
parameter estimation can be used to update the reference model �G and detect
plant variations, the knowledge of the dynamics in the reference model �G is
not used to facilitate the parameter estimation.

To accommodate the identi�cation and the damage detection, the damage
identi�cation method proposed in this paper uses a reference model �G that
does facilitate and simplify the parameter estimation. To accomplish that ob-
jective, the reference model is formulated as a linear combination of so-called
model based orthonormal functions [4]. It can be shown that the linear combi-
nation of the model based orthonormal functions can be estimated via a simple
least squares optimization that has a unique and explicit computable minimum
[9]. The estimation of the linear combination of the model based orthonormal
functions estimation can be computed recursively for on-line implementations.

MODEL BASED ORTHONORMAL FUNCTIONS

Using Model Based Knowledge

Consider a referencemodel �G as depicted in Figure 1. For analysis purposes,
we assume that such a reference model is a linear time invariant (LTI) stable
dynamical system that is given by the following (discrete time) minimal state



space realization
qx(t) = �Ax(t) + �Bu(t)
�y(t) = �Cx(t) + �Du(t)

(1)

where q indicates the time shift operator with qx(t) = x(t + �T ) and �T
indicates the sampling time.

As mentioned before, the reference model in (1) represents the (approxi-
mate) knowledge of the dynamical behavior of the unknown system G0 that
needs to be monitored. This knowledge can also be represented in an in-
put/output form using the z-transform of the di�erence equation �G(q)

�y(z) = �G(z)u(z)

where �G(z) is given by

�G(z) = �D + �C(zI � �A)�1 �B

= �D +

1X
k=1

�Gkz
�k; with �Gk = �C �Ak�1 �B: (2)

The so-called Markov parameters �Gk in the strictly proper part of �G(z) in (2)
form a linearly weighted combination of the orthonormal basis function z�k.
As a result, the (approximate) knowledge of the dynamical behavior of the
unknown system G0 that needs to be monitored is represented solely in the
parameters �Gk in (2). The orthonormal basis function z�k only represent a
time shift of k data samples.

To anticipate on the results mentioned in the next section, it can be men-
tioned here that the linear appearance of the model parameters �Gk in (2) will
be exploited for identi�cation purposes. However, an alternative and more sen-
sible linear parametrization of the reference model �G(z) can be obtained by
extending the orthonormal basis z�k to include knowledge of the dynamical
behavior of the model �G(z). Such an extension will lead to a more generalized
Markov expansion

�G(z) = �D +
1X
k=1

LkVk(z) (3)

where Vk(z) for k = f1; 2; . . . ;1g denotes a set of orthonormal basis function
that include the dynamics of the (state space) model given in (1).

Construction of Orthonormal Basis Functions

The main results on the construction of an alternative set of orthonormal
basis functions Vk(z) for the expansion in (3) are summarized in this section.
More details can be found in [4], [6] or [9]

In order to incorporate knowledge of dynamics in the orthonormal basis
functions Vk(z) in (3), the state space realization of the model given in (1) is
used to construct an inner function Gb(z) = D + C(zI � A)�1B that satis�es
Gb(z)�Gb(z) = I. The state space realization of Gb(z) can be constructed in



such a way that �
A B
C D

�T �
A B
C D

�
= I (4)

holds [8]. The state space realization of Gb(z) can be computed from the model
given in (1) by the construction of matrices C, D and a state-space similarity
transformation T such that (4) can be satis�ed.

With (4) it is straightforward to show that for a state space dimension n,
the n functions �1(z); . . . ; �n(z) of V1(z) given by

V1(z) :=

2
64
�1(z)
...

�n(z)

3
75 = (zI �A)�1B

are mutually orthonormal in the standard H2 sense. Basically, the orthonormal
functions are generated as state trajectories of balanced realization of an inner
function. Subsequently, the consecutive multiplication of V1(z) with the inner
function Gb(z)

Vk(z) := V1(z)G
k
b (z) (5)

generates a orthonormal set of basis functions Vk(z). It can be shown that
the set Vk(z) for = 1; 2; . . . ;1 constitutes an orthonormal basis in H2 for the
strictly proper part of �G(z) in (2) [4]. This set of orthonormal basis functions
is a generalization of the classical Laguerre [10] and Kautz [11] functions.

