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. . . come follow me
you won’t expect the illusion you’ll see

it’s my imagination
hand me your eyes

I will put them in front of mine
you’ll see a little better. . .

Linda Perry, ‘drifting’

Voor jou, Marijke
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Voorwoord

Eindelijk ligt het er dan. Het werk van een aantal jaren dat je, gek genoeg, afsluit
met het eerste hoofdstukje in het proefschrift. En toch is het één van de belangrijkste
en leukste hoofdstukken, omdat ik weet dat iedereen graag even het voorwoord van
een proefschrift leest. Het onderscheidt zich namelijk van de rest van het proefschrift.
Niet alleen omdat ik het in het Nederlands geschreven heb, maar ook omdat het
net een stukje persoonlijker is dan de secties, definities, proposities en plaatjes in de
opeenvolgende hoofdstukken. De reden hiervoor ligt in het feit dat ik hier graag wat
mensen wil bedanken die direct of indirect aan mijn promotie en de afronding van dit
proefschrift hebben bijgedragen.

Allereerst wil mijn promotor Okko Bosgra bedanken. Hij heeft ervoor gezorgd dat
ik me in Delft ontwikkeld heb tot een promovendus waar hij hopelijk een beetje trots
op kan zijn. Per slot van rekening zijn er toch maar weinig AIO’s die hun professor
op bezoek krijgen in het buitenland om even te laten te weten dat het proefschrift nu
toch echt wel eens af moet. Okko, heel erg bedankt.

Verder gaat ook dank uit naar het Netwerk Systeem en Regeltheorie, tegenwoordig
bekend onder de naam Dutch Institute of Systems and Control (DISC). Het Netwerk
heeft voor het grootste gedeelte mijn werk en de conferentiebezoeken gesponsord en
daarvoor ben ik hen zeer dankbaar.

Veel dank gaat ook uit naar Paul Van den Hof. Hij was niet alleen begeleider maar
ook een hele goede collega om mee samen te werken. De combinatie van motivatie,
creativiteit, scherpzinnigheid, een volgeschreven bord in zijn kamer en een gezonde
dosis humor maakte het werken met hem erg plezierig.

Humor is voor mij trouwens altijd een belangrijke factor geweest in de vakgroep
Meet- en Regeltechniek. Een bonte samenstelling van mensen in de groep zoals Cor
Kremers, Piet Ruinard, Leo Beckers en Guus Bout hebben mijn tijd in Delft zeker
veraangenaamd en versoepeld. De combinatie van humor en bittere ernst die bij-
voorbeeld Sjoerd Dijkstra, Ton van der Weiden en Piet Teerhuis kunnen inbrengen
is iets wat ik zeker zal missen. Ook Els Arkesteijn wil ik bedanken voor haar steun
en begrip. Altijd bereid om orde te scheppen in mijn financiële chaos na een confe-
rentiebezoek. Uiteraard kan ik ook Ben Wenneker, Peter Valk, Rolf van Overbeek en
Jaap van Dieten niet vergeten voor hun mateloze geduld in geval van (mijn) computer
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problemen.
Naast de ‘regelgroep’ in Delft, wil ik ook de ‘regelgroep’, die destijds in het Philips

Natuurkundig Laboratorium werkte, bedanken. Deze groep, waarin onder andere
Budi Sastra, Maarten Steinbuch en Frank Sperling aktief waren, gaf mij veel inspiratie.
De regelmatige ‘TUD/NATlab’ bijeenkomsten waren altijd zeer waardevol, en ik hoop
niet alleen voor mij.

Het AIO bestaan in Delft is ook veraangenaamd door de studenten, collega’s,
AIO’s en kamergenoten die mij bleven motiveren. Ik wil Michel Verheijen en Erwin
Walgers bedanken voor hun samenwerking en input. Ik dank Carsten Scherer en Peter
Heuberger voor hun sterke inhoudelijke discussies. Ook de inhoudelijke discussies met
mensen buiten Nederland, hetzij via email of tijdens een conferentie, zoals Bob Bit-
mead, Ari Partanen, Franky de Bruyne, Yossi Chait, Michel Gevers en Dan Rivera,
waren een inspiratiebron. Daarnaast weet ik dat de wekelijkse AIO voordrachten mij
niet populair maakten: ‘Zal hij mij vragen of niet?’. Maar voor hun bereidwilligheid,
hun stipte aanwezigheid en hun gezonde dosis humor wil ik graag David, Dick, Edwin,
Gregor, Hans, Marco en Sjirk bedanken. In het bijzonder wil ik Dick de Roover be-
danken voor zijn goede gezelschap als kamergenoot en het delen van de experimentele
opstelling met mij.

Last, but not least, gaat er veel waardering uit naar mijn familie en vrienden die
mij vaak door dik en dun gesteund hebben. Mijn ouders hebben wellicht geen idee
wat ik al die jaren toch in Delft heb uitgespookt, maar ik weet zeker dat ze trots op
mij zijn. Verder is mijn broer Paul, ik denk zonder dat hij zich dit realiseerde, ook
een heel belangrijk voorbeeld voor mij geweest. Ik mag ook zeker mijn ‘Schipluidense
hospes’ niet vergeten, want volgens hem ‘staat hij toch aan de basis van al dit’.

Tenslotte is er een familie die mij altijd met open armen en veel warmte hebben
ontvangen en begeleid. Marijke, Ayla en Danyal, ik denk niet dat ik ooit de woorden
zal kunnen vinden om dat geluk te kunnen omschrijven. Marijke, het opdragen van
dit proefschrift aan jou, mijn liefste vriendin, mijn grootste kameraadje en mijn beste
steun en toeverlaat, is in verhouding slechts een minuscuul teken van mijn waardering
voor jou.

Raymond de Callafon
La Jolla, September 1998
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Summary

Feedback Oriented Identification for
Enhanced and Robust Control

a fractional approach applied to a wafer stage

R.A. de Callafon, October 1998

Feedback control and system identification both involve the control and prediction
or modelling of the dynamical aspects of a system, and yet, they are merged quite
sporadically. The use of experimental data to model the dynamics of a system is a
powerful tool for providing models that can be used to develop a controller for that
system. However, more refined and enhanced robust controllers can be developed
when the system identification and the design of the feedback control are done simul-
taneously. This thesis contributes to the development of such an integrated approach
of both feedback control and system identification, with the intent to set up a sys-
tematic procedure to design an enhanced and robustly performing feedback control
for a dynamical system.

The emphasize of this thesis lies in the field of system identification and provides
results and tools for a so-called feedback oriented identification of systems. New re-
sults to forward the integration of system identification with robust control design
can be found in this thesis. The integrated approach is illustrated and applied suc-
cessfully to an industrial high accuracy multivariable mechanical positioning system
known as a wafer stage. Such a wafer stage is used in wafer steppers for manufacturing
integrated circuits.

In order to monitor and ensure the closed-loop performance of the feedback control
system, a model-based procedure is proposed. The model-based procedure involves
the estimation of a set of models, built up from a nominal model equipped with a
characterization of the model uncertainty. The identified set of models is then used
in a robust control design method to obtain an enhanced and robust feedback control
system. In order to ensure closed-loop performance enhancement while performing
the subsequent steps of model set estimation and robust control design, closed-loop
validation tests for both the feedback oriented modelling and the robust control design
are formulated. The closed-loop validation tests guarantee that an upper bound on
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the closed-loop performance can be improved monotonically.
Using system identification to find models for control design typically involves

the identification of a system that is operating under feedback controlled conditions.
Furthermore, approximate models or models of low complexity are needed in order
to set up a manageable low order control design problem. For that purpose, this
thesis contains a critical evaluation of so-called closed-loop approximate identification
techniques that are used to address the problem of finding approximate models of
a (possibly unstable) system on the basis of closed-loop data. A fractional model
approach, where the possibly unstable system is represented and identified via stable
coprime factorizations is used and is shown to be beneficial to address the closed-loop
approximate identification problem.

With the fractional model approach, the nominal model is identified via the esti-
mation of stable coprime factorizations. Frequency domain based identification tech-
niques are used to estimate such a stable coprime factorization of the system. The
model uncertainty is characterized by considering a perturbation in a so-called dual-
Youla parametrization. The model uncertainty is estimated by existing techniques for
probabilistic uncertainty bounding identification. It is shown that, due the fractional
model approach and the chosen structure of the model set, the approximate and feed-
back relevant identification of the set of models can and has to be done entirely on
the basis of closed-loop experiments. Furthermore, the proposed structure of the set
of models is shown to be particularly useful to evaluate and monitor the closed-loop
performance of the feedback controlled system.

The proposed model-based procedure provides a method to integrate system iden-
tification and robust control design. It provides a systematic procedure to design an
enhanced and robust feedback controller for a possibly unstable, multivariable dy-
namical system. Each subsequent step of feedback oriented identification and robust
control design within the procedure, can be used to guarantee progressive improve-
ment of the closed-loop performance of the dynamical system.
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Note to the Reader

In an attempt to guide the reader through the different chapters and sections of this
thesis, the contents has been split up in six parts.

• The first part is the prologue, where the problem statement is given and the
background to the problem field is sketched.

• The second part discusses the closed-loop identification problem. In this
part, the problems associated to the identification of dynamic systems operating
in a feedback connection is outlined and the fractional approach, as used in this
thesis, is discussed in more detail.

• The third part constitutes the (mathematical) procedure used to address the
problem statement of this thesis. This part combines existing techniques and the
newly developed techniques of this thesis to complete a procedure that enables
a feedback oriented identification for finding models to design an enhanced and
robust performing feedback control.

• The fourth part of this thesis discusses the application of the procedure in-
troduced in this thesis on a multivariable mechanical servo mechanism called a
wafer stage.

• The fifth part is the epilogue and concludes the work that has been presented
in this thesis.

• Finally, the addenda are combined in the last part. In this sixth part, the ap-
pendices, list of symbols, list of figures, bibliography, an index, a dutch summary
and a curriculum vitae can be found.

To further improve the layout of this thesis, the sections are numbered within
each chapter. Cross referencing between different items such as formulas, remarks,
definitions, lemmas, theorems or figures is done via numerical labels that include
either a chapter or a section number.
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• The numerical labels for remarks, definitions, lemmas and theorems are num-
bered consecutively within each chapter and include the section number. As
an example, Definition 4.2-5 refers to a definition given in Section 4.2, while
Lemma 4.2-6 refers to the lemma in Section 4.2, following the definition given
in Definition 4.2-5.

• The numerical labels for formulas are numbered separately within each chapter,
but do not contain a section number. As an example, (4.3) refers to the third
numbered formula given in chapter 4.

• The numerical labels for figures are also numbered separately within each chap-
ter, and also do not contain a section number. As an example, Figure 4.3 refers
to the third figure depicted in chapter 4.

• References to the bibliography are done by referring to author(s) and year of
publication and are placed between brackets. If there are more references of the
same author(s) in the same year, a letter will be added to the year to distinguish
between the different publications. As an example, Bitmead et al. (1990a) refers
to the ath publication written by Bitmead and co-authors in 1990 that can be
found in the bibliography.
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Prologue
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3

1
Background and Problem Formulation

1.1 Introduction

Automatic control is a widely accepted and frequently used technique in order to
enforce a dynamical system to behave in a satisfactory manner. The broad concept
of a dynamical system can thereby refer to many biological or engineering processes
in which the behaviour of a process as a function of time has to be conducted. The
application of automatic control can be found in many complex industrial processes
or sophisticated mechanical systems to attain a properly operating dynamical system.

Next to automatic control, system identification is used repeatedly to elucidate
the dynamical aspects of a system. This procedure enables one to predict the dynam-
ical behaviour of an unknown system on the basis of foregoing observations of the
system. In this way, knowledge of the dynamical aspects of an industrial process or
a mechanical system is acquired on the basis of experiments.

Although both techniques are involved with respectively the control and prediction
of the dynamical aspects of a system, still they have been merged sporadically. Only
recently the theory and applications within the fields of automatic control and system
identification are being treated conjointly, in order to try to accommodate the research
and engineering applications in both fields. As a result, more refined and enhanced
automatic controllers can be developed to control a dynamical system.

This thesis focuses on both automatic control and system identification, with the
aim to set up a systematic way to design a control for a given system on the basis of
observations of the system. This approach is illustrated for an industrial wafer stepper
system, a high accuracy mechanical positioning system used in chip manufacturing
processes. The first chapter of this thesis is used to give a brief overview on the
developments in the research area of automatic control and system identification.
The usance of this overview is to illuminate their corresponding interrelation, thereby
illustrating the contribution and problem formulation of this thesis.
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1.2 Model-Based Feedback Control

1.2.1 The need for control

By means of automatic control, operational conditions of a system can be modified in
order to satisfy specific performance specifications that may include enhanced accu-
racy and additional safety requirements. Moreover, many systems such as chemical
processes, mechanical servo systems or electronic devices would fail to work properly
without additional control. Therefore, control has played and is still playing an im-
portant role in the design of industrial and engineering processes that should meet
improved performance requirements.

An essential element in control has been the usage of feedback, (Horowitz 1959).
In feedback-based automatic control, a system is equipped with a set of sensors and
actuators. The sensors are used to measure specific signals of the system, whereas
the feedback control processes these signals and drives the actuators to affect the
behaviour of the system. In this way, the sensed signals of the system are processed
and fed back, leading to the so-called feedback configuration depicted in Figure 1.1.
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Fig. 1.1: Schematic diagram of a feedback controlled system.

The application of feedback has numerous advantages and technical implications
that can be exploited in controlling a system. One of the most important features
is the ability to suppress unknown disturbances acting on the system. Alternatively,
tracking of setpoints signals by means of an automatic controller can be labelled too
as one of the main motivations to use feedback. One is referred for example to the
books by Desoer and Vidyasagar (1975), Maciejowski (1989), Franklin et al. (1991),
Kwakernaak and Sivan (1991) or Doyle et al. (1992) for an overview on the most
important features of (linear) feedback controlled systems. It should be mentioned
that the use of feedback is merely a special case of an automatic controlled system
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as indicated in Willems (1991) or Willems (1992). However, for many engineering
processes it is a natural starting point to control a system that is equipped with
a distinguishable set of sensors and actuators, see also Boyd and Barrat (1991) or
Willems (1995).

1.2.2 Classical approaches

Developments in feedback control emerged by the work of Nyquist (1932) and the
analysis of feedback amplifiers by Black (1934). The actual design of feedback con-
trollers was greatly simplified by the introduction of standard components like the
lead/lag-, PI- and PID-controller. The simplicity of these components and the ac-
companying rules to tune them (Ziegler and Nichols 1942) requires only a limited
amount of knowledge on the actual system to be controlled. Both aspects broadened
the success and popularity of feedback control (Bode 1945, Evans 1950, Savant 1958).
Nowadays, the design of feedback controllers based on PID tuning rules is still used
extensively in controlling chemical processes or mechanical servo systems.

Despite the success of the classical PID-control, the everlasting demand to control
more complex and multivariable systems at a higher performance level required a
less heuristic approach to controller design. Furthermore, the availability of powerful
computer hardware opened the possibility to design, analyze and implement more
complex feedback controllers in a systematic way. During the sixties, the use of state
space representations (Horowitz 1963) and the notion of optimal control (Athans and
Falb 1966) to compute controllers on the basis of a (linear) model of the system,
strongly improved this systematic design. In this so-called modern or state-space
control design (Boyd and Barrat 1991), the tuning of a complex controller is done
by means of calculation. For that purpose the actual system is represented by a
model, possibly in a state-space form. The underlying assumption is the certainty-
equivalence principle, implying that the model being used is an exact representation
of the system to be controlled, see also Kwakernaak and Sivan (1972) or Anderson
and Moore (1990).

A more sophisticated control algorithm can outperform simple control, provided
that it has been designed properly. Unfortunately, the certainty-equivalence principle
requires the impracticable task to formulate a model that meticulously describes the
actual system. The system to be controlled can be highly complex and may contain
nonlinear and time varying dynamic phenomena, whereas a model can only be an
approximation of the actual system. Usually it is desired that a model is linear,
time invariant and of low complexity in order to formulate a control design procedure
that is solvable via existing techniques. If the design of the controller is done on the
basis of such a simplified model, the mismatch between system and model may cause
the performance of the actual controlled system to deteriorate. In some cases the
controlled system might not even be stabilized by the designed feedback controller.
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1.2.3 Robust control

To circumvent the problems associated with the mismatch between a model and a
system to be controlled, the design and analysis of robust controllers emerged. In
robust control or so-called post-modern control (Zhou et al. 1996), the presence of
uncertainty, opposite to the certainty-equivalence principle as discussed before, can
be taken into account. To account for the presence of uncertainty, in robust control
typically the system is not modelled by a single model. Instead, the system is assumed
to lie in a set of models that is built up from a nominal model along with an allowable
model perturbation (Doyle 1982, Francis 1987, Maciejowski 1989). Consequently,
robust control design methods synthesise a controller that is guaranteed to satisfy
stability and additional performance requirements not just for the nominal model,
but for the complete set of models of which the actual system is assumed to be
an element. As a consequence, the controller is said to be robust and indicated
by the term “robust controller” as it satisfies robustness properties such as stability
robustness or even stronger, performance robustness (Doyle et al. 1992).

Based on the motivations in the work of Zames (1981), the application of the
so-called H∞ norm was found to be appropriate to describe the allowable model
perturbation and to characterize the performance of a feedback controller. As a con-
sequence, the attention in the literature has been focused on the design or synthesis
of robust controllers by means of H∞ methods. The H∞ problem has been studied
before but the methods heavily relied on operator-theoretic methods, see for example
Adamjan et al. (1978). One of the first general solutions that served as a computa-
tional tool using state-space methods has been presented in the work by Doyle (1984).
Extensions that followed the line of this work have been formulated in Francis (1987)
and Francis and Doyle (1987). These extensions use a state space approach that is
closely related to the Hankel operators as used in the paper by Glover (1984). Finally,
a generalization of the results has been published by Khargonekar et al. (1988) and
Glover and Doyle (1988) in which a solution for a general H∞ problem has been posed
in terms of solutions of an associated Riccati equation. A combination of the work
of most of the authors mentioned above lead to the frequently cited paper by Doyle
et al. (1989). For a more comprehensive overview one is also referred to the book by
Green and Limebeer (1995) or Zhou et al. (1996).

Alternative computational methods for robust controller design have also been pre-
sented in the literature. The analysis and design approach as presented in Vidyasagar
(1985), Georgiou and Smith (1990) and the work of McFarlane and Glover (1990) or
McFarlane and Glover (1992) differ in the way both the allowable model perturba-
tion and the performance specification are incorporated. Alternative optimal robust
control procedures, using a so-called l1-norm either to bound the uncertainty or to
characterize performance, has been considered in Dahleh and Boyd Pearson Jr (1987b)
and Dahleh and Boyd Pearson Jr (1987a). Closely related to the H∞ methods of Doyle
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et al. (1989), the so-called µ-analysis and synthesis (Doyle and Stein 1981, Packard
and Doyle 1993) can handle a wider class of allowable model perturbations in order
to design robust controllers more thoughtfully. Parallel to these developments, the
robust control analysis and synthesis formulated on the basis of linear matrix inequal-
ities (Boyd and Barrat 1991, Boyd et al. 1994) is a promising development. The use
of linear matrix inequalities enables even more freedom in specifying performance and
allowable model perturbations. Although linear matrix inequalities have already been
proven to be very appealing and useful in control design (Willems 1971), the avail-
ability of powerful algorithms (Nesterov and Nemirovsky 1994) allows the associated
convex optimization problems to be solved via a computational solution.

On the whole, the introduction and the continuation in the developments of ro-
bust control offers possibilities to design enhanced controllers for systems that should
satisfy high-performance objectives and additional robustness properties. Still, the
techniques discussed above are model-based and require a model, or even better, a
nominal model along with an allowable model perturbation to characterize a set of
models.

1.3 Modelling by System Identification

1.3.1 Motivation for experimental modelling

In an engineering sense, a model constitutes a formalism in order to describe the
knowledge about a particular system. The systems to be modelled may vary within the
wide range of engineering processes such as communication, electrical or mechanical
systems. Alternatively, more or less non-technical applications such as environmental
or biological systems have the need to come up with models to formalise the properties
of an actual system in terms of a mathematical model.

The appearances, purposes and applications of a model are innumerable and prob-
ably even more extensive than the number of existing engineering processes. Referring
to the previous sections, the attention in this thesis is focused on the purpose of de-
riving dynamic models that are to be used for model-based (robust) control design.
Essentially, for this purpose one can distinguish the following two main approaches
to derive a dynamical model.

• Physical modelling.

The mathematical equations to describe the dynamical behaviour of a system
are derived from physical laws or first principles. In this type of modelling,
one heavily relies on the theory of the related science, in which the underlying
assumptions and modelling aspects have already been accepted.

• Experimental modelling.
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In this type of modelling the emphasize lies on the use of experimental data
obtained from a system. The modelling is done by characterizing any systematic
relations that are present in the data. The systematic relations obtained from
the data now constitute the model, sometimes without explicitly taking into
account any physical relations that the actual system may emulate.

Due to the lack of information about the internal representation of the actual
system used in experimental modelling, this type of modelling is often referred to
as “black box” modelling or system identification (Åström and Bohlin 1965, Åström
and Eykhoff 1971, Eykhoff 1974). Opposite to “black box” modelling is the full in-
formation used in physical or “white box” modelling, in which the model is obtained
by investigating the interior parts of the system in detail. This type of modelling
is frequently done by the process of tearing and zooming, as mentioned recently in
Willems (1995). As a consequence, a combination of the two approaches mentioned
above is referred to as “grey box” type of modelling, see for example Jørgensen and
Hangos (1995) for a recent reference. In this type of modelling, system identifica-
tion techniques are used to resolve unknown quantities that appear in the equations
obtained from first principles.

Supported by the numerous successful applications of system identification tech-
niques that have been reported in the literature, the most important motivations to
use system identification in this thesis can be summarized as follows.

• Complexity of the system or inadequate knowledge of the physical laws underly-
ing the system behaviour limits the use of modelling by first principles in many
engineering applications. In that case, system identification is a reasonable al-
ternative for (approximate) modelling purposes and is denoted by the notion of
approximate identification (Ljung and Glad 1994).

• As pointed in Section 1.2, it is desirable to formulate a model that is linear, time
invariant and of low complexity in order to formulate a control design procedure
that is solvable via existing techniques. System identification is able to yield
models that satisfy these requirements.

• For feedback control of a system either the feedback system depicted in
Figure 1.1 needs to be created, or is already available. Hence, the sensor and
actuator signals for observing the dynamical behaviour of the system are readily
available in many control applications and can be used for system identification
purposes too.

Clearly, the success of a model obtained by system identification does not depend
solely on the possibility to observe the system. Referring to Ljung (1987), pp. 8–9,
the success of any system identification technique hinges on several aspects that may
include the design and excitation of experiments, model structure determination, the
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criterion used to determine the model and finally, the validation of the model. For
a thorough treatment of these aspects one is also referred to the books by Norton
(1986), Söderström and Stoica (1989) or Johansson (1993). These aspects will also
reappear in this thesis. However, they will be formulated in the context of feedback
controlled systems pointing to models that should be suitable for designing enhanced
performing (robust) controllers.

1.3.2 Two main branches

Inevitably, a model obtained by system identification will be an inaccurate or approx-
imate representation of the actual system that needs to be controlled. It is unrealistic
to assume that an exact model of a system can be found on the basis of data that
has been produced by the underlying system. This is due to the fact that data can
only represent a finite time, possibly disturbed, observation of the unknown dynami-
cal system. As a consequence, it is not possible to verify or validate the resemblance
between a model and a system on the basis of a finite number of experiments (Smith
and Doyle 1989). Therefore, the knowledge on the system remains incomplete and a
model that exactly represents the system cannot be formulated without prejudice.

Fortunately, a robust control design paradigm can deal with the inexact knowledge
of the system to be controlled. As pointed out in Section 1.2.3, a set of models is
used to represent the inexact knowledge on the dynamical system to be controlled. A
similar argumentation can also be used in the identification of an unknown dynamical
system. For that purpose, the system identification should estimate a set of models
that can be used in robust control design. Such an estimated set of models will
be denoted by the notion of a model uncertainty set. The estimated set of models
or model uncertainty set is then used to represent the incomplete knowledge of an
unknown dynamical system, present due to the finite number of experiments being
used during the identification.

As pointed out in Section 1.2.3, a model uncertainty set can be built up from an
nominal model, along with an allowable model perturbation or bound on the model
error1. Similar to this construction of a model uncertainty set, the research in the
field of system identification can be divided in two distinguishable branches. A branch
that focuses on the estimation of a nominal model and a branch that is considered
with the quantification of a model error.

• estimation of a nominal model

In fact, this can be viewed as the “classical approach” to system identification
of building and validating (nominal) models based on observed data from a
system. Starting from the work by Gauss at the beginning of 1800 and printed

1From an identification point of view, the allowable model perturbation is described by a “bound

on the model(ling) error” to stress the incomplete knowledge of the system to be identified.
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in Gauss (1901) or Gauss (1963), several methods have been reported in the
literature, some of which have been listed below.

Well established and frequently applied techniques are based on the predic-
tion error framework (Ljung 1987, Söderström and Stoica 1989). Alternative
methods based on realization techniques (Ho and Kalman 1966, Zeiger and
McEwen 1974, Kung 1978) or the approach used in Willems (1986), (1987)
also focuses on the estimation of a nominal (state space) model. More recently
and comparable to the realization based approach are the powerful sub-space
methods (Viberg 1994) and the method based on canonical variate analysis
(Larimore 1990). Recent contributions on sub-space identification can for ex-
ample be found in the theses written by van Overschee (1995) or McKelvey
(1995) or the paper by Verhaegen (1994).

• estimation of a model error

Some of the methods for estimation of a nominal model provide quality measures
of the model being estimated by means of variance and bias expressions, see
e.g. (Ljung 1987). These quality measures give rise to so-called “soft” bounds
on the resulting model error, due to the stochastic or probabilistic nature of
the confidence intervals being used in deriving the results (Wahlberg and Ljung
1991). Despite of the stochastic nature of the bound on the model error, the soft
bounds provide a quality measure that is useful in many applications (Bayard
1992). Approaches to probabilistic model error bounding can for example also
be found in the paper by Bayard (1992) or the work presented by Ninness (1993).

Unfortunately, “hard” error bounds are desirable in robust control to enforce
and guarantee stability and performance robustness (Zames 1981). This has
been one of the motivations to invoke the research on deriving such non-
probabilistic or deterministic error bounds via a worst-case or deterministic
approach to system identification (Milanese and Tempo 1985, Tempo 1988).
This new approach to system identification is also indicated by various names
such as H∞ identification or worst-case estimation (Helmicki et al. 1989). The
line of thinking has been continued by several researchers, see for example (Gu
and Khargonekar 1992, Bai and Raman 1994, Chen and Nett 1995a). A nice
overview on both the probabilistic and deterministic approach to model error
bounding can also be found in the papers by Ninness and Goodwin (1995a) and
Mäkilä et al. (1995).

Although the non-probabilistic approaches as discussed above do yield a “hard”
error bound, generally the bound on the model error tends to be overestimated
(Hjalmarsson 1993, Hakvoort 1994). An overestimation of the model error is mainly
due to a conservative nature of the ”hard” assumptions being made on the actual
system or the noise that might be present on the data. As a result, the bound on
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model error can be a (very) conservative estimate of the mismatch between nominal
model and the actual system.

As a consequence, mixed deterministic-probabilistic approaches have been devel-
oped to diminish the effect of conservatism, see e.g. Hakvoort (1994) or de Vries and
Van den Hof (1995). In these approaches the bound on the model error is derived by
combining the results on “hard” and “soft” error bounding. At this moment it can
be mentioned that the model error estimation of (Hakvoort and Van den Hof 1997)
will be employed in this thesis.

To conclude, the availability of a nominal model along with a bound on the model
error can be used to construct a model uncertainty set. The model uncertainty set
is an estimated set of models that is used to represent the unavoidable incomplete
knowledge on the unknown dynamical system to be controlled. As pointed out in
Section 1.2.3, a controller can be designed on the basis of a set of models. However,
the question remains whether or not a model uncertainty set, found by the techniques
listed in the two branches above, is suitable for designing an enhanced robust con-
troller. Clearly, the suitability will depend on the character of the constituents used
to construct the model uncertainty set. These constituents include the choice of the
nominal model and the way a tight bound on the model error is being characterized
in order to capture the unknown dynamical system within the model uncertainty set.

1.3.3 Estimating models for robust control

As pointed out above, system identification techniques can be used to estimate model
uncertainty sets on the basis of data obtained from an unknown dynamical system.
As such, a model uncertainty set is used to represent the incomplete knowledge of a
dynamical system to be controlled. For the purpose of designing a robust controller,
such a model uncertainty set is built up from a nominal model and a bound on the
model(ling) error. The utilisation of a nominal model and a bound on the model
error provides the opportunity to structure the model uncertainty set, so that it can
be used in a robust control design paradigm.

From an identification point of view, a model uncertainty set can be considered to
consist of all models that are either validated (Ljung 1987) or cannot be invalidated
by the available data (Smith and Doyle 1989). Clearly, such a set of models may
consists of an uncountable number of possible models. However, the introduction
of single nominal model, along with an allowable model perturbation enables one to
capture this set of models relatively easily. This has been illustrated in a schematic
picture depicted in Figure 1.2, where a set of models that cannot be invalidated by
the data is characterized by means of a nominal model along with an allowable model
perturbation. Furthermore, characterizing a set of models by means of a nominal
model along with an allowable model perturbations enables one to design robust
performing controllers that take into account the incomplete knowledge associated
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with the availability of only finitely many, possibly disturbed, experiments.
As pointed out before, the main purpose of estimating a set of models in this thesis,

is directed towards the design of a controller. It can be observed from Figure 1.2 that
there is freedom in choosing a nominal model and the way in which a bound on the
modelling error is described. However, both elements will determine the structure of
the model uncertainty set and its suitability for the design of an enhanced performing,
robust controller.

a possible set of
unfalsified models

set of models described by a nominal mo-
del and an allowable model perturbation

◦
�
�
�
���

Fig. 1.2: The idea of the construction of a set of models.

Due to the freedom in describing a set of models via a nominal model along with
its corresponding model error, the estimation of a model uncertainty set is by far
a trivial exercise. To address the suitability of a model uncertainty set for control
design, the following aspects have to be considered.

• Model complexity

Frequently, a relatively low complexity controller is desired due to practical
limitations of the hardware used to implement a controller. It is well known
that the complexity of both the nominal model and the bound that describes
the modelling error will contribute to the complexity of the controller being
computed (Boyd and Barrat 1991, Zhou et al. 1996, Skogestad and Postlethwaite
1996). Therefore, deliberate simplified modelling of both the nominal model and
the accompanying model error is desired in order to formulate a manageable
control design problem. A manageable control design problem points to the
possibility to design relatively low complexity controllers on the basis of low
complexity models.

• Structure of the set of models

A well known approach to characterize a set of models is by assuming modelling
errors or uncertainty in an additive or multiplicative form, see e.g. (Doyle
1979). Additionally, more profoundly defined uncertainties can also be used,
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such as the numerator-denominator perturbations in Kwakernaak (1993) or even
more structured uncertainties as done in the analysis of Packard and Doyle
(1993). Clearly, highly sophisticated modelling error descriptions can be used
to construct a set of models thoughtfully. Still, system identification should be
able to deliver the information to construct such a set, simply on the basis of
observations of the system.

• Conflicting requirements

The last aspect that has to be taken into account when constructing a set of
models is the fact that performance and robustness conditions of a feedback
controlled system are conflicting requirements (Doyle et al. 1992). This implies
that a relatively simple nominal model having a large model error will impose
strong robustness conditions at the price to lose performance. A controller being
designed will then suffer from decreased performance, whereas the aim is to
design an enhanced performance controller. On the other hand, an overall small
model error to alleviate the robustness conditions would require the nominal
model to be highly accurate and complex. Unfortunately, a low complexity
model is required to formulate a manageable control design procedure. During
the estimation a trade-off must be made between the accuracy of the nominal
model and the corresponding model error.

Clearly, given a selection for the modelling error description, the trade-off can be
addressed by estimating a low complexity or approximate nominal model, such that
the corresponding modelling error will affect the conflicting robustness conditions as
little as possible. In this way, the attention can be focused to finding an approx-
imate nominal model that is said to be relevant for (robust) control design. The
role of such a low complexity or approximate nominal model in view of the control
application has been recognized and emphasized previously in related topics on mod-
elling, identification, model reduction and adaptive control (Sworder 1966, Farison et
al. 1967, Åström and Wittenmark 1971, Rivera and Morari 1987, Skelton 1989). The
main philosophy in these references is to be aware of the intended use of the model,
namely the application of the model in a feedback or closed-loop setting. As such, the
desired nominal model and the corresponding model error will highly depend on the
controller being used, making the approximate identification and the related control
design inseparable (Skelton 1985).

In many applications the controller is still unknown as it needs to be (re)designed
on the basis of a nominal model and its corresponding model error. Therefore, the
quality of an identified nominal model in view of the control application remains
unclear. On the other hand, the design of a controller via a model-based procedure
cannot be done without at least the availability of a nominal model. As pointed out
in Schrama (1992a), this circular argumentation can be interrupted by an iterative
scheme of subsequent identification and model-based control design. Based on the
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idea of an iterative scheme, many contributions for control-relevant identification have
been developed. A short overview is given in chapter 2 of this thesis, alternatively
one can consult the survey papers by Bitmead (1993), Gevers (1993) or Van den Hof
and Schrama (1995).

In most of the iterative schemes found in the references listed above, the attention
is focused on the estimation of a nominal model and iteratively trying to improve nom-
inal performance specifications. Clearly, the model-based controller must be imple-
mented on the actual system and robustness consideration must be taken into account.
Some methods do provide tools to perform at least a stability robustness analysis be-
fore implementing the controller on the actual plant, see e.g. (Schrama 1992b, Bayard
and Chiang 1993). As pointed out in Section 1.2.3, it is desirable to consider and mon-
itor the performance robustness properties by designing a robust controller directly
on the basis of a estimated set of models or model uncertainty set formed by a nom-
inal model along with the corresponding error bound. In this way, it is possible to
subsequently design model-based controllers such that the performance improvement
of the feedback controlled system can be enforced (Van den Hof et al. 1994). As a
consequence, performance enhancement can be guaranteed robustly during a step of
subsequent system identification and robust control design (de Callafon and Van den
Hof 1997). This line of thinking will form the basis of the problem formulation of this
thesis.

1.4 Problem Formulation

As pointed out in the previous sections, the problem of designing an enhanced per-
forming and robust controller for an unknown system can be done on the basis of
system identification techniques followed by a subsequent robust control design. Al-
though a model will always be a simplified representation of the unknown system,
robust control can account for the presence of a modelling error being made. To treat
the presence of a modelling error, the system identification procedure is required to
estimate both an (approximate) nominal model and an upper bound on the modelling
error. In this way a set of models can be estimated, denoted by a model uncertainty
set, on which a robust controller is designed. Clearly, such a procedure can be com-
pleted only if the appropriate tools are available.

• Tools to estimate nominal models along with an accompanying bound on the
model error are needed to estimate a set of models.

• Tools for robust controller design are required to design a controller on the basis
of an identified set of models.

Most of these tools are already available in the literature. However, the avail-
able identification and control design tools are merged and extended in this thesis
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to accomplish a successful result in controlling an unknown system. The success of
controlling an unknown system is measured in terms of a performance improvement
of the feedback controlled system. As such, the overall problem formulation of this
thesis can be summarized as follows.

Consider an unknown, possibly unstable system that is controlled by a feed-

back controller. Design a controller that is able to improve the performance

of the controlled system by means of subsequent system identification and

robust control design.

As mentioned above, the design of a robust and enhanced performing controller is
done on the basis of the results of an intermediate step, namely system identification.
The system identification should deliver an estimated set of models or model uncer-
tainty set. However, estimating a set of models built up from a nominal model and a
bound on the modelling error is not the only requirement for the system identification
procedure being used. Due to the conflicting nature of robustness and performance
of a feedback system, a trade-off must be made between the accuracy of a nominal
model and the corresponding model error. Ignoring this trade-off will squander the
possibility to design a robust and enhanced performing controller.

• The model uncertainty set obtained by system identification techniques and
used in designing a controller, should allow the design of a robust and high
performing controller.