Alternative Representation of Reference Model

Both the model structure given in (2) and (3) exhibit a linearly weighted
combination of a set of orthonormal basis functions that will be favorable for
identi�cation purposes. Obviously, only a �nite number m of expansion coef-
�cients �Gk in (2) or Lk in (3) can be used to represent the system G0 via the
reference model �G. Therefore, the reference model used in the (damage) de-
tection algorithm discussed in this paper is represented by the following series
expansion

�G = G(z; ��) = �D +
mX
k=1

LkVk(z);with ��T := [ �D L1 L2 � � � Lm] (6)

where Vk(z) are the orthonormal basis functions mentioned in (5) and �� are (a
�nite number of) generalized Markov parameters that are used to model the
dynamics of the system G0 to be monitored.

As mentioned before, the orthonormal basis functions Vk(z) = z�k in (2)
only represent a time shift q�k. Especially in the case of a moderately damped
system G0, the reference model �G requires a high value for m to accomplish an
accurate description of the dynamics of the system G0 by the reference model
�G [5].

However, by incorporating the (approximate) knowledge of the dynamics in
the set of orthonormal basis function, a more accurate dynamical representation



is obtained for the system G0 by the reference model �G for a �xed value of m
in (6) [4]. In fact, it can be shown that if the set of orthonormal basis functions
has precisely captured the dynamics of G0, then m = 1 in (6) is su�cient to
accomplish �G = G0.

Obviously, the orthonormal basis function only represent approximate knowl-
edge about the dynamics of the systemG0 to be monitored and thereforem > 1
is needed to represent the dynamics of the system G0 in the reference model
�G. In order to �nd the parameter �� of the reference model, a least squares
estimation technique can be used. More details on the identi�cation can be
found in the next section.

DAMAGE IDENTIFICATION

Least-Squares Estimation

In order to formulate a damage identi�cation problem, the parameter esti-
mation routine depicted in Figure 1 will be discussed in this section. The main
idea is that the identi�cation method should deliver parameters estimates �̂
on the basis of (noisy) input/output data fu; yg that can be used for damage
detection by comparing �̂ with the parameters �� of the reference model. Con-
sidering the structure and the bene�ts of the reference model �G mentioned in
(6), the model G for parameter estimation can be parametrized in a similar
way. Hence

G(z; �) = �0 +
mX
k=1

�kVk(z); with �
T := [�0 �1 . . . �m] (7)

where � denotes the parameter to be estimated/optimized and Vk(z) are the
orthonormal basis functions mentioned in (5).

For the estimation of a parameter �̂, the prediction error framework of
[5] can be adopted. Denoting the prediction error by "(t; �), then the model
structure G(z; �) in (7) yields the following prediction error

"(t; �) := y(t)� [�0 +
mX
k=1

�kVk(q)]u(t) (8)

where Vk(q) denote the inverse z-transform of the orthonormal basis functions
Vk(z). It should be noted that due to the linear parametrization of the model
G(q; �), (8) can be rewritten in a linear regression from

"(t; �) = y(t)� �T'(t); with 'T (t) = uT (t)[I V T
1 (q) V T

2 (q) � � � V T
m (q)]: (9)

Under the assumption that N time samples are available, a parameter es-
timate �̂N can be determined by the following least-squares optimization

�̂N := min
�2�

1

N

NX
t=1

"T (t; �)"(t; �) (10)



where "(t; �) is the prediction error given in (8). Due to the linear parametriza-
tion in (9) the least-squares criterion in (10) can be solved analytically, yielding

�̂N =

"
1

N

NX
t=1

'(t)'T (t)

#�1
1

N

NX
t=1

'(t)y(t) (11)

for the parameter estimate �̂N , provided that

1

N

NX
t=1

'(t)'T (t)

is invertible. This condition is satis�ed on the assumption of persistent excita-
tion of the (�ltered) input signal '(t) [5].

It can be noted here that the analytical solution given in (11) can also be
implemented recursively. A recursive formula for the parameter estimates can
be found in [5] and is given by

�̂t = �̂t�1 +R�1(t)'(t)[y(t)� 'T (t)�̂t�1]
R(t) = �(t)R(t� 1) + '(t)'T (t)

(12)

where �(t) indicates an (exponential) forgetting factor on the prediction error
"(t; �) [5]. A recursive formula with an e�cient matrix inversion can also be
formulated to avoid inverting R(t) at each time step.

Following [5], under weak conditions the parameter estimate �̂N converges
for limN!1 with probability 1 to the asymptotic estimate

�̂ := �Ef'(t)'T (t)g�1 �Ef'(t)y(t)g (13)

where �Ef�g denotes
�Efx(t)g := lim

N!1

NX
t=1

Efx(t)g

and Ef�g is the usual expectation operator [5]. The weak conditions include
persistence of excitation of the input u. Furthermore, the assumption on the
input u and the noise v (with noise shaping �lter H0 and unit variance white
noise input e, depicted in Figure 1) being uncorrelated, is included in these
conditions.