As already mentioned in Section 1.3.3, the above statement points to an identi-
fication problem in which a set of models has to be estimated that is suitable for
robust control design. Due to the freedom in describing a set of models via a nominal
model along with the corresponding model(ling) error, the suitability of the model
uncertainty set refers to the following two points:

• A selection for describing the modelling error that is suitable for the design of
an enhanced performing and robust controller.

• Estimating a low complexity or approximate nominal model, such that the cor-
responding modelling error will affect the conflicting robustness conditions as
little as possible.

Both items mentioned above will affect the usefulness of the set of models being
identified for the design of a robust and enhanced performing controller. Hence, they
must be taken into account to set up a proper identification problem.

To improve the general applicability of both the identification and the control
design procedure being used, the following additional requirements may be mentioned.
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• It is desirable to set up a framework that can handle the identification and
control of multivariable unstable systems. Clearly, restricting the identification
problem to stable systems would exclude the possibility to deal with unstable
systems that can be stabilized very well by means of feedback control.

• The identification procedure should be able to deal with data obtained under
closed-loop or controlled conditions. Many engineering processes can not be
operated properly without additional feedback control. If indeed a (possibly
unstable) system is being controlled, the identification procedure should be able
to deal with closed-loop data, in addition to experiments yielding open-loop
data.

• Performance specifications used in a model-based robust control design proce-
dure to find enhanced performance controllers should have wide applicability.
At the moment, the notion of performance of a controller has still not been
characterized precisely. When characterizing the notion of performance, it is
desirable to cover a wide range of engineering applications.

Using identification as an intermediate step to solve the above mentioned prob-
lem formulation in this thesis is not new. Strongly related problems have also been
discussed in the field of adaptive control, see for example Åström and Wittenmark
(1989) or Bitmead et al. (1990a) and the references therein. Compared to the pro-
cedure followed in adaptive control2, the approach followed here mainly focuses on
the off-line identification of models and implementation of controllers. Basically, an
adaptive controller is created here too, but with the intervention of an engineer, being
both a model builder and a control designer.

1.5 Overview of the Thesis

Clearly, the aim of this thesis is to present a framework and tools in order to tackle the
verbalized problem formulation presented in Section 1.4. Additionally, the tools being
developed will be illustrated on a flexible mechanical positioning system, present in a
wafer stepper. For that purpose, this thesis has been divided in 8 chapters. This first
chapter has been used to give a brief overview on the developments in the research
area of automatic control and system identification, with the aim to formulate the
contribution and problem formulation of this thesis.

Chapter 2 is used to present some of the concepts related to feedback systems
needed in this thesis. Additionally, a short overview on control-relevant identification
will be presented. Based on this overview and using the concepts presented in this

2Defined as the design of controllers “that can modify its behaviour in response to changes in the

dynamics of the process and the disturbances” (Åström and Wittenmark 1989).
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chapter, a formal definition of the problem formulation as discussed in Section 1.4 is
presented at the end of the chapter.

Chapter 3 is concerned with the problem of identifying models on the basis of
experiments obtained under feedback. An identification procedure should be able
to deal with such experiments as the presence of feedback is unavoidable in many
engineering processes. For that purpose, a fractional approach is introduced that will
be used in the sequel of the thesis. This approach is able to deal with feedback or
closed-loop data and provides a unified approach to handle the identification of both
stable and unstable system.

Chapter 4, 5 and 6 are devoted to the presentation of the main framework of this
thesis. The topics discussed in chapter 4 include the characterization of performance
and the structure of the set of models built up from a nominal model and a corre-
sponding upper bound. Subsequently, chapter 5 and 6 discuss respectively the robust
control design and the identification procedure used to tackle the problem formulation
of this thesis.

Chapter 7 is reserved for the practical application of the tools presented in the
foregoing chapters and consists of the subsequent identification and robust control
applied to the multivariable positioning mechanism present in a wafer stepper system.

Finally, chapter 8 is used to end this thesis and contains the main conclusions and
additional remarks, pointing to the possibilities of ensuing research.
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2
Identification for Control: Preliminaries and

Model-Based Approaches

2.1 Introduction

To start the analysis of the problem formulation mentioned in Section 1.4, first some
preliminaries have to be introduced. Especially, the assumptions and definitions as-
sociated to the so-called unknown system and performance specification require addi-
tional clarification. The notion of an unknown dynamical system is a broad concept
and too extensive to present a possible solution of the problem formulation mention
in Section 1.4. Furthermore, the notion of performance to characterize the behaviour
of a feedback controlled system is still unclear. It is necessary to elucidate both items
in more detail as they will be used extensively throughout this thesis.

The problem formulation of Section 1.4 is not entirely new. Several researchers
have also focused on similar issues that are linked to the system identification and
subsequent model-based control design. As already pointed out in Section 1.3.3, most
of the existing techniques make use of iterative schemes to address the inseparability
between the identification and the control design.

An overview of most of the preliminary aspects used in this thesis and a discus-
sion of some of the existing so-called iterative schemes of subsequent system identi-
fication and (robust) controller design are the main items of this chapter. Most of
the preliminaries, definitions and additional assumptions are presented in Section 2.2.
Subsequently, the main ideas leading to the application of so-called iterative schemes
are outlined in Section 2.3. This section also discusses some of the existing identifi-
cation and model-based control techniques that are involved in iterative schemes of
subsequent system identification and (robust) control design and is ended by a short
evaluation. Based on this evaluation, the verbalized problem formulation, as posed in
Section 1.4, will be reformulated in a mathematical way in Section 2.5 and the latter
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is used to set up the remaining part of the thesis.

2.2 Concepts and Definitions

2.2.1 Main assumptions

To enable the analysis of feedback controlled systems and the identification of an
unknown dynamical system, some basic assumptions are needed. The assumptions
being introduced here reflect the nature of the unknown dynamical system and the
feedback controllers that are being used throughout this thesis.

The unknown dynamical system

Up to now, the notion of a dynamical system has been used to indicate a broad concept
that represents many engineering, industrial, biological or chemical processes. Due
to this wide applicability of the notion of a system, it is not surprising that it cannot
be used directly for specific evaluation purposes. As the main interest in this thesis
is concerned solely with the dynamical aspects of a system, the following (verbalized)
definition of a dynamical system is adopted from Willems (1991).

Definition 2.2-1 A dynamical system is defined by a triple ( II, W,B) that consists
of a time axis II with time instants of interest, a signal space W in which the signals
produced by the system take their values and the behaviour B ⊆ W II , a family of
W-valued time trajectories.

It should be noted that the above definition of a dynamical system does not dis-
criminate between the inputs and or outputs of a system. Typically the inputs and
outputs are associated respectively with the actuator signals and observed signals
as depicted in Figure 1.1. Furthermore, the time axis in Definition 2.2-1 can be ei-
ther discrete or continuous, pointing respectively to a discrete-time or continuous-
time dynamical system (Willems 1991). Finally, the dynamical system given in
Definition 2.2-1 may exhibit a (non-linear) behaviour, as no restrictions are posed
on the actual behaviour of the system.

Clearly, Definition 2.2-1 is a rather general formulation and is still too extensive
to have a workable notion of a dynamical system for this thesis. Therefore, additional
restrictions and assumptions are posed on the behaviour of the dynamical system.
These assumptions have been listed below.

• Firstly, it is assumed that the dynamical system is equipped with a distinguish-
able set of sensors and actuators. As already mentioned in Section 1.2.1, this
opens the possibility to distinguish inputs and outputs of the dynamical sys-
tem and to construct an automatically controlled system by means of feedback
(Willems 1992).
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• To clarify the analysis being done in this thesis, the dynamical system is assumed
to be finite dimensional, linear and time invariant. Although this assumption
can be quite restrictive, many engineering or industrial processes have to be
operated around a fixed operating point. Around this operating point the dy-
namical system may exhibit a behaviour that may be approximated very well
by means of a finite dimensional linear and time invariant system.

• Finally, the time axis II of the dynamical system is assumed to be discrete valued.
This assumptions restricts the analysis in this thesis to discrete-time dynam-
ical systems only. However, many of the results presented in this thesis can
be carried over to continuous-time dynamical systems too. The motivation to
introduce this assumption is due to the fact that data acquisition for both identi-
fication and control is usually done by digital signal processing hardware (Chen
and Francis 1995). To simplify the analysis involved with sampling continuous-
time signals, the effects of the inter-sample behaviour are assumed to be negli-
gible. In fact, this assumption is common once the sampling is done fast enough
and is combined with appropriate anti-aliasing filters (Ogata 1987, Åström and
Wittenmark 1990).

Given the assumptions listed above, the unknown dynamical system under consid-
eration is denoted by “the plant”. The notion of plant is used throughout this thesis
to indicate the unknown dynamical system that needs to be identified and controlled
subsequently.

Assumption 2.2-2 An unknown dynamical system to be controlled is assumed to be
a discrete-time, finite dimensional, linear and time invariant system having an input
u and an output y. The map from the input u to the output y is indicated by notion of
plant and is denoted by Po. Furthermore, the plant Po is allowed to be multivariable,
having m inputs and p outputs.

Due to the discrete-time nature of the plant Po, the corresponding input u and
output signal y are discrete-time signals, that are assumed to be available either for
control or identification purposes. The discrete-time domain dependency of u (or y)
is indicated by u(t), where t ∈ IN. In case the signals are obtained by sampling, the
integer valued time domain signal t corresponds to t = k∆t, where k ∈ IN and ∆t

denotes the sampling interval. For ease of notation, the sampling interval is set to
∆t = 1, making t = k ∈ IN.

Clearly, the availability of an unlimited amount of possibly undisturbed input and
output signals would enable the possibility to reconstruct the plant Po exactly. From
a practical point of view, this possibility is limited due to availability of only finite
time, possibly disturbed signals. Summing up, the lack of knowledge of the plant Po

is summarized as follows.
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Remark 2.2-3 The incomplete knowledge of the plant Po to be controlled points to
the availability of only finite time, possibly disturbed, input and output signals. Con-
sequently, the order or McMillan degree of the plant and the (possible multivariable)
structure needed to characterize the dynamical behaviour of the plant are assumed to
be unknown.

Due to the linearity assumption on the plant Po, the principle of superposition
(Chen 1984, Callier and Desoer 1991) allows possible additive disturbances acting on
the input u or output y to be modelled by an additive disturbance v present in the
output signal y. This has also been illustrated in Figure 2.1, in which the signals
available for control or identification purposes match the (noise free) input signal u

and the possibly disturbed output signal y.

Po
� � ���u y

v

+ +

Fig. 2.1: Accessible input u and possibly disturbed output signal y of the plant Po.

In contrast to the errors-in-variables approach as presented in Deistler and An-
derson (1989) or Scherrer et al. (1991) where in fact both the input u and output
y are allowed to be disturbed, the input signal u is considered here to be exactly
known, whereas the output y is assumed to be perturbed by an additive disturbance
v. The exact nature and assumption posed on the additive disturbance v is deferred
to Section 3.2.1, where the feedback connection of the plant Po will be discussed.

As a final remark it can be mentioned that the lack of knowledge of the plant Po

may also include the number and location of unstable poles or zeros the plant Po may
have. Although the location of unstable (discrete-time) poles or zeros may highly
influence the properties of a feedback controlled plant (Freudenberg and Looze 1985,
Looze and Freudenberg 1991, Middleton 1991, Chen 1995), they are not assumed to
be known a priori. This knowledge is and should be obtained when estimating models,
suitable for the design of a controller.

The feedback controller

In many applications or industrial settings a feedback controller is implemented via
a logical switch. In that case, the controller can achieve only two output values
and is said to be a boolean controller (Boyd and Barrat 1991). Boolean controllers
can for example be found in standard pressure valves or thermal switches like an
ordinary thermostat. Although the realization and implementation of such a boolean
controller is relatively easy and frequently used, the boolean character may limit the
performance of the feedback controlled plant considerably.
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By the introduction of special purpose hardware, like digital signal processors,
more sophisticated controllers can be implemented. Consequently, the character of a
feedback controller does not have to be restricted to a logical switch. In fact, a feed-
back controller can be an arbitrary dynamical system for which the implementation
is limited only by hardware requirements of the signal processor.

Similarly to the nature of the assumptions made on the plant Po, the feedback
controllers to be used in this thesis are designed to be a dynamical system, that maps
a control input uc to a control output yc. However, in contrast to the knowledge of
the plant Po, the feedback controller is assumed to be known.

Assumption 2.2-4 A feedback controller is denoted by C and is assumed to be a
causal, discrete-time, finite dimensional, linear, time invariant system that maps a
control input uc to a control output yc.

As feedback connections of a controller are being considered here only, the notion
of “feedback controller” will be abbreviated repeatedly to “controller” or “compen-
sator”. Clearly, Assumption 2.2-4 includes the standard components like lead/lag or
PID-controllers (Ogata 1990). However, boolean or non-linear controllers will not
be considered here. The controller C is restricted to be a discrete-time, finite di-
mensional, linear and time invariant (FDLTI) controller, as such controllers can and
will be designed on the basis of discrete-time FDLTI models obtained by the system
identification techniques presented in this thesis. Furthermore, discrete-time FDLTI
controllers can be implemented relatively easily using standard digital signal process-
ing hardware and software.

Although both the plant Po and the controller C are assumed to be FDLTI map-
pings, there is a subtle difference between Po and C. As mentioned in Remark 2.2-3,
the knowledge of the plant Po is incomplete and restricted to finite time, possibly
disturbed, input and output signals. However, the controller C used to construct a
feedback connection does not necessarily have to be unknown. If indeed the controller
C is known, this knowledge will be exploited in this thesis in order to estimate models
for the unknown plant Po.

2.2.2 Feedback connections

As mentioned in the previous section, both the plant and the controller are considered
to be discrete-time finite dimensional linear time invariant (FDLTI) systems. In
this section, first the (standard) notation to represent such FDLTI systems will be
summarized. Subsequently, the definition of a well-posed feedback connection will be
given.
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Representation of FDLTI systems

Let the notation P be used to denote an arbitrary FDLTI mapping. Consequently,
P can be represented by its corresponding transfer function (matrix) P (ξ) (Chen
1984, Callier and Desoer 1991). The argument ξ of a transfer function may indicate
the Laplace variable s in case of a continuous-time mapping. For the discrete-time
mappings considered in this thesis, the argument ξ is replaced by the variable z, being
the z-transform (Jackson 1991) of a shift-operator q. The shift-operator q is defined
as

qu(t) := u(t + 1), q−1u(t) := u(t − 1)

where q and q−1 respectively denotes the forward and backward shift. Alternative
shift operators such as the δ-operator (Middleton and Goodwin 1986) can also be
used to describe a discrete-time FDLTI map. However, only the above defined shift
operator will be used here.

Due to the analogy between the shift operator q and the z-transform of the shift-
operator q, the argument z of a discrete-time transfer function P (z) will be replaced
by the variable q frequently. As a consequence, the relation between input and output
signals of the plant Po as depicted in Figure 2.1 and the controller C according to
Assumption 2.2-4 can be written in the following (forward) difference equations.

y(t) = Po(q)u(t) + v(t)

yc(t) = C(q)uc(t)
(2.1)

As mentioned before, the controller C used to construct the feedback connection does
not necessarily have to be unknown. In case this knowledge is available, a noise free
controller output can be constructed. This has been indicated in (2.1) by the noise
free signal yc.

With a slight abuse of notation, the argument of a transfer function and the ar-
gument of the signals in (2.1) will be omitted frequently to simplify the notations.
According to Assumption 2.2-2, the plant Po is allowed to be multivariable having
m inputs and p outputs. Hence, Po or Po(q) will denote the p × m transfer function
matrix of the unknown plant Po. Supported by the assumption of a distinguish-
able set of inputs and outputs posed in Section 2.2.1, the transfer functions that are
used throughout this thesis are assumed to be proper. For the well known notion of
properness of a (discrete-time) transfer function one is referred to Steiglitz (1974),
Chen (1984) or Åström and Wittenmark (1990).

For a proper transfer function P (q), an alternative representation by means of
state-space realization can be used. Using x(t) to denote the state variable, the
discrete-time state-space realization

qx(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t) + Du(t)
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is an alternative representation for the difference equation y(t) = P (q)u(t) by taking
x0 = 0 and

P (q) = D + C(qI − A)−1B (2.2)

Both the transfer function and the state-space representation are used interchange-
ably here. Due to the ease of notation, preference is given to the representation
based on transfer functions. However, most of the operations such as filtering, cas-
cading and interconnection of transfer functions are done on the basis of state-space
representations

Finally, it can be mentioned that on the basis of (2.2) a distinction can be made
between properness and strictly properness of a transfer function. This has been
stated in the following definition.

Definition 2.2-5 The system P in (2.2) is said to be strictly proper if D = 0, other-
wise P is proper and is said to exhibit a feedthrough term D.

Whether or not a system P or a controller C is equipped with a feedthrough term
will play an important role in the interconnection of P and C by means of feedback.
Such a feedback connection of P and C is discussed below.

Interconnection and well-posedness

In order to specify the feedback connection of a system P and a controller C, well-
posedness of the interconnection of P and C needs to be considered (Boyd and Barrat
1991). The feedback connection of a system P and a controller C is visualized in
Figure 2.2.

P

C �	�	

���



u

uc

ρ1

ρ2−
+

+
+

Fig. 2.2: Feedback connection T (P , C) of system P and a controller C.

Under the condition that a feedback connection of P and C, denoted by T (P , C),
is indeed a well-posed interconnection, the following definition can be given.

Definition 2.2-6 Let u and uc be the input signals of respectively P and C. Then
T (P , C) is defined as a well-posed connection of P and C depicted in Figure 2.2 and
satisfies [

I P

−C I

][
uc

u

]
=

[
ρ2

ρ1

]
(2.3)
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where ρ1 and ρ2 indicate possible input signals for the feedback connection T (P , C).

As uc = ρ2 − y in Figure 2.2, the above definition refers to a so-called negative
feedback connection. The notation T (P , C) will be used throughout this thesis to
describe this negative feedback connection of a system P and a controller C.

Clearly, the well-posedness of the feedback connection T (P , C) in Figure 2.2 refers
to the demand that P and C should at least have compatible sizes in order to be able
to set up a well-defined feedback connection. Basically this condition requires the
dimension of the signals in (2.3) to be compatible, which will be assumed without
mentioning throughout this thesis.

Additionally, well-posedness points to the well-known property that the inverse
of the map given in (2.3) should exist and should be proper. As both P and C are
proper, the latter condition can easily be reformulated in terms of a condition on the
feedthrough terms of P and C.

Proposition 2.2-7 Let P and C be proper and respectively exhibit a feedthrough term
D and Dc according to Definition 2.2-5. Then the feedback interconnection T (P , C)
of Definition 2.2-6 is well-posed if and only if [I + DcD] is non-singular.

Proof: For well-posedness of T (P , C), the determinant of

[
I P

−C I

]
should not be

identically zero. For a proper P and C, this condition is equivalent to the condition of[
I D

−Dc I

]
being non-singular (Zhou et al. 1996). Application of the matrix inversion

lemma (see Appendix A) yields the condition of non-singularity on (I + DcD). �

Many systems are strictly proper and by nature do not exhibit a feedthrough term.
With either D = 0 or Dc = 0, the condition mentioned in Proposition 2.2-7 is satisfied
trivially. Without loss of generality, it is assumed that Proposition 2.2-7 is satisfied
for the feedback connections being discussed here.

The signals ρ1 and ρ2 in Figure 2.2 are used to indicate the presence of possible
(unknown) signals that act as input signals for the feedback connection T (P , C). It
can be noted that by defining the signals ρ1 and ρ2 in (2.3) as follows

ρ2 = r2 − v

ρ1 = r1

(2.4)

a distinction can be made between purposefully applied reference signals col(r2, r1)
and an unknown noise signal v that may all act as input signals for the feedback
connection T (P , C). With (2.4) it can be observed that the additive noise v is again
modelled by an additive disturbance acting on the output y of the system P , similar
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P � ��
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Fig. 2.3: Feedback connection T (P , C) with distinguishable reference signals
col(r2, r1) and noise signal v.

to Figure 2.1. The signals r1 and r2 indicate the reference signals that are (possibly)
applied to the feedback connection T (P , C) by the user and illustrated in Figure 2.3.

Using the distinction between col(r2, r1) and v as indicated in Figure 2.3, the
following map can be defined.

Definition 2.2-8 Consider a well-posed feedback connection T (P , C) where u and y

indicate respectively the input and the possibly disturbed output signal of P . Then
T (P, C) is defined by

T (P, C) :=

[
P

I

]
(I + CP )−1

[
C I

]
(2.5)

and maps the reference signals col(r2, r1) given in (2.4) to the signals col(y, u).

It can be verified that the map T (P , C) in (2.5) reflects the map from the signals
col(r2, r1) to the signals (y, u) in Figure 2.3. It should be noted that more gen-
eral feedback connections can be defined by means of sophisticated control architec-
tures such as two degree of freedom controllers (Lunze 1989, Maciejowski 1989, Boyd
and Barrat 1991) or interconnections that are based on star products (Doyle et
al. 1991, Zhou et al. 1996). However, the feedback interconnection of Definition 2.2-6
is the most simple (one degree of freedom) representation that is encountered in many
typical problems associated to identification and control. Therefore, the (negative)
feedback connection T (P , C) of Definition 2.2-6 and the map T (P, C) given in (2.5)
are used throughout this thesis.

2.2.3 Stability and performance

Both stability and performance are relevant when designing and implementing a feed-
back controller. Although the notion of stability of a feedback connection is a well
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known concept, an exact description of the notion of performance may differ in vari-
ous control applications and is by no means unequivocal. In this perspective, a formal
definition of stability and performance of a feedback connection is required here.

In defining stability and performance, the utilisation of a norm or norm function is
unavoidable. In this thesis, the notion of stability is said to be equivalent to bounded-
input–bounded-output (BIBO) stability which implies that a norm bounded input
signal yields a norm bounded output signal (Chen 1984). For ease of notation, ‖ · ‖X
is used to denote such a norm (function) that is defined on an arbitrary normed space
X (Luenberger 1969). The notation ‖ · ‖ is used to indicate a norm for which the
normed space is yet unknown or irrelevant. As an example of a normed space, the
notation RH∞ is used here to indicate the standard space of all proper, real rational
and stable transfer functions (Francis 1987). For a more thorough treatment of norms
and the accompanying properties one is referred to Desoer and Vidyasagar (1975),
Boyd and Barrat (1991) or Zhou et al. (1996).

Internal stability

The notion of stability of a feedback connection used in this thesis refers to the no-
tion of internal stability of feedback interconnected systems (Francis 1987, Boyd and
Barrat 1991, Zhou et al. 1996). Again using the notation P to denote an arbitrary
FDLTI mapping with its corresponding transfer function, internal stability of a feed-
back connection T (P , C) reads as follows.

Definition 2.2-9 The feedback connection T (P , C) of Definition 2.2-6 is called in-
ternally stable if the map from col(ρ2, ρ1) to col(uc, u) is stable.

The map from col(uc, u) to col(ρ2, ρ1) is given in (2.3). Consequently, the inverse of
this map should exist and should be stable in order to satisfy the conditions for internal
stability according to Definition 2.2-9. According to Proposition 2.2-7, existence of the
inverse of the map in (2.3) is equivalent to well-posedness of the feedback connection
T (P , C). Hence, only stability needs to be verified and the result can been stated in
terms of the T (P, C) matrix given in (2.5).

Lemma 2.2-10 Consider a well-posed feedback connection T (P , C). Then T (P , C)
is internally stable if and only if T (P, C) ∈ RH∞.

Proof: The proof can be found in Schrama (1992b) or Bongers (1994) and uses the
following argumentation. Let H(P , C) denote the map from col(ρ2, ρ1) to col(uc, u),
so

H(P , C) :=

[
I P

−C I

]−1
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then H(P , C) exists (is proper) due to well-posedness of the feedback connection
T (P , C). Using algebraic manipulations, it can be verified that

H(P , C) =

[
(I + PC)−1 −(I + PC)−1P

(I + CP )−1C (I + CP )−1

]

making

T (P, C) =

[
−I 0

0 I

]
H(P , C) +

[
I 0

0 0

]

As a result, stability of H(P , C) is equivalent to stability of T (P, C). Application of
Definition 2.2-9 proves the result. �

From the result mentioned in Lemma 2.2-10 it can be seen that it is necessary (and
sufficient) to evaluate all four transfer functions in the T (P, C) matrix of (2.5) to test
internal stability of a feedback connection T (P , C). This can be done by formulating
a minimal state-space representation of T (P, C) and checking whether or not the
state matrix A is Hurwitz (has stable eigenvalues). Such a state-space realization of
T (P, C) can be found in Appendix A of this thesis.

The reasoning to check the stability of all four transfer functions in (2.5) is to detect
any unstable pole/zero cancellations that might occur between P and C. Designing a
controller that cancels any unstable poles in P is not an internally stabilizing controller
for the corresponding feedback connection T (P , C) (Zhou et al. 1996). On the other
hand, if either P or C is stable, the stability analysis of T (P , C) can be simplified
and the following well-known results can be obtained.

Corollary 2.2-11 Let a controller C satisfy C ∈ RH∞. Then T (P, C) ∈ RH∞ if
and only if P (I + CP )−1 ∈ RH∞

Proof: See e.g. Zhou et al. (1996), pp. 124 or Maciejowski (1989), pp. 56. �

The result mentioned in the above corollary is in fact the basis for classic control
theory to check internal stability on the basis of one closed-loop transfer function
matrix only. Dually to the result mentioned above, the following holds.

Corollary 2.2-12 Let a system P satisfy P ∈ RH∞, then T (P, C) ∈ RH∞ if and
only if (I + CP )−1C ∈ RH∞

Proof: See e.g. Zhou et al. (1996), pp. 24. �

In case both the system P and the controller C are stable, the two corollaries can
be combined. In that case, internal stability of the feedback connection T (P , C) can
be checked by investigating the input sensitivity function (I + CP )−1 only (Zhou et
al. 1996).
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Norm-based performance

The notion of performance or performance cost is used to indicate how well the overall
feedback connection is performing. Usually, the performance of a feedback controlled
system is awarded to the feedback controller being used. A controller C is said to be a
high performance controller if the matching feedback connection T (P , C) satisfies high
performance requirements. Still, the notion of performance should depend at least
on both the controller C and the system P that assemble the feedback connection
T (P , C).

To formalize the performance of a feedback connection of a system P and a con-
troller C, a control objective function will be used. Such a control objective function
J(P , C) is used to describe the behaviour of the signals present in the feedback con-
nection T (P , C). As pointed out above, the control objective function depends at
least on both the controller C and the system P . Although the characterization of
performance may involve the specification of additional weighting functions or the
use of time domain constraints (Boyd and Barrat 1991), the performance essentially
depends on the controller C and the system P that assemble the feedback connec-
tion T (P , C). Therefore, such a control objective function can be considered to be a
function of its two main arguments P and C and is denoted by J(P , C).

Clearly, in order to characterize and compare the performance cost, a numerical
value can be assigned to the control objective function J(P , C). For that purpose, the
control objective function J(P , C) is chosen to be an element of a (complete) normed
space X , where ‖ · ‖X denotes the norm defined on X . As a result, the value of the
performance cost can be characterized by the value of a norm ‖J(P , C)‖X ∈ IR. A
smaller value of the norm ‖J(P , C)‖X thereby indicates an enhanced or improved
performance. Summarizing, the following notion of performance is used throughout
this thesis.

Definition 2.2-13 Let P and C form a well-posed feedback connection T (P , C) and
let X be a complete normed space. Then a control objective function J(P , C) is defined
as a function of P and C that is an element of X and ‖J(P , C)‖X ∈ IR is used to
indicate the performance of T (P , C). Enhanced or improved performance of T (P , C)
is indicated by a decreased value of ‖J(P , C)‖X .

As mentioned above, a smaller value of the norm in Definition 2.2-13 is used to
indicate an enhanced or improved performance. This notion of (enhanced) perfor-
mance provides the possibility either to compare or to compute enhanced controllers
on the basis of the performance cost being used. Once a control objective function
has been chosen, for a given system P a so-called optimal controller can be found by
minimizing the performance cost

‖J(P, C)‖X (2.6)
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over a set of admissible controllers that is denoted by C. Such an admissible set of
controllers C is needed in order to ensure that J(P , C) is an element of the complete
normed space X while minimizing (2.6). For example, the set of admissible controllers
C can represent the set of controllers C that will form a stable feedback connection
T (P , C).

Minimizing the performance cost ‖J(P , C)‖X for a given system P gives rise
to a controller Copt that is optimal in the sense that the norm-based performance
‖J(P, Copt)‖X is being optimized. It should be noted that in general the minimiza-
tion does not have to yield a unique optimal controller as several solutions may exist.
However, the minimization of (2.6) provides a useful tool to come up with an optimally
performing controllers for a given system P . To illustrate the notion of performance
cost and the existence of such an optimal controller, consider the following example.

Example 2.2-14 Consider a FDLTI discrete-time system P and controller C that

form a stable FDLTI discrete-time feedback connection T (P , C). A particular choice

for a control objective function J(P , C) may be defined as follows

J(P , C) = (I + CP )−1

where (I + CP )−1 denotes the (input) sensitivity function. Obviously, a stable feed-

back connection T (P , C) implies (I + CP )−1 ∈ RH∞. As both P and C are fi-

nite dimensional linear discrete-time systems, (I + CP )−1 ∈ RH∞ is equivalent to

(I + CP )−1 ∈ RH2 (Chen and Francis 1995). As a consequence, both the norms

‖J(P, C)‖∞ and ‖J(P, C)‖2 can be used to characterize a performance cost.

Now let the FDLTI discrete-time system P be given by

P (q) =
q − 1.1
q − 0.9

(2.7)

and consider the design of a simple constant (optimal) controller C(q) = K using the

above mentioned control objective function J(P , K) = (1 + KP )−1. Using algebraic

manipulations it can be verified that

C := {C(q) = K | K ∈ (−19
21

, 1)} (2.8)

denotes an admissible set of controllers that guarantees (1 + KP )−1 ∈ RH∞. Eval-

uating ‖J(P , K)‖∞ and ‖J(P , K)‖2 over this set C results in the graph depicted in

Figure 2.4.

From Figure 2.4 it can be observed that there indeed exists a (unique) optimal

static controller K for both the performance costs ‖J(P , K)‖∞ and ‖J(P, K)‖2. For

the performance cost ‖J(P , K)‖∞ the optimal cost is attained when no controller

(K = 0) is applied. This is due to the fact that ‖(1 + KP )−1‖∞ measures the peak

of the magnitude of the discrete-time sensitivity function |(1 + KP (z))−1|, evaluated
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Fig. 2.4: Evaluation of a performance cost over a set of admissible controllers C. In
this plot, J(P , K) = (1 + KP )−1, where the system P is defined in (2.7)
and C is given in (2.8).

over the unit disk |z| = 1. In this example, this peak is minimized when no control

is applied. Clearly, to avoid such trivial solutions, the design of a dynamic controller

using a more sophisticated control objective function J(P , C) must be exploited. ♦

The characterization of performance given in Definition 2.2-13 limits the analysis
done in this thesis to a performance characterization using control objective functions
that are norm-based. However, application of a norm-based control objective has
wide applicability and may include more sophisticated H∞ norm-based performance
costs than the one discussed in Example 2.2-14. Well known are the mixed sensitivity
problem (Verma and Jonckheere 1984, Kwakernaak 1985, Tsai et al. 1992) or the
four-block problem as used in McFarlane and Glover (1990) or Bongers and Bosgra
(1990). H2 norm-based objectives such as Linear Quadratic Gaussian (LQG) control
(Kwakernaak and Sivan 1972, Anderson and Moore 1990) can also be incorporated,
see also the survey paper by Van den Hof and Schrama (1995). In fact, single H∞or
H2 norm-based performance costs that can be represented in a so-called “standard
plant description” as used in Doyle et al. (1989), Boyd and Barrat (1991) or Zhou
et al. (1996) cover the characterization of performance given in Definition 2.2-13.
Accordingly, in this thesis the attention is focused on H∞ norm-based performance
costs.
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Remark 2.2-15 The control objective function J(P , C) in Definition 2.2-13 is cho-
sen to be an element of RH∞and the performance cost is denoted by ‖J(P, C)‖∞.

The motivation to focus on an H∞ norm-based performance cost is twofold.
Firstly, for a given system P the minimization of (2.6) using an H∞ norm can be
tackled by using standard techniques for H∞ norm model-based controller design, see
e.g. (Doyle et al. 1989). Clearly, the system P to be controlled is the unknown plant
Po. In order to use such a model-based controller design, a model of the plant Po

must be available. Due to a possible mismatch between the unknown plant Po and a
model used for control design, robustness with respect to stability and performance
has to be taken into account during the control design. In an H∞ norm-based control
design, the robustness issues can be incorporated quite easily, being the second moti-
vation to use an H∞ norm-based performance cost. A short evaluation of the aspects
associated to robustness are presented in the following section.

2.2.4 Modelling via a set of models

Knowledge of the plant Po to be controlled is not complete. As pointed out in
Remark 2.2-3, incomplete knowledge of the plant is mainly due to the availability
of only finite time, possibly disturbed observations of the plant. To represent the in-
complete knowledge of the plant Po, a set of models, instead of one (nominal) model
only, can be used to model the plant Po. To formalize the modelling issues discussed
in this section, let P be used to indicate such a set of models. Typically, such a set of
models is built up from a nominal model that is denoted by P̂ along with an allowable
model perturbation denoted by ∆ (Doyle et al. 1992).

The composition of such a set P is useful only if the unknown plant Po is an element
of the set P. Therefore, the allowable model perturbation ∆ can be considered to
represent the incomplete knowledge of the plant Po such that Po ∈ P. As such, the
model perturbation ∆ can also account for a possible mismatch or model(ling) error
between the plant Po and the nominal model P̂ . Such a model error may arise in many
practical situations where the nominal P̂ is an approximation of the actual plant Po.
Obviously, the presence of only one and exactly known model perturbation ∆ would
imply exact knowledge of the plant Po. Therefore, the allowable model perturbation
∆ in general is assumed to be unknown, but bounded.

The use of both a nominal model P̂ and a model perturbation ∆ provides the
opportunity to structure a set of models P, so that it can be used in the design
of a robust controller. In general, the structure of P can be characterized by the
fairly general framework based on a Linear Fractional Transformation (LFT) (Doyle
et al. 1991). This LFT framework opens the possibility to rewrite a set of models P
in a standard form, which will be facilitated in this thesis.

On the basis of the LFT framework, each model within P is represented by a
general type of perturbation on the nominal model P̂ . This general type of perturba-
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tion has been visualized in Figure 2.5, where a separate coefficient matrix Q (Zhou et
al. 1996) is introduced to indicate the global nature of an LFT.

Q

∆ 	

�
�
�

Q =

[
Q11 Q12

Q21 Q22

]

Fig. 2.5: Upper LFT representation of model perturbation.

The entries of the coefficient matrix Q in Figure 2.5 depend on the nominal model
P̂ and the way in which an allowable model perturbation ∆ will affect the nomi-
nal model P̂ . As the allowable perturbation appears at the top of the diagram in
Figure 2.5, this general type of perturbation can be represented by a so-called upper
LFT Fu(Q, ∆) with

Fu(Q, ∆) := Q22 + Q21∆(I − Q11∆)−1Q12 (2.9)

provided that the inverse of (I − Q11∆) exists. Opposite to the upper LFT, a lower
LFT Fl(Q, ∆) can be defined provided that the inverse of (I − Q22∆) exists and is
given by

Fl(Q, ∆) := Q11 + Q12∆(I − Q22∆)−1Q21 (2.10)

It can be noted that existence of the inverses mentioned above is similar to the well-
posedness condition for a feedback connection as discussed in Section 2.2.2. The
only difference is the fact that the LFT’s mentioned above are equipped with a pos-
itive feedback connection instead of the negative feedback connection as depicted in
Figure 2.2.

Clearly, if the allowable model perturbation ∆ = 0, the LFT of (2.9) should
represent the nominal model P̂ leading to Q22 = P̂ . However, the remaining entries of
Q are still determined by the way the allowable model perturbation affects the nominal
model. Additionally, the entries of Q can be used to normalize the bound on the
unknown (but bounded) allowable model perturbation ∆ (Doyle et al. 1991, Zhou et
al. 1996). As a result, the coefficient matrix Q will contain the necessary information
in order to characterize a set of models P. On the basis of this LFT framework, the
set of models P can be formalized as follows.