The asymptotic estimate in (13) plays an important role in the character-
ization of the parameter �� of the reference model �G. Obviously, in case the
(�xed) parameter �� of the reference model �G is obtained by an identi�cation
experiment on the basis of a large number of data points N , the parameter ��
of the reference model �G in (6) will equals the asymptotic estimate �̂ given in
(13). For analysis purpose, it is assumed that such a parameter estimate �� = �̂
for the reference model �G is available.

Moreover, it can be shown that under fairly weak conditions

p
N(�̂N � ��)!N (0; Q) as N !1



whereN (0; Q) denotes a Gaussian distribution with zero mean and a covariance
matrix Q that is given by

Q = �Ef'(t)'T (t)g�1 �Ef�(t)�T (t)g �Ef'(t)'T (t)g�1 (14)

where �(t) denotes

�(t) =

1X
k=0

Hk '(t+ k)

which represents the convolution of '(t) with the Markov parameter Hk of the
noise shaping �lter H0 depicted in Figure 1 see e.g. [9].

Knowledge with respect to the noise shaping �lter H0 can be incorporate to
get a more accurate estimate of the covariance matrixQ. In case H0 is assumed
to be a (constant) shaping �lter, �(t) =

p
�'(t) where � is the variance of the

noise v.
Hence, the estimate �̂N converges to the parameter �̂ = ��, Furthermore,

the convergence of �̂N is independent of the noise characteristics present on the
output y(t). Only the (size of) the covariance matrix given in (14) depends
on the noise characterized by the noise shaping �lter H0. These consistency
results are due to the Output Error structure of the model in (8) [5].

As can be seen from (7) and (8), the knowledge of the dynamics in the
reference model �G is used to facilitate the parametrization of the model G and
the parameter estimation, yielding an analytical solution for �̂N by exploiting
the linear regression structure. The expression for the parameter estimate �̂N
and its probability distribution with (the estimate of) the covariance matrix Q

Q̂N =

"
1

N

NX
t=1

'(t)'T (t)

#�1 "
1

N

NX
t=1

�(t)�T (t)

#"
1

N

NX
t=1

'(t)'T(t)

#�1
(15)

play an important role in the detection of parameter changes, discussed in the
following section.

Statistical Test of Parameter Changes

The identi�cation method discussed in the previous section delivers (recur-
sive) parameters estimates �̂N on the basis of (noisy) input/output data fu; yg
that can be used for damage detection. This can be done by comparing �̂N
and ��, as they both constitute a linear expansion based on the orthonormal
function Vk(z) generated by the reference model �G.

As the parameter residual

�";N =
p
N (�̂N � ��)

satis�es a zero mean Gaussian distribution with a covariance matrix Q, a sta-
tistical T-test can be used to analyse when a parameter fault or change has
occurred. The T-test determines, for a given fault probability �, the acceptance
or rejection of the hypothesis that �" = 0 for M independent observations of
�", see e.g. [3].



This statistical test can be implemented by testing the following inequality

�T (�=2; �) < 1p
M
Q̂�1N �";N < T (�=2; �)

for each new value of the parameter estimate �̂N , where � =M�1 is the degree
of freedom, the estimated parameter �̂N given in (10) and Q̂N the estimated
covariance function given in (15).

As mentioned before, the estimation can be performed recursively or on the
basis of a batch of N time samples. Similar for the recursive formulae given in
(12) for the parameter estimate, a recursive formula for the estimated covari-
ance function can be formulated to implement an on-line recursive T-test for
detection of parameter changes. The recursive formulae and the properties for
the least-squares estimation for the on-line damage identi�cation are exploited
by the linear model structure based on the alternative orthonormal function
expansion.

CONCLUSIONS

A new on-line damage identi�cation method is proposed for monitoring the
behavior of a dynamical system for structural dynamical changes. The method
discussed in this paper uses (approximate) knowledge of the dynamical system
to be monitored in the form of a so-called linear dynamical reference model.

The reference model is formulated by parametrizing a linear combination
of so-called model based orthonormal functions. This linear combination of or-
thonormal functions can be estimated and updated via a simple least squares
optimization that can be implemented recursively for an on-line implementa-
tion. The parametrization and estimation is robust in the presence of colored
noise on the data and yields unbiased parameter estimates that can be used
for detecting plant parameter variations.

Finally, the parameters of the reference model are compared with the esti-
mated parameters in the linear combination orthonormal functions for damage
detection. A standard statistical T-test is used to detect changes in parameter
estimates.
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