Definition 2.2-16 Consider a coefficient matrix Q, where Q22 = P̂ denotes the nom-
inal model and let ∆ be used to denote an unknown but bounded, stable FDLTI map.
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Then a set of models P is defined as

P := {P | P = Fu(Q, ∆), with ‖∆‖∞ < 1} (2.11)

where Fu(Q, ∆) denotes the upper LFT given in (2.9).

It should be noted that Definition 2.2-16 does not include any statement regarding
the Q11, Q12 and Q21 entries of the coefficient matrix Q. Consequently, the way in
which the models P are characterized within the set P given in Definition 2.2-16 is
still undefined. However, it can be noted here that it suffices to have an allowable
model perturbation ∆ that is FDLTI, as both the nominal model P̂ and the unknown
plant Po that lie in the set P are assumed to be FDLTI.

Example 2.2-17 Typical examples of sets of models that can be captured within

the LFT framework include a so-called additive uncertainty set

PA(P̂ , V, W ) := {P | P = P̂ + ∆, with ∆ ∈ RH∞, ‖V∆W‖∞ < 1} (2.12)

for which the coefficient matrix Q of the upper LFT Fu(Q, ∆) in (2.11) is given by

Q =

[
W 0

0 I

][
0 I

I P̂

] [
V 0

0 I

]

Alternatively, a multiplicative (output) uncertainty set can be formulated by

PM (P̂ , V, W ) := {P | P = [I + ∆]P̂ , with ∆ ∈ RH∞, ‖V∆W‖∞ < 1} (2.13)

where the coefficient matrix Q becomes

Q =

[
W 0

0 I

][
0 P̂

I P̂

] [
V 0

0 I

]

In (2.12) and (2.13) the arguments of P are used to denote that the set depends on

the nominal model P̂ and some appropriate frequency dependent weighting functions

V and W that are used to normalize the H∞ norm bound on the allowable model

perturbation (Doyle 1979, Doyle et al. 1992). More sophisticated sets of models using

an unstructured perturbation ∆ can also be defined on the basis of the numerator-

denominator perturbations given in Kwakernaak (1993) or the more general (coprime)

fractional perturbations discussed in Sefton and Ober (1993) or de Callafon et al.
(1996b). ♦

Finally, it should be noted that the requirement on the stability of ∆ as mentioned
in Definition 2.2-16 or the example mentioned above is a technical condition. This
condition is needed in order to be able to apply the small gain theorem (Zames 1963)
to evaluate the robustness properties such as stability robustness. The requirement
on the stability of ∆ can be relaxed for specific sets of models P (Vidyasagar 1985).
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2.2.5 Robustness issues

As pointed out in the previous section, exact knowledge of the plant Po is not available.
This lack of knowledge is replaced by trying to find a set of models P , built up from a
nominal model P̂ equipped with an allowable model perturbation ∆ such that Po ∈ P .
As a consequence, the stability or performance can (only) be evaluated for the set of
models P . If a property can be guaranteed for the set of models P , the controller
C is said to be robust with respect to this property. Consequently, for the notion of
stability the following definition can be formulated.

Definition 2.2-18 Let P denote a set of models as given in Definition 2.2-16. A
controller C is said to achieve

• nominal stability if T (P̂ , C) is internally stable

• stability robustness if T (P , C) is internally stable for all P ∈ P

where the notion of internal stability is given in Definition 2.2-9.

With respect to the notion of norm-based performance as given in Definition 2.2-13
and Remark 2.2-15, a similar definition can be given and is summarized below.

Definition 2.2-19 Let P denote a set of models as given in Definition 2.2-16 and
consider a performance level γ > 0. Then a controller C is said to satisfy

• nominal performance if ‖J(P̂ , C)‖∞ ≤ γ

• robust performance if ‖J(P , C)‖∞ ≤ γ for all P ∈ P

where J(P , C) is a control objective function according to Remark 2.2-15.

The value of γ in Definition 2.2-19 can be any positive real value. The smaller
the value of γ, the stronger are the performance requirements, see Definition 2.2-13.
Consequently, the value of γ can be regarded as the performance level, as indicated in
Definition 2.2-19. In this way the notion of nominal or robust performance depends
on the performance level γ.

It can be observed from Definition 2.2-19 that lowering the value of γ to impose
stronger performance, generally will require (the size of) the set P to be scaled down
in order to satisfy the performance robustness conditions. Consequently, performance
and robustness are conflicting requirements (Doyle et al. 1992). Furthermore, perfor-
mance robustness is a stronger requirement than stability robustness. This is due to
the fact that stability robustness is required in order to have J(P , C) ∈ RH∞ for all
models P ∈ P.
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2.3 Control and Identification

2.3.1 Model-based control design

The performance of a feedback connection has been characterized in Definition 2.2-13
by means of a norm, applied to a control objective function. Due to this norm-based
approach, the performance of the feedback connection T (Po, C) constructed from a
plant Po and a controller C can be characterized by the numerical value of a norm
‖J(Po, C)‖. Ideally, a minimization of the norm-based performance cost ‖J(Po, C)‖,
similar to (2.6), can be used to design an optimal controller directly on the basis of
the (unknown) plant Po.

As the plant Po is unknown, measurements from the plant Po can be used to
acquire knowledge of the control objective function J(Po, C). If indeed (the norm
on) J(Po, C) can be accessed directly on the basis of (time domain) observations
coming from either the plant Po or a feedback connection T (Po, C), the possibility
to tune or optimize a controller C directly, can be exploited to construct an optimal
controller. Basically, this constitutes a model-free tuning of a controller, as no model
is formed explicitly1 on the basis of observations of the plant Po in order to construct
a controller.

This idea is used in Hjalmarsson et al. (1994) to perform such a model-free tun-
ing of a controller on the basis of an H2 norm-based performance specification. The
tuning rules of Ziegler and Nichols (1942) can also be regarded as a model-free tuning
approach to controller design. Similar ideas to tune PI or PID controllers, without ex-
plicitly estimating a (nominal) model, can be found in Åström and Hägglund (1984)
or the more recent publication by Voda and Landau (1995). Unfortunately, these
approaches provide tools to tune or calibrate only relatively simple feedback compen-
sators. Furthermore, such a model-free approach restricts the tuning of a controller
C to those control objective functions J(Po, C) that indeed can be accessed directly
on the basis of (time domain) observations. The control objective function J(Po, C)
will be subjected to noise and finite time approximation if measurements are used to
evaluate the performance specification directly. Measuring a perturbed control objec-
tive function J(Po, C) may alter the tuning of the controller C implicitely for which
the effect might be unknown on beforehand.

In this model-based control approach, a set of models P is used both to repre-
sent the incomplete knowledge of the plant Po and to design a robust performing,
enhanced feedback controller. Additionally, such a model-based approach has several
advantages, compared to a model-free tuning.

• As indicated in Remark 2.2-15, an H∞ norm-based performance criterion will
be used. In a model-based approach, the design of a controller can be done for

1Although a FDLTI model is not being estimated explicitly, tuning a controller on the basis of

data usually implies an inherent and hidden use of a model.
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a wide class of H∞ norm-based performance objectives functions J(Po, C) that
cannot be accessed directly by means of (time domain) observations coming
from the plant Po or the feedback connection T (Po, C).

• Robustness considerations such as stability or performance robustness can be
evaluated and taken into account when designing a controller. This is advanta-
geous if indeed a set of models is being estimated to represent the knowledge of
the unknown plant Po.

• Design trade-offs imposed by linear feedback control (Middleton 1991) can
be taken into consideration. Trade-offs present during the design of a con-
troller heavily rely on the properties of the plant to be controlled, see e.g.
(Freudenberg and Looze 1985, O’Young and Francis 1985, Freudenberg and
Looze 1987, Mohtadi 1990, Chen 1995, Chen and Nett 1995b). The introduc-
tion of a model of the plant can help in comprehending these properties while
designing a controller.

• Last, but certainly not least, available tools that are model-based (Boyd and
Barrat 1991, Zhou et al. 1996) can be exploited to design robust controllers. In
this way, sophisticated feedback controllers can be designed on the basis of a set
of models that take into account design trade-offs and robustness considerations.

Supported by the advantages mentioned above, a model-based approach via the
estimation of a set of models P will be exploited to design a robust and enhanced
performing controller for an unknown plant Po. In order to estimate such a set of
models, system identification techniques are used.

2.3.2 System identification

A modelling approach that emphasizes the need of experimental data of a plant in or-
der to characterize any systematic dynamic relations that are present in the plant can
be labelled as a system identification technique. In fact, “system identification deals
with the problem of building mathematical models of dynamical systems based on ob-
served data from the system” (Ljung 1987). Referring to Figure 2.1, the observations
of the unknown plant Po are reflected by the “data” {u(t), y(t)}, that consist of the
applied input signal u and the (possibly) disturbed output signal y. The additive dis-
turbance v acting on the output of the plant is used to model effects on the data that
cannot be described by the input u applied to the plant (Norton 1986, Söderström
and Stoica 1989, Ljung and Glad 1994).

The main interest in the usage of system identification techniques in this thesis is
the ability to construct models to describe the map from the input u to the output
y of the plant Po and to use this map in the design of a feedback controller. As the
plant Po is a crucial element in the construction of a feedback connection T (Po, C),
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the main attention is focused on modelling the plant Po. Still, most of the results
on system identification in this thesis can also be applied to characterize the additive
disturbance v acting on the output y of the plant Po.

Identification of a set of models

As indicated in the previous sections, a set of models can be used to represent the
incomplete knowledge of the plant Po. The unavoidable incomplete knowledge of the
plant Po is due to the availability of only finite time, possibly disturbed, observations
of the plant. Such a set of models can be considered to consist of all models that are
validated by the data (Ljung 1987).

Alternatively, in Smith et al. (1997) validation of models is considered to be a
misnomer. It is never possible to validate models solely on the basis of a finite
number of experiments. As a result, a set of models will consist of models that
cannot be invalidated by the data coming from the plant Po. Although there is a
subtle difference between validated and not invalidated models, a common property
is the ability to state that “there is no evidence in the particular data set we worked
with” (Wahlberg and Ljung 1992) that indicates that the plant Po is not an element
of the set of models being constructed.

To estimate such a set of models and in order to be able to guarantee that Po is
an element of the set being estimated, the data {u(t), y(t)} coming from the plant
Po does not suffices. Instead, additional information on the plant Po (and the data
{u(t), y(t)}) needs to be introduced in order to be able to formulate a possible set of
models (Wahlberg and Ljung 1991, Hjalmarsson 1993, Hakvoort 1994, de Vries 1994,
Ariaans 1997). Such additional information might include the (approximate) location
of the poles of the plant Po, initial conditions or assumptions on the nature of the
noise v present on the output y of the plant Po.

Consequently, a system identification procedure can be formulated as a procedure
that estimates a set of models on the basis of data and additional information coming
from a unknown plant Po. Schematically, such an identification procedure can be
characterized as a map

identification :

{
data {u(t), y(t)}

prior assumptions

}
�→ set of models (2.14)

where the prior assumptions are used to indicate any additional prior information
being introduced to estimate the set of models. The exact nature of the prior as-
sumptions being introduced is postponed until chapter 6, where the identification of
a set of models based on the work by Hakvoort (1994) is discussed in more detail. In
the following section, the usage of the set of models for the purpose of designing a
robust controller will be discussed.
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Estimating a set of models for control design

The data {u(t), y(t)} along with the prior assumptions in (2.14) gives rise to a so-
called set of feasible models (Hakvoort 1994). Formally, a set of feasible models F
can be defined as

F := {P (q) | y(t) = P (q)u(t) + v(t), where

P (q) and v(t) satisfy prior assumptions}
(2.15)

and captures all possible models P that are consistent with the data {u(t), y(t)} and
the prior assumptions being introduced. If indeed the prior assumptions are correct,
then Po ∈ F and the set of models F reflects the unavoidable incomplete knowledge
that is available on the plant Po.

It would be preferable to estimate the set of feasible models F meticulously. In this
way, the limited knowledge available on the plant Po in terms of the data {u(t), y(t)}
and the prior assumptions in (2.14) can be represented in the set F exactly. Un-
fortunately, the estimation of such a set F is impractical as the set can be highly
unstructured and is unusable for the design of a robust controller.

In order to formulate a set of models that is suitable for control design, a set of
models that is structured according to Definition 2.2-16 would be preferable. Clearly,
the estimation of such a set P that is imposed to be structured can only approximate
the set F . Furthermore, the approximation of F should be done in such a way that
P outerbounds F . Characterizing a set P that satisfies F ⊂ P also guarantees that
Po ∈ P .

Outerbounding the set of feasible models F will enlarge the set of models for which
a robust controller needs to be designed. As a result, the design of the controller on
the basis of the set P tends to be conservative. This is due to the fact that the
controller should satisfy the robustness conditions as mentioned in Definition 2.2-18
or Definition 2.2-19 for a set of models P that outerbounds F .

Performance and robustness are conflicting requirements (Doyle et al. 1992) that
causes the performance of a designed controller to deteriorate in case of a conservative
control design. Although outerbounding of F by a set of models P is unavoidable, P
should be estimated in such a way, that the performance deterioration of a controller
designed on the basis of P is as small as possible. In that case, an enhanced performing
controller can be designed on the basis of a set of models P. Consequently, the
identification and construction of the coefficient matrix Q mentioned in (2.11) will
play a crucial role in the design of an enhanced performing robust controller.

Approximate identification

In trying to model the plant Po, a distinction can be made between exact and ap-
proximate modelling. In case of exact modelling the attention is focused on trying to
model the plant meticulously by trying to capture the dynamical behaviour of plant
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Po exactly. Approximate identification is concerned with system identification prob-
lems in which the identification technique is used to find approximative models of the
plant Po. In the latter, the effect of undermodelling, i.e. models that are too simple
to describe the plant Po completely, is of main concern. As a result, a mismatch
between the plant and a model is unavoidable.

In most situations, exact modelling of the plant Po is either too costly or imprac-
tical to perform. Especially if models have to be used for control design, deliberate
undermodelling is often required. In general, model-based control design procedures
tend to yield controllers that have the same complexity as the set of model P used to
compute the controller (Boyd and Barrat 1991, Zhou et al. 1996). As a consequence, it
is desired that a set of models P has low complexity to set up a manageable controller
design and to find possibly low complexity controllers.

As indicated in Definition 2.2-16, a set of models P is constructed using an LFT
based on a coefficient matrix Q and an unknown, but bounded allowable model per-
turbation ∆. In light of the possibility to compute low complexity controllers it is
preferable to construct a low order coefficient matrix Q as the complexity of Q will
directly influence the complexity of the controller (Boyd and Barrat 1991). Low com-
plexity modelling of the coefficient matrix Q requires the entries of Q to be modelled
by possibly low order models.

To illustrate this concept one is referred to Example 2.2-17. From this example it
can be seen that the nominal model Q22 = P̂ serves as a “center” for a set of models
P. As a low complexity coefficient matrix Q is preferable, the estimation of a low
complexity nominal model P̂ must be emulated. Additionally, the weighting functions
V and W that are used to normalize the H∞ norm bound on the allowable model
perturbation ∆ should be modelled by low complexity stable and stably invertible
filters.

2.4 Obtaining Models for Control

2.4.1 Modelling for control

As indicated in the previous sections, inexact knowledge of the plant Po is replaced
by an estimate of a set of models P, of which the plant Po should be an element.
Whether or not such an estimated set of models P is actually suitable for the design
of a (robust) controller that is able to improve the performance of the controlled
system, has not been addressed yet.

In this section some of the important issues are discussed, that determine the
usefulness of the set of models being estimated for control design purposes. These
issues include the choice of the nominal model P̂ , as it plays an important role
in the characterization of nominal properties as indicated in Definition 2.2-18 and
Definition 2.2-19. Furthermore the connection between (approximate) modelling and
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model-based control design is outlined and possible solutions in terms of iterative
schemes are summarized. Finally, some existing techniques are mentioned that can
be used to estimate models with uncertainty bounds. These techniques can be used
to complete the characterization of a model uncertainty set.

The effectiveness of the existing techniques to find a set of models P usefull for
robust controller design is evaluated in the last section. It is made clear that in
the currently available techniques for the estimation of a set of models, the intended
(robust) control application of the set P is hardly taken into account. Acknowledging
a link between uncertainty set modelling and the intended robust controller design
opens the possibility to address the usefulness of the set of models that is being
estimated.

2.4.2 The role of a nominal model

The choice of the nominal model P̂ within the set is crucial in constructing the
set. A plant Po that is being controlled successfully by a controller C for which
nominal stability or nominal performance on the basis of a nominal model P̂ cannot
be guaranteed will certainly contest the quality of the nominal model. Alternatively,
a controller C that is not able to satisfy nominal stability or a nominal performance
specification is not going to be a promising controller for the actual plant. As such,
the nominal model P̂ plays an important role in both the system identification and
the subsequent model-based controller design.

The role of a nominal model has been recognized by several authors in the field
of system identification. Some recent contributions in this field can for example
be found in the work by Rivera and Gaikwad (1992), Schrama and Bosgra (1993),
Hakvoort et al. (1994), Zang et al. (1995) or Lee et al. (1995) and many of the reference
listed therein. Although most of the work presented in these reference focuses on
the estimation of a nominal model, instead of characterizing a set of models, the
approximative nature of the nominal model is being raised and questioned (de Bruyne
and Gevers 1994). In the case the nominal model P̂ is considered to be a consistent
or accurate estimation of the plant Po (Ljung 1987), the analysis on the quality of the
nominal model has been done from a variance point of view (Gevers and Ljung 1986,
Hjalmarsson et al. 1996). In the more realistic situation where P̂ is considered to be
an approximation of Po, the analysis has been limited towards the aspects associated
to the bias (Bitmead 1993, Gevers 1993, Van den Hof and Schrama 1995). The bias
thereby refers to the difference between the plant Po and the nominal model P̂ that
is unavoidable due to the approximative nature of the nominal model.

A common idea in the references listed above is the observation that an approxi-
mate identification of a nominal model is allowed, as long as the approximate model P̂

takes into account its intended use, namely the design of a high performing controller
for the plant Po. In case a norm function is used to characterize the performance of
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a feedback connection, the performance of the controller applied to the plant Po can
be delineated by ‖J(Po, C)‖. Even if a controller C is available, a characterization of
‖J(Po, C)‖ is not directly possible, as the plant Po is unknown.

In case ‖J(Po, C)‖ can be expressed in terms of data coming from the feedback
connection T (Po, C), measurements can be used to estimate the performance level
‖J(Po, C)‖. In that case, only a (possibly disturbed) estimate of ‖J(Po, C)‖ is ob-
tained, while the choice of the control objective function J(Po, C) is restricted to
those performance criteria that actually can be measured directly by data. However,
the introduction of a nominal model P̂ can be used to bound any norm of the control
objective function by the following inequalities.

Proposition 2.4-1 Consider a plant Po, a controller C and a nominal model P̂ for
which J(Po, C) and J(P̂ , C) are well defined control objective functions according to
Definition 2.2-13. Then ‖J(Po, C)‖ can be bounded by∣∣∣‖J(P̂ , C)‖ − ‖J(Po, C) − J(P̂ , C)‖

∣∣∣ ≤ ‖J(Po, C)‖
‖J(Po, C)‖ ≤ ‖J(P̂ , C)‖ + ‖J(Po, C) − J(P̂ , C)‖

(2.16)

Proof: Application of the triangular inequality (Luenberger 1969) on the norm
‖J(Po, C)‖, see also Schrama (1992b). �

As indicated by (2.16), a nominal model P̂ can be used to formulate both an upper
and lower bound for ‖J(Po, C)‖, using ‖J(P̂ , C)‖ as a nominal performance cost. A
tight upper and lower bound can be found by minimizing ‖J(P̂ , C) − J(Po, C)‖. For
a given controller C, this minimization constitutes a so-called control relevant iden-
tification problem (Gevers 1993, Van den Hof and Schrama 1995), where a nominal
model P̂ is found by minimizing the difference between the norm-based performance
of the feedback connections T (Po, C) and T (P̂ , C).

Remark 2.4-2 Consider a fixed controller C and a fixed, but unknown, plant Po.
Then the notion of (nominal) control relevant identification denotes the estimation of
a nominal model P̂ by minimizing the difference ‖J(Po, C)−J(P̂ , C)‖ for a particular
norm ‖ · ‖. The difference ‖J(Po, C)−J(P̂ , C)‖ denotes the performance degradation
due to inexact or approximate modelling.

Estimating a nominal model P̂ that minimizes ‖J(P̂ , C) − J(Po, C)‖ for a fixed
controller C and an unknown plant Po is an integral part of a so-called norm-based
identification and control evaluation2. As can be seen from the upper bound on
‖J(Po, C)‖ in (2.16), both the nominal model P̂ and the controller C can be used to
minimize the performance cost ‖J(Po, C)‖.

2Abbreviated and stigmatised to NICE in (Schrama 1992b).
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2.4.3 Iterative schemes

The minimization of ‖J(P̂ , C)‖ using the controller C is similar to the minimization
of (2.6) and corresponds to the design of an optimal controller on the basis of the
nominal model P̂ . Minimizing ‖J(P̂ , C) − J(Po, C)‖ using the nominal model P̂ for
a fixed controller C again corresponds to finding a nominal model P̂ according to the
control relevant identification mentioned in Remark 2.4-2.

Alternately minimizing ‖J(P̂ , C) − J(Po, C)‖ as an identification problem and
‖J(P̂ , C)‖ as a control design problem provides an iterative scheme of subsequent
system identification and control design. By employing such an iterative procedure, it
is hoped that ‖J(Po, C)‖ decreases in order to find an enhanced performing controller
for the (unknown) plant Po.

The idea of alternately minimizing ‖J(P̂ , C)−J(Po, C)‖ via system identification
and ‖J(P̂ , C)‖ via a control design problem forms a basis for many of the iterative
schemes or control relevant identification approaches listed in the literature (Van den
Hof and Schrama 1995). Especially the control relevant identification of a nominal
model P̂ as mentioned in Remark 2.4-2 has gained considerable attention in the field of
system identification. In such an iterative scheme, the control relevant identification
of a nominal model P̂ and the design of a model-based controlled C are applied
iteratively with the aim to minimize the performance cost ‖J(Po, C)‖ in (2.16). To
illustrate the work that has been done in this field, a short overview is presented here.
For reasons of clarity, the overview is split in three main parts.

Exact identification and H2 norm-based control

One of the first steps towards the interaction between identification and control in
case of exact modelling has been made in Åström and Wittenmark (1971) and Gevers
and Ljung (1986). In Gevers and Ljung (1986) it is mentioned that in the case of exact
modelling an H2 norm-based performance degradation, as mentioned in Remark 2.4-2,
can be minimized. For that purpose, a Prediction Error (PE) estimation method
(Ljung 1987) can be applied that uses closed-loop experiments and appropriate data
filters. As such, the usefulness of closed-loop experiments opposite to open-loop ex-
periments to attain information on the plant Po was shown to be fruitful.

Unfortunately, the appropriate data filter contains knowledge of the controller yet
to be designed and to be used for the closed-loop experiments. To circumvent this
circular argumentation, an iterative procedure of identification and model-based con-
trol design can be used to update the knowledge of the data filters. One decade later,
this conclusion is reconfirmed in the paper by Hjalmarsson et al. (1996). Addition-
ally, this paper illustrated very well how the above mentioned circular argumentation
can be interrupted by first estimating a model in an open loop way, followed by a
model-based control design. Subsequently, the resulting feedback connection can be
used for a renewed identification of a model, based on data obtained under feedback.
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This approach is proven to outperform an identification based on the same amount
of data gathered via open-loop experiments.

The above mentioned results illustrate the usefulness of feedback relevant identi-
fication by means of well designed closed-loop experiments. Although the results are
powerful, only variance aspects have been analyzed. Furthermore, the following two
drawbacks can be mentioned.

• The variance results are valid only in case of exact modelling of the plant Po to
be controlled.

• The variance expressions are valid only in the asymptotic case and based on the
assumption of having a infinite number of data points.

The latter is not a severe drawback, as in many practical situations (more than)
enough data points are available in order to rely on asymptotic variance expressions,
as also motivated in Zhu (1990) and Zhu and Backx (1993). However, the demand
on exact modelling of the plant Po for the variance expression to hold is indefensible
in case of identifying a model for control. As indicated in the previous sections,
approximate identification is required in many practical situations in order to be able
to compute possibly low complexity controllers. Exact identification of a complicated
plant Po inevitably leads to the requirement of estimating a high order nominal model.

Approximate identification and H2 norm-based control

The results presented in Wahlberg and Ljung (1986) opened the possibility to charac-
terize the bias in case of approximate identification using a least squares PE-method.
The paper demonstrates that an H2 norm-based (implicit) expression can be used to
characterize the bias of a (nominal) model P̂ being estimated. Furthermore, the bias
was shown to be explicitly tunable, provided that a proper model structure is used in
order to parametrize the model (Ljung 1987).

Based on the work by Wahlberg and Ljung (1986), in Liu and Skelton (1990) the
motivation to use closed-loop experiments from a bias point of view is mentioned.
Approximate identification of a model for the purpose of control design is highly
facilitated by the usage of closed-loop experiments. In that case, closed-loop experi-
ments are utilized to provide the proper weightings filters in an explicitly tunable bias
expression as formulated by Wahlberg and Ljung (1986). A such, closed-loop experi-
ments are regarded to be beneficial for estimating an approximate model suitable for
control design (Liu and Skelton 1990).

However, in both Liu and Skelton (1990) and Hakvoort (1990) the conclusion is
drawn that the controller to be used for the closed-loop experiments is (yet) unknown
and to be designed. From a modelling and model reduction point of view, similar
conclusions can also be found in Skelton (1989). In this line of thinking, the possibility
to use an iterative scheme of identification and subsequent control design is proposed
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in Liu and Skelton (1990). Based on a H2 norm performance cost criterion, such
an iterative scheme can be found in Bitmead et al. (1990b), while simultaneously
similar results are presented in the work by Hakvoort (1990). Primarily, least squares
estimation and H2 norm-based control design techniques are used to set up these
iterative schemes.

Based on the work done by Bitmead et al. (1990b), the so-called Zang-scheme
is developed in Bitmead and Zang (1991), Zang et al. (1992) or Zang et al. (1995).
Slight modifications, improvements and applications based on the Zang-scheme can
be found in the work by Partanen and Bitmead (1993), Partanen et al. (1994b) or
Partanen (1995). The work by Hakvoort (1990) was further developed in Hakvoort
et al. (1992) and Hakvoort et al. (1994).

The idea of providing the proper weightings filters in an explicitly tunable bias
expression during the identification of a (nominal) model has also been used in the
work of Rivera et al. (1992) or Rivera and Gaikwad (1992). However, in these con-
tributions it is presumed that a prefiltering of open-loop data coming from the plant
is able to replace the benefits of closed-loop experiments.

Although the above mentioned methods provide a solution to the interrelation
between identification and control design, again some limitations can be mentioned.

• The analysis is limited to bias considerations only and does not include any
statements regarding the variance of the models being estimated.

• Although approximate identification is performed, hardly any statements with
respect to stability or performance robustness due to the possible mismatch
between model P̂ and plant Po have been incorporated.

• The bias results are valid for the asymptotic case, in which an infinite number
of data points is assumed to be available.

As mentioned before, the latter does not have to be a severe drawback. Al-
though H2 norm-based or LQG controller design has proven to be very successful in
many applications, LQG controllers may exhibit arbitrarily bad robustness proper-
ties (Doyle 1978). Robustness with respect to stability can be regained via a Loop
Transfer Recovery (LTR) technique (Stein and Athans 1987). Still, a cautious control
design is required to avoid any unpredictable performance deterioration (Partanen et
al. 1994a) as performance robustness is not taken into account. The lack of perfor-
mance robustness is due to the bias and variance aspects encountered in the modelling
of the plant. Although the bias of the model during the approximate identification is
tuned towards the intended control application of the model, the model mismatch is
not taken into account during the (nominal model-based) control design.
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Fractional approaches

The observation that many engineering process cannot be operated without additional
feedback due to operational or safety conditions, unleashes the need to estimate mod-
els on the basis of experiments obtained in feedback. Additionally, the variance and
bias analysis results listed in the references mentioned above indicate the usefulness
of closed-loop experiments when estimating models for control.

To deal with the problem of identifying models on the basis of data obtained under
feedback, in Hansen and Franklin (1988) a framework is presented that is based on
fractional model representations. In this framework a model of the plant is described
by the quotient of two stable factors that are parametrized via a so-called dual-
Youla Kucera parametrization. This approach is able to deal with the estimation
of both stable and unstable plants, operating under feedback controlled conditions
(Hansen 1989).

Based on the framework presented by (Hansen and Franklin 1988), an identifica-
tion of a fractional model representation accompanied by an Internal Model Control
(IMC) type of control design is used in Lee et al. (1992) or Lee et al. (1993a) to set
up an iterative scheme. Similar to the H2 norm-based approaches mentioned above,
PE methods are used to estimate a nominal model. The iterative procedure of subse-
quent system identification and IMC are known as the “windsurfer approach”, (Lee
et al. 1993b, Lee et al. 1995).

Similar to the framework of (Hansen and Franklin 1988) in Schrama (1991) a
similar approach is proposed that directly estimates a stable fractional representation
of a model. Using the control design procedure of McFarlane and Glover (1990)
or Bongers and Bosgra (1990), an iterative procedure of approximate identification
of fractional model representations and an H∞ norm-based control design is used
in Schrama and Van den Hof (1992) and Schrama and Bosgra (1993). Although an
H∞ norm design opens the possibility to incorporate robustness issues of the controller
being designed quite easily (Doyle 1979), only a nominal performance specification is
taken into account. This is due to the fact that still only a nominal model is being
estimated, instead of a set of models.

The fractional framework provides a unified approach to handle the estimation
of both stable and unstable plants, operating under closed-loop conditions. Unfor-
tunately the “windsurfer” approach and the approach mentioned in Schrama (1991)
still exhibit the same limitations as mentioned earlier, as only bias considerations are
taken into account. Furthermore, the estimation of a model or factorization is limited
to the estimation of a nominal model (factorization) only.

The estimation of a set of models (using a fractional approach) would open the
possibility to incorporate stability or performance robustness in the controller design.
Furthermore, such a fractional approach would be able to deal with closed-loop ex-
periments and provides a unified approach to deal with stable and unstable systems.
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Given these possibilities, the fractional model approach is an important constituent
in this thesis to address the problem of estimating a set of models on the basis of
closed-loop experiments.

2.4.4 Estimating models with bounds

The various iterative schemes discussed in the previous section have emphasized the
merit of a good nominal model for controller design. Unfortunately, the availability
of only finite time, possibly disturbed, observations of the plant Po will limit the
knowledge of the plant. Hence, even in the case of performing a highly accurate
identification, a single nominal model cannot be considered to be a representative of
the knowledge available on the plant Po.

To incorporate robustness in the design of a model-based controller, a set of models
P must be estimated for the design of a robust performing controller, instead of using
a nominal model P̂ only. Although most of the iterative schemes discussed in the
previous section focus on nominal performance specifications and the estimation of a
nominal model only, alternative approaches to estimating models for (robust) control
can be found in the literature. These approaches are concerned with the estimation
of a nominal model P̂ such that an explicitly computable bound on the modelling
error ∆ can be formulated. In this way, a set of models P similar to (2.11) can be
formed. As already indicated in Section 2.3.2, additional prior assumptions on the
plant Po (and the data) need to be introduced in order to be able to formulate a set
of models P such that Po ∈ P . Such prior information can include the (approximate)
location of the poles of the plant Po, initial conditions or assumptions on the nature
of the noise present on the data coming from the plant Po.

Estimation of nominal models along with an accompanying error bound can be
found in contributions to the so-called identification in H∞ (Helmicki et al. 1990,
Helmicki et al. 1991). Methods for estimating a nominal model along with an explicitly
computable H∞ norm bound on the modelling error ∆ can for example be found
in Partington (1991), Wahlberg and Ljung (1992), Goodwin et al. (1992), Gu and
Khargonekar (1992) or Helmicki et al. (1993). Estimation of modelling error bounds
using a fractional model approach have been reported in van den Boom (1992) and
Mäkilä and Partington (1995) or Mäkilä et al. (1995).

In the approaches mentioned above, a distinction can be made on the basis of the
nature of the assumptions being made or the error bounds being derived. In this way,
stochastic or so-called “soft” error bounding approaches can be distinguished in which
the prior assumptions have a stochastic nature. The stochastic nature of the assump-
tions leads to statistical or probabilistic error bounds and examples of “soft” error
bounding can be found in e.g. (Ljung 1987, Goodwin et al. 1992, Bayard 1992, Rivera
et al. 1993, Ninness and Goodwin 1995b). An alternative branch of model error bound-
ing approaches can be labelled as deterministic or “hard” error bounding. Opposite
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to the “soft” error bounding approaches, deterministic assumptions on the data or
the plant Po are used. As a result, non-probabilistic error bounds are derived. Ex-
amples can be found in e.g. (Wahlberg and Ljung 1992, Chen et al. 1992, Gu and
Khargonekar 1992, Helmicki et al. 1993, Böling and Mäkilä 1995). A combination
of “hard” and “soft” model error bounding may benefit from the advantages associ-
ated to both the statistical and the non-probabilistic error bounding procedures as
mentioned above. Such combinations can be found in the work of de Vries (1994),
de Vries and Van den Hof (1995) or Hakvoort and Van den Hof (1994b), Hakvoort
(1994).

Although the above mentioned techniques are able to estimate a nominal model
P̂ and characterize a bound on the modelling error ∆, most of the methods ignore
the merit of a good nominal approximation of the plant Po for controller design.
Consequently, the following limitations can be summarized.

• The selection of a nominal model is primarily directed towards minimization of
the worst case modelling error.

• In general, the nominal model is not restricted in complexity and is restricted
to be a stable transfer function.

Usually, a performance cost ‖J(P , C)‖ is not taken into account in the selection
of a nominal model P̂ . Instead, a nominal model is selected for which the worst case
H∞ norm bound on the modelling error ∆ is being minimized (Helmicki et al. 1990).
In the case that the modelling error is characterized as an additive uncertainty, this
implies that the open-loop worst case difference between the (data coming from the)
plant and a nominal model will determine the selection of a nominal model, instead
of taking the control application into account.

In minimizing the worst case modelling error, the nominal model is usually
not restricted in complexity, which might give rise to high order nominal models
(Khargonekar et al. 1996). The high complexity of the nominal model is mainly due
to a linear regression used in the model error bounding (Mäkilä et al. 1995). As
mentioned before, limited complexity nominal models are needed in order to set up a
manageable control design and to find possibly low order controllers. In case of the
estimation of a bound on the additive model error, the nominal models are restricted
to be stable in order to use an H∞ norm bound for the additive model error. In view
of the control application such a restriction limits the application of the model error
bounding approach, as control is required for unstable plants especially.

Fortunately, some of the error bounding approaches tend to take the control ap-
plication into account by at least estimating possibly low order, control relevant nom-
inal models along with an additive (or multiplicative) bound on the modelling error
∆ (Hakvoort 1994, de Vries 1994, Bayard 1992). As a result, a set of models P as
mentioned in Example 2.2-17 can be formed and used for subsequent robust control
design.
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Although the merits of a good nominal model have been recognized, the question
remains whether or not a set of models based on an additive or multiplicative bound
on the modelling error is the most suitable set of models for robust control design.
As mentioned before, estimation of a set of models P involves the outerbounding of
the set of feasible model F as given in (2.15). The choice for the structure of the
set of models P, reflected by the coefficient matrix Q in (2.11), is still an open topic.
A coefficient matrix Q that is based on an additive or multiplicative modelling error
does not have to yield a set of models that allows the design of a high performing,
robust controller. Consequently, a stronger motivation on the structure of the set of
models P for the purpose of control design is required.

2.4.5 Evaluation

The various iterative schemes of identification and model-based control design have
illustrated the usefulness of estimating models in view of the control application.
Especially the use of closed-loop experiments for the purpose of approximate identifi-
cation of nominal models for control design has been motivated frequently. Further-
more, the estimation of models along with error bounds provide tools to estimate a
nominal model that is equipped with a measure to qualify the quality of the model.
Unfortunately, both contributions have limitations that need to be dealt with.

Some of the current limitations

• Convergence of an iterative scheme to a specific nominal model P̂ and a con-
troller C has not be proven yet.

The main purpose of an iterative scheme, namely alternately minimizing
‖J(P̂ , C)−J(Po, C)‖ and ‖J(P̂ , C)‖ in (2.16) respectively via a system identification
and a model-based control design does not have to convergence. In many practical
applications the lack of convergence implies that a finite number of steps of subse-
quent system identification and model-based control design are performed until either
no performance improvement or performance deterioration of the feedback controlled
plant Po is observed.

• A step of subsequent system identification and model-based control design is not
guaranteed to attain actual performance improvement of the feedback controlled
plant.

In general, gathering (closed-loop) measurements from a plant may be a time-
consuming and expensive activity. Subsequent system identification and model-based
control design may result in a controller that is inferior to the previous controller being
designed, making all effort superfluous. Even if taking measurements from a plant Po

can be done relatively easy and many iterations of subsequent system identification
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and control design can be performed, the resulting controller does not have to be
optimal.

• Iteratively minimizing ‖J(P̂ , C) − J(Po, C)‖ and ‖J(P̂ , C)‖ in (2.16) by an
iterative scheme does not imply that (the upper bound on) ‖J(Po, C)‖ is actually
being minimized.

It has been illustrated in Hjalmarsson et al. (1995) that minimality of the per-
formance cost ‖J(Po, C)‖ is questionable, even if the iterative scheme has converged
successfully. Especially in the case of undermodelling, where the controller C is de-
signed on the basis of a biased nominal model P̂ that only approximates the unknown
plant Po. As a result, subsequent steps of approximate identification of a nominal
model P̂ and the design of a model-based controller C will not lead to an optimal
controller that actually minimizes ‖J(Po, C)‖.

• The identification and controller design in an iterative scheme restricts attention
to the nominal model and nominal model-based controller design.

In most of the iterative schemes discussed in Section 2.4.3, only nominal models
are being estimated for the design of a controller. Robustness towards stability or per-
formance robustness is taken into account by performing a cautious controller design,
allowing only small modifications of the controller (Schrama 1992b). As indicated
before, this problem can be circumvented by estimating a set of models P , instead of
a nominal model P̂ only, and using the set P in a robust control design procedure.

• Techniques for the estimation of a set of models P in general do not take into
account the intended control application of the set P .

The issue of control relevant identification as mentioned in Remark 2.4-2 has been
addressed frequently for the estimation of a nominal model. However, estimating a set
of models P specifically tuned towards a control application that takes into account
a performance cost ‖J(P , C)‖ for each model P ∈ P has not been reported in the
literature.

Dealing with the limitations

Although the important notions of convergence and optimality are not guaranteed in
the iterative schemes listed above, countless numerical simulation examples presented
in the literature show promising results, see e.g. Bayard and Chiang (1993), Hakvoort
et al. (1994), Lee et al. (1993a), Schrama and Bosgra (1993) or Zang et al. (1995). Suc-
cessful implementations of iterative schemes of identification and model-based control
are less plentiful and have been reported in e.g. Partanen et al. (1994a), Partanen
and Bitmead (1995) and Schrama and Bosgra (1993). The issues of convergence and
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optimality are addressed in these references by performing an adequate number of
iterations so that the performance cost ‖J(Po, C)‖ has reached a satisfactory level.

Inevitably, it is important to have convergence of an iterative scheme in terms
of a performance improvement of the feedback controlled plant. Debatable is the
question, whether or not optimality of a restricted complexity controller applied to the
(unknown) plant is the key issue. From a practical point of view, it is more valuable
to have at least a guaranteed improvement of the performance cost ‖J(Po, C)‖, while
executing a step of subsequent identification and control design. In this way, any
effort put into a step of an iterative scheme is assured to give an improvement of the
performance of the feedback controlled plant. Subsequently repeating the executing of
such a step of identification and control design is then able to improve the performance
of the feedback controlled plant Po robustly.

To monitor and improve the performance cost ‖J(Po, C)‖ of the feedback con-
trolled plant Po robustly, the design of a model-based controller C should not be
focused on a nominal model P̂ only. As mentioned before, the incomplete knowledge
of the plant Po must be taken into account, which can be done by estimating a set
of models P. Estimating such a set of models and the subsequent design of a robust
controller on the basis of the estimated set that improves the performance robustly
are the main items in this thesis.

Although the variance and bias aspects are currently treated separately in the
estimation of models for control, the estimation of a set of models P will include
both the variance and bias aspects. Basically, the estimated set of models or model
uncertainty set represents the limited knowledge of the plant Po. However, the esti-
mated set of models P must be suitable for robust control design in order to enable a
performance improvement of the feedback controlled plant Po. For that purpose, the
structure and the estimation of the set P as mentioned in Definition 2.2-16 should be
tuned towards the intended application of the set and should take into account the
performance cost ‖J(Po, C)‖ that needs to be minimized.

2.5 An Approach to Suboptimal Design

2.5.1 Problem formulation reformulated

The performance of a feedback connection T (P , C) has been characterized by the
norm of a control objective function J(P , C) in Definition 2.2-13. Referring to the
problem formulation mentioned in Section 1.4, the aim is to find a controller C for an
unknown plant Po that is able to improve the performance of a controller currently
implemented on the plant Po. With the assistance of the notion of performance of
Definition 2.2-13 and the restriction on the control objective function J(P , C) men-
tioned in Remark 2.2-15, the problem formulation given in Section 1.4 can be refor-
mulated as follows.
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Problem 2.5-1 Let a plant Po and a controller Ci form a stable feedback connection
that satisfies the performance specification ‖J(Po, Ci)‖∞ ≤ γi. Design a controller
Ci+1 such that the performance ‖J(Po, Ci+1)‖∞ satisfies

‖J(Po, Ci+1)‖∞ ≤ γi+1 < γi. (2.17)

In the problem formulation mentioned above, the subscripts i and i + 1 are used
to indicate a repetitive nature.

Remark 2.5-2 In Problem 2.5-1, the controller Ci corresponds to the known con-
troller that is currently implemented on the unknown plant Po. The controller Ci+1

indicates the controller to be designed and yet to be implemented on the plant Po.

Correspondingly, γi and γi+1 are used to denote the performance level of the controller
Ci and Ci+1 applied to the plant Po, similar to the notion of performance level γ used
in Definition 2.2-19.

In general, a control objective function J(P , C) includes additional weighting func-
tions that are used to represent the performance specifications to be attained. Clearly,
in order to be able to compare J(Po, Ci) and J(Po, Ci+1), or respectively the upper
bounds γi and γi+1 in (2.17), the control objective function J(P , C) should not be
altered during the subsequent design of controllers. For reasons of clarity, this has
been summarized in the following remark.

Remark 2.5-3 In Problem 2.5-1, the control objective function J(P , C) is unaltered
and is assumed to depend on the variables P and C.

As mentioned above, the control objective function J(P , C) may include weighting
functions or additional design specification. However, the alteration of weighting
functions or design specifications that might be present in a control objective J(P , C)
are assumed to be fixed during the subsequent design of controllers in Problem 2.5-1.

It should be noted that Remark 2.5-3 does not imply that the control objective
function is not allowed to be changed. One can think of an additional iteration around
Problem 2.5-1 in order to modify the control objective function J(P , C) by means of
the weighting functions that are included in J(P , C). In that case, Problem 2.5-1
can still be applied by considering some (fixed) control objective function J(P , C)
that is used a reference to compare the different controller being designed. Therefore,
Problem 2.5-1 is considered in an straightforward manner by considering J(P , C) to
be fixed according to Remark 2.5-3.

The repetitive nature of Problem 2.5-1 indicates that performing consecutive steps
of control design, the performance level γ can be improved progressively. It should
be noted that by lowering the value of γ in Problem 2.5-1, the successive design of
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controllers C does not necessarily give rise to an optimal controller C that actu-
ally minimizes ‖J(Po, C)‖∞3. However, the approach delineated in Problem 2.5-1
complies with the problem formulation mentioned in Section 1.4, as the newly to be
designed controller Ci+1 is required to improve the performance of the (existing) feed-
back connection T (Po, Ci). For that purpose, a controller found by the the subsequent
design mentioned in Problem 2.5-1 is called sub-optimal.

The same philosophy of Problem 2.5-1 is used also in the general framework of
H∞ control design to compute sub-optimal controllers, see e.g. Doyle et al. (1992) or
Zhou et al. (1996). In this approach, a controller can be computed that is guaranteed
to satisfy an upper bound similar to (2.17). Next, a sub-optimal controller is found by
lowering the upper bound on ‖J(Po, C)‖∞. In this way, a sub-optimal controller can
be computed, provided that the plant Po is known. In case the plant Po is unknown,
the H∞ norm on the control objective function J(Po, C) in Problem 2.5-1 cannot be
computed.

As indicated in the previous sections, measurements from the plant Po can be
used to acquire knowledge of the plant. The measurements are used to estimating
a set of models P that represents the knowledge available on the plant. In this
way, Problem 2.5-1 is recasted into a model-based procedure. By combining system
identification and robust control design techniques, in the next section an approach
is presented to monitor and improve the performance cost ‖J(Po, C)‖∞ progressively
via a model-based approach.

2.5.2 A model-based procedure

In formulating a model-based procedure to tackle Problem 2.5-1, basically three dif-
ferent items can be distinguished. The first item is associated to determining the
performance level of the controller Ci currently implemented on the plant Po,

1. Firstly a procedure must be found to analyze the upper bound γi for
‖J(Po, Ci)‖∞, where Ci denotes the controller currently implemented on the
plant Po.

In case ‖J(Po, C)‖ can be expressed in terms of data coming from the feedback
connection T (Po, C), measurements can be used to estimate the performance level
‖J(Po, C)‖. Unfortunately, only a (possibly disturbed) estimate of ‖J(Po, C)‖ is ob-
tained, as the performance cost ‖J(Po, C)‖∞ will be subjected to noise and finite time
approximation if noisy observations are used to evaluate the performance specifica-
tion. Additionally, the choice of the control objective function J(Po, C) is restricted
to those performance criteria that can be measured directly by data.

3Convergence of the sequence {γi} to a value γopt ∈ IR does not have to imply Ci → Copt for

some controller Copt that is optimal.
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Using a model-based approach, where the knowledge of the plant Po is repre-
sented by a set of models Pi, evaluation of ‖J(Po, Ci)‖∞ can be done by evaluating
‖J(P, Ci)‖∞ for all P ∈ Pi. In this way, evaluation of the performance level is done
on a model-based level, instead of data-based level and enables the specification of
a control objective function J(Po, C) that cannot be measured directly on the basis
of data. The set of models Pi can also be used to design and possibly improve the
feedback controller.

2. Secondly, the synthesis of a controller Ci+1 that satisfies (2.17) must be formu-
lated.

Clearly, without the guarantee that the newly designed controller is able to improve
the upper bound γi of the performance cost ‖J(Po, Ci)‖∞, the design of the controller
Ci+1 becomes superfluous. However, the set of models Pi being identified previously
can be used to design a robust controller Ci+1 that is able to satisfy

‖J(P , Ci+1)‖∞ ≤ γi+1 < γi (2.18)

for all P ∈ P . With P ∈ Pi, the set of models Pi is not only used to design a new and
improved feedback controller Ci+1. The set of models Pi is also used to guarantee
(2.17) before implementing Ci+1 in a feedback connection with the plant Po.

3. Finally, once a new controller Ci+1 is designed and implemented on the plant
Po, knowledge of an upper bound on the performance cost ‖J(Po, Ci+1)‖∞ can
be updated.

As indicated above, the design of Ci+1 on the basis of the set of models Pi guarantees
the bound mentioned in (2.18), even before implementing the controller Ci+1 in a
feedback connection with the plant Po. Now that the controller Ci+1 is implemented,
the so-called a priori information of (2.18) can be updated with so-called a posteriori
information by taking new data from the feedback connection T (Po, Ci+1).

This new data coming from the feedback connection T (Po, Ci+1) can be used to
update or renew the set of models Pi to Pi+1. Basically, the new feedback connec-
tion T (Po, Ci+1) is used to update the information available on the plant Po and this
information is represented in a new set of models Pi+1. Furthermore, as indicated in
Section 2.4.5, a set of models is suitable for control design if the set takes into account
the closed-loop operation of the models within the set and the control objective func-
tion J(P , C) used to evaluate the performance of the feedback connection T (P , C).
As the controller Ci applied to the plant Po has been updated to Ci+1, the set of
models Pi needs to be updated to Pi+1, using the knowledge of the new feedback
connection T (Po, Ci+1) and control objective function J(P , Ci+1).

In line of the two items mentioned above, this can be labelled as a third item
which highly resembles the identification of a set of models Pi as mentioned for the
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first item. Once a new set of models Pi+1 is estimated, again a new controller can be
synthesized (second item) in order to improve the upper bound on the performance
cost progressively. In this perspective, the identification of the set of models in the
first item can be considered as an initialization of the model-based procedure.

Clearly, a model-based approach using the estimation of a set of models can be
exploited to accomplish the requirements mentioned above. In accordance with the
three items mentioned above, the following (model-based) procedure can be formu-
lated.

Procedure 2.5-4 Let a plant Po and a controller Ci form a stable feedback connec-
tion. To evaluate ‖J(Po, Ci)‖, consider the following step.

1. Use experimental data and prior information on the data or the plant Po to
estimate a set of models Pi such that γi in

‖J(P , Ci)‖∞ ≤ γi ∀P ∈ Pi (2.19)

is minimized, while Po ∈ Pi.

Subsequently, consider the following steps of control design and system identification

2. Design a controller Ci+1 subjected to the condition

‖J(P , Ci+1)‖∞ ≤ γi+1 < γi ∀P ∈ Pi (2.20)

3. Use (new) experimental data and prior information on both the data and the
plant Po to estimate a set of models Pi+1 such that Po ∈ Pi+1 and subjected to
the condition

‖J(P , Ci+1)‖∞ ≤ γi+1 ∀P ∈ Pi+1 (2.21)

The formulation of Procedure 2.5-4 points to a rather general procedure to gen-
erate a sequence of model-based controllers that will satisfy (2.17). Within this pro-
cedure, step 2 reflects the design of a robust controller. Both step 1 and step 3 are
concerned with the identification problem of estimating a set of models P . Referring
to the problem formulation mentioned in Section 1.4, it can be observed that step 3
is not required. However, step 3 provides the opportunity to continue the subsequent
steps of identification and control design, which is explained below.

Again the subscripts i and i + 1 are used to denote the repetitive nature of
Procedure 2.5-4. Similar to Remark 2.5-2, the subscripts are used likewise to dis-
tinguish the set of models being estimated.

Remark 2.5-5 In Procedure 2.5-4, the set Pi and Pi+1 correspond to a set of mod-
els estimated on the basis of prior information on the plant Po and data obtained
respectively from the feedback connections T (Po, Ci) and T (Po, Ci+1).
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Hence, both step 1 and step 3 constitute a similar identification problem to con-
struct a set of models P . The corresponding identification problems differ only in (the
knowledge of) the feedback controller C being implemented on the plant Po, which
is also used to gather data from the feedback connection T (Po, C). However, there is
an other subtle difference which motivates the distinction being made between step 1
and step 3 in Procedure 2.5-4.

Remark 2.5-6 In Procedure 2.5-4, the estimation of the set Pi and the usage of
(2.19) in step 1 denotes a performance assessment test to evaluate ‖J(Po, Ci)‖∞ for
initialization purposes. Subsequently, (2.20) and (2.21) constitute respectively a con-
troller and modelling validation test in order to enforce (2.17) in Problem 2.5-1.

The identification problem present in step 1 of Procedure 2.5-4 can be viewed as an
initialization4 to the design of an improved controller Ci+1 in step 2. Subsequently,
the control design is followed by a renewed identification in step 3 to update the
knowledge of the plant Po using the newly created feedback connection T (Po, Ci+1).
After the initialization of step 1, repeatedly executing step 2 and step 3 will provide
a design procedure in which the upper bound γi on a predetermined performance cost
‖J(Po, Ci)‖∞ can be reduced progressively. A possible evaluation of the subsequent
steps in Procedure 2.5-4 has been depicted in Figure 2.6.
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Fig. 2.6: Possible progress of subsequent steps in the model-based procedure men-
tioned in Procedure 2.5-4, where γi and ‖J(Po, Ci)‖∞ respectively are de-
noted by — and ◦.

It can be observed from Figure 2.6 that step 1 is used as an initialization. The
consecutive design of a controller in step 2 is able to lower the upper bound γi and
modifies ‖J(Po, Ci)‖∞. The renewed identification of a set of models Pi+1 in step 3 is
used to lower the upper bound γ by updating the information on the plant Po, while

4This may also include the estimation of set Pi based on open-loop consideration, where Ci = 0.
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keeping the controller implemented on the plant Po unaltered. Although the identi-
fication in step 1 and step 3 are basically the same, they serve a different purpose.
Still, both the identification problems take into account a control objective function
J(P , C) and will constitute a control relevant identification of a set of models P .

Both the identification problems in step 1 and step 3 are subjected to the condition
that the plant Po should be an element of the set of models being estimated. Verifying
whether or not Po ∈ P can be viewed as a model (in)validation problem (Smith and
Doyle 1992). In such a model invalidation one tries to invalidate Po ∈ P for a given set
of models P by searching for an experiment obtained from the plant Po, that could not
have been produced by any of the models within the set P , see e.g. (Smith 1995, Smith
et al. 1997). Model invalidation techniques can be applied to verify whether or not
Po ∈ P , once a set of models P has been estimated.

Similar to (Hakvoort 1994), in this thesis prior information on the plant Po is
introduced during the estimation of a set of models P . To accomplish Po ∈ P in
Definition 2.2-16, additional information on the data and the plant Po is required.
This is due to the fact that it is not possible to verify or guarantee that Po ∈ P
solely on the basis of finitely many input and output observations of the plant Po

(Ljung 1992, Hjalmarsson 1993). One is referred to chapter 5 for a detailed discussion
on the prior information being used to estimate a set of models. If indeed the prior
information is consistent with the plant Po, the set of models P will contain the actual
plant Po (Hjalmarsson 1993, Hakvoort 1994). Therefore, model invalidation tools to
verify whether or not Po ∈ P will not be considered in this thesis.

Finally it can be mentioned that a monotonically decreasing upper bound γi on
the performance cost ‖J(Po, Ci)‖∞ as depicted in Figure 2.6 is due to the conditions
(2.20) and (2.21) mentioned in Procedure 2.5-4. Although (2.20) and (2.21) guarantee
a monotonically decreasing upper bound γi, the performance cost ‖J(Po, Ci)‖∞ may
still be fluctuating below the upper bound, as can be observed from in Figure 2.6.
However, gradually decreasing the upper bound γi will ameliorate the performance
eventually.

The conditions (2.20) and (2.21) reflect respectively a controller and a modelling
(closed-loop) validation test in order to enforce (2.17). A controller must be designed
that should satisfy the closed-loop validation test (2.20) before implementing it on
the plant. After that, a set of models should be estimated that should satisfy the val-
idation test (2.21). A schematic overview of these validation tests in Procedure 2.5-4
is depicted in Figure 2.7.

As can be seen from Figure 2.7, a distinction can be made between the situa-
tions in which a controller has not and has been implemented on the unknown plant
Po. Accordingly, the notation T (Po, Ci) and T (Po, Ci+1) on the right hand side of
Figure 2.7 is used to denote the data and additional information coming from the
feedback connection of the plant Po and the corresponding controllers Ci and Ci+1.
From Figure 2.7, the initialization of step 1, the control design of step 2 and the sub-
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Fig. 2.7: Schematic flow chart of the three steps and the closed-loop controller (2.20)
and modelling (2.21) validation test in Procedure 2.5-4.

sequent identification in step 3 can be distinguished. In all steps, the predetermined
control objective function plays an important role. The circular in the lower part of
the figure indicates the repetitive nature of Procedure 2.5-4.

2.5.3 Main ingredients

Although the approach sketched in Procedure 2.5-4 is fairly general and somehow
trivial, it does provide a framework for the design of a sequence of controllers that
yield a monotonic and non-decreasing sequence of the upper bound on ‖J(Po, C)‖∞.
A similar idea was proposed also in Bayard et al. (1992), but the results were limited
to a set of models P described by weighted open-loop additive perturbations on the
nominal model as mentioned in (2.12) and a control objective function based on a
(weighted) sensitivity function of the closed-loop system. However, the motivation
to use a set of models P that is described by open-loop perturbations on a nomi-
nal model remains unclear. Obviously, to provide a feasible procedure for handling
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Procedure 2.5-4, the choice for the structure of the set of models P should be ad-
dressed (Van den Hof et al. 1994). Summing up, the following main ingredients need
additional clarification in order to use the model-based approach of Procedure 2.5-4.

• Choice for the control objective function J(P, C) ∈ RH∞. It plays a crucial role
in the closed-loop validation tests and the way the controller is to be designed.
Therefore a specification of the control objective function is needed.

• Choice for the structure of the set of models P . By characterizing the mismatch
between a nominal model P̂ and the plant Po within a set P, one should be
able to evaluate the closed-loop performance assessment test (2.19) and the
closed-loop validation test of (2.20) and (2.21) in a non-conservative way.

• Identification procedure to estimate a set of models P . It should take into
account the control objective function that is used to evaluate the set P in
(2.19) and (2.21).

• Robust control design method. The design of a controller on the basis of a set
of models P in step 2 is needed to ensure (2.17).

In light of Procedure 2.5-4, a discussion of the above mentioned items will form
the basis for the remaining part of the thesis.

2.5.4 Contributions of this thesis

A completion of the items mentioned in Section 2.5.3 is the main contribution of this
thesis. Summarizing, this thesis contributes in merging the results available in the
fields of system identification and robust controller design to constitute a framework
for a model-based approach to the design of robust and enhanced performing con-
trollers for a unknown plant, on the basis of observations coming from the plant. The
emphasize of this thesis lies on the field of system identification, for which new results
on closed-loop identification and model uncertainty set estimation for robust control
design are presented.

In this thesis, a motivation for the structure of set of models or model uncertaity set
P is formulated that takes into account the closed-loop operation of the models within
the set and the control objective function J(P , C) used to evaluate the performance
of the feedback connection T (P , C). Additionally, for such a model uncertainty set
the attention is focused on finding a low complexity representation of the coefficient
matrix Q in (2.11) allowing the design of possibly low order controllers.

Existing results on model uncertainty estimation and robust controller design tech-
niques will be used. However, to improve the suitability of a model uncertainty set
obtained by system identification techniques, the issue of model complexity of both
the nominal model and the model uncertainty bound is addressed in this thesis. New
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results are presented on the estimation of reduced order complexity models to model
a possibly unstable plant. The structure of the model uncertainty set is based on
coprime factor perturbations. This structure has shown to be particularly useful
for identification purposes and is applicable to data obtained under closed-loop or
controlled conditions.

2.5.5 Outline of the remainder

In Section 2.5.2 a solution to the problem formulation in Section 1.4 was presented.
This solution is summarized in Procedure 2.5-4 and in order to complete the main
ingredients of this procedure, the following 6 chapters have been given the following
contents.

chapter 3
In this chapter the identification on the basis of closed-loop data coming from the
feedback connection of the plant Po and a controller C will be discussed. Especially
the problem of estimating approximate models on the basis of closed-loop observa-
tions receives extra attention. Some of the existing techniques are summarized and
evaluated in this chapter.

chapter 4
An identification based on fractional model representations (Van den Hof et al. 1995,
de Callafon and Van den Hof 1995b) is presented in this chapter. The fractional
approach will play an important role in the identification on the basis of closed-loop
data and the construction of the set of models P . It will be shown that the fractional
approach is able to deal with the estimating approximate models on the basis of
closed-loop observations, as discussed in the previous chapter.

chapter 5
The choice and motivation for the control objective function J(P , C) ∈ RH∞ and the
structure of the set of models P used in Procedure 2.5-4 are explained in more detail
in this chapter. Given the control objective function J(P , C) and the structure of the
set of models P , the robust control design problem of step 2 in Procedure 2.5-4 is also
discussed in this chapter. The results are in line with the H∞ norm-based control
design as presented in Zhou et al. (1996).

chapter 6
This chapter is completely devoted to the identification of a set of models P as defined
in chapter 4. The estimation of a set of models P is used either in step 1 or step 3
in Procedure 2.5-4. It is shown that the set of models P is estimated by the separate
estimation of a nominal model P̂ , followed by a estimation of the allowable model
perturbation ∆. Both the estimation of P̂ and ∆ are done within the framework of
fractional model representations. In accordance with the results presented in chap-
ter 3, this provides a framework to handle the approximate identification of possibly
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unstable plants on the basis of closed-loop observations (de Callafon and Van den
Hof 1997).

chapter 7
The application of the model-based approach discussed in Procedure 2.5-4 is illus-
trated in this chapter on a multivariable, three degree of freedom positioning mech-
anism in a wafer stepper. The results in this chapter include the estimation of a set
of models P on the basis of closed-loop observations as discussed in chapter 3 and
chapter 6. Furthermore, the control design of presented in chapter 5 is applied and it
will be shown that an improved feedback controlled positioning mechanism is attained
by subsequent identification and robust control design.

chapter 8
Finally, the last chapter of this thesis is used to present concluding remarks. Addi-
tional recommendations for further research with respect to topic of control relevant
identification can also be found in this chapter.
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Closed-Loop Identification
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3
Identification in the Presence of a

Feedback Controller

3.1 Synopsis

The system identification in this thesis is primarily directed towards the purpose of
designing a model-based feedback controller. Estimating models for subsequent con-
trol design typically involves the identification of a system that is currently operating
or aims at operating under controlled or feedback conditions. Therefore, the usage
of so-called closed-loop experiments will be an important constituent for the system
identification being used here.

The reasoning for the presence of a controlling device while performing experi-
ments on the system is twofold. Firstly, many systems exhibit a poorly damped or
even unstable behaviour. In order to obtain reliable data of the system in a limited
amount of time, performing experiments for identification purposes can only be done
in a controlled or closed-loop setting. Even for stable systems the presence of a con-
troller is frequently required due to unremitting safety and production requirements.
Without the presence of a controlling device, safe and reliable experiments cannot be
performed.

The second mainspring for performing experiments on a system in the presence of
a controlling device is the intended usage of the model. As indicated in Section 2.4.3,
iterative schemes of subsequent identification and model-based control design are
frequently used to address the inseparability of identification and control. In such
an iterative scheme, closed-loop experiments are crucial to obtain an estimate of an
approximate model that should model the dynamical behaviour of the system relevant
for control design. As such, the usage of closed-loop experiments is motivated by the
fact that the dynamics of the unknown system that exhibits in the presence of a
controller is more relevant than the dynamics of the system operating in an open-
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loop fashion (Schrama 1992a).
The problems associated with estimating models on the basis of closed-loop ex-

periments is the main focus of this chapter. First, the general framework of Predic-
tion Error identification is outlined in Section 3.2. Subsequently, it is shown under
which conditions the closed-loop identification problem arises and special attention
will be given to the so-called closed-loop approximate identification problem. Some
of the well-known and recently introduced procedures to deal with the (approximate)
closed-loop identification problem are summarized and evaluated in Section 3.3. It is
shown in this chapter that these procedures can be categorized in three main stream
approaches. The chapter is ended by a short summary in Section 3.4.

3.2 Identification and Closed-Loop Data

3.2.1 Closed-loop observations

The closed-loop identification problem refers to a problem of estimating models on
the basis of closed-loop experiments that have been obtained in the presence of a
feedback controller (Ljung 1987, Söderström and Stoica 1989). Although this is a
very general description of the closed-loop identification problem, it covers the main
bottleneck: the presence of feedback, while gathering data from the unknown plant.
As pointed out before, the presence of feedback is favourable in many practical situ-
ations where an (unstable) plant has to be kept within a specified operating range to
obtain observations for identificational purposes. However, such a closed-loop setting
might introduce some additional unfavourable features that have to be dealt with.

In addition to the identifiability considerations of a feedback controlled plant
(Söderström and Stoica 1989), the presence of feedback may highly influence the ap-
plication and outcome of a system identification procedure being used (Ljung 1987).
Especially in those situations where system identification is used to find a model that
approximates the plant Po, the presence of feedback deserves special attention. As this
situation is of interest here, a more refined definition of the closed-loop identification
problem will be given later in this section.

In order to discuss the problems that are associated to an identification based
on closed-loop experiments, the feedback connection T (Po, C) of the plant Po and a
feedback controller C will be considered here. In this feedback connection T (Po, C),
the variable C is used to denote any stabilizing feedback controller that is (cur-
rently) being implemented on the unknown plant Po. On the basis of the feedback
connection T (P , C) given in Definition 2.2-6, the feedback connection T (Po, C) of
the plant Po and a controller C can be visualized by the block diagram depicted in
Figure 3.1. The feedback connection T (Po, C) of Figure 3.1 indicates the so-called
“actual” or “achieved” feedback connection (Gevers 1993). The actual feedback con-
nection T (Po, C) indicates that the controller C is actually being implemented on the
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(unknown) plant Po in a feedback connection.
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Fig. 3.1: Feedback connection T (Po, C) of plant Po and controller C.

As already indicated in Section 2.2.1, the signal v denotes an additive distur-
bance acting on the output of the plant. The role of the external reference signals
in Figure 3.1 is twofold. From a control point of view, the reference signal r1 can
be used to denote a so-called feedforward signal (van de Vegte 1990). Due to the
negative feedback connection where uc = r2 − y, the signal uc can be interpreted as
an error signal entering a servo compensator (Lauer et al. 1960). In this perspective,
r2 can be viewed as a set point signal present in a servo controlled system. In most
control applications the presence of both signals is unavoidable in order to have the
feedback connection T (Po, C) work properly.

From an identification point of view, the external reference signals are introduced
to provide sufficient excitation of the feedback connection T (Po, C). Without the
possibility to inject additional signals in the feedback connection, identification of the
feedback controlled plant Po may suffer from lack of excitation. Insufficient excitation
may lead to problems associated with the identifiability of the plant Po (Ljung 1987).
For a more detailed discussion on the issues of excitation and identifiability of feedback
systems, one is also referred to the book by Söderström and Stoica (1989). Addition-
ally, the PhD-thesis by Aling (1989) provides additional insight in the conditions of
excitation for identification of feedback controlled plants.

Basically, the conditions on excitation for the identification of a feedback con-
trolled plant boil down to two basic requirements. Either the feedback controller C

being used in T (Po, C) should be sufficiently complex or an external reference signal
should be available to provide sufficient excitation (Söderström et al. 1976, Gustavson
et al. 1977, Anderson and Gevers 1982). The aim of this thesis is not directed towards
the discussion of the problems that are associated with identifiability of feedback con-
trolled systems. Therefore, it is assumed that at least one of the two reference signals
depicted in Figure 3.1 is available and can be used to provide sufficient excitation for
the identification of the feedback controlled plant Po.

In this perspective, the signals r1 and r2 are used to represent the presence of
(known) external signals that act on the feedback connection T (Po, C). As such, the
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signal r2 is used to model an external signal on the input uc of the controller C, while
r1 represents an external signal on the output yc of the controller. It should be noted
that r1 and r2 do not have to be known exactly.

Remark 3.2-1 The signals col(r2, r1) may be built up from a deliberately applied (and
possibly known) pair of reference signals col(r̄2, r̄1) and an unknown pair col(v̄2, v̄1)
such that

r2 = r̄2 + v̄2

r1 = r̄1 + v̄1

(3.1)

Such external reference signals may occur in case the implementation of a (digital)
controller C on the plant Po may introduce noise on the input and output of the con-
troller due to quantization or finite word precision (Hanselmann 1987). To avoid the
cumbersome notation involved in tracking all the possible noise contributions that may
occur in the feedback connection T (Po, C), the noise signals v̄1 and v̄2 are modelled
in the single noise contribution v and col(r2, r1) in (3.1) are assumed to be equal to
the deliberately applied pair of reference signals col(r̄1, r̄2).

Henceforth, the signals r1 and r2 are used to represent the deliberately applied
pair of external signals on the output and input of the controller C. In light of the
identification techniques being used, the noise v is assumed to be uncorrelated with
the reference signals r1 and r2. Furthermore, only a finite number of samples N of
the signals is assumed to be available. Hence the assumptions being made on the
signals present in the feedback connection T (Po, C) can be summarized as follows.

Assumption 3.2-2 For identification purposes, N samples of the discrete-time do-
main signals u(t) and y(t) are assumed to be measurable. The external reference
signals r1(t) and r2(t) in Figure 3.1 provide sufficient excitation of the feedback con-
nection T (Po, C). The additive noise v(t) is assumed to be a stochastic process that
is uncorrelated with the external reference signals and can be modelled as the output
of a monic stable and stably invertible noise filter Ho having a white noise input e(t).

With Remark 3.2-1, Assumption 3.2-2 and the feedback connection T (Po, C), the
data coming from the plant Po operating under closed-loop conditions can be de-
scribed as follows.[

y

u

]
= T (Po, C)

[
r2

r1

]
+

[
I

−C

]
(I + PoC)−1Ho e (3.2)

In (3.2), the mapping T (Po, C) is defined in (2.5), where C can be any (known)
controller that is currently being implemented on the actual but unknown plant Po.
The assumption on the stochastic nature of the noise v in Assumption 3.2-2 is due to
Ljung (1987) and can be used to cover a wide class of noise generating mechanisms
that might be present on the data.
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For notational convenience the shorthand notation

r := r1 + Cr2 (3.3)

is introduced in order to be able to rewrite (3.2) into a convenient and reduced form.
It should be stressed that (3.3) is used only as a shorthand notation and does not
reflect a veritable signal that is actually being reconstructed on the basis of r1, r2 and
the possible knowledge of the controller C.

Remark 3.2-3 The signal r in (3.3) is used solely to denote mutual influence of
the reference signals r1 and/or r2 that provide sufficient excitation according to
Assumption 3.2-2 of the feedback connection T (Po, C) in Figure 3.1. The signal r

is not being constructed from (3.3) as r can be unbounded in case that the controller
C is unstable and r2 �≡ 0.

On the basis of the shorthand notation (3.3), a reduced form of (3.2) can be
formulated as follows.

y = PoSinr + SoutHoe

u = Sinr − CSoutHoe
(3.4)

In (3.4) the variables Sin and Sout denote the input and output sensitivity function
of the feedback connection (Maciejowski 1989) with

Sin := (I + CPo)−1

Sout := (I + PoC)−1
(3.5)

In the case that both Po and C are single-input–single-output (SISO) transfer func-
tions, the multiplication of C and Po is commutative and Sin = Sout. In the multivari-
able situation a distinction must be made between the input and output sensitivity
given in (3.5). As the plant Po is allowed to be a multivariable transfer function, a
distinction is being made between the input and output sensitivity function. Finally
the following algebraic relation between the reference signals r1, r2 and the input u

and output y signals will be used frequently.

Corollary 3.2-4 Consider the signal r defined in (3.3) and the input u and output
y signal given in (3.4). Then the signal r satisfies

r = r1 + Cr2 = u + Cy (3.6)

and is uncorrelated with the additive noise v = Hoe.

Proof: From (3.4) with Sin + CPoSin = (I + CPo)Sin = I, it can be verified that
u + Cy = r1 + Cr2. As both r1 and r2 are assumed to be uncorrelated with v due to
Assumption 3.2-2, r is uncorrelated with v. �
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With (3.6) it can be seen that r in (3.3) also satisfies r = u+Cy where C indicates
the controller being implemented on the plant Po in the feedback connection T (Po, C).
Although both u and y in (3.4) depend on the additive noise v acting on the output of
the plant Po, the linear combination u+Cy is free from the noise contribution v. This
observation is also made in (Schrama 1992b). It should be mentioned that the above
result is valid only for a negative feedback connection as defined in Definition 2.2-6.
In case of a positive feedback with uc = r2 + y, (3.6) modifies into r1 + Cr2 = u−Cy

and the appropriate minus signs must be applied.

3.2.2 Main concepts in identification

Experiments obtained in the presence of a feedback controller constitute the basis for
many closed-loop identification problems. Referring to the data generating system
as mentioned in (3.2) or the short hand notation of the data coming from T (Po, C)
depicted in (3.4), the important and unknown quantities to be modelled are the plant
Po and the noise filter Ho. In case the controller C is unknown, it can also be added
to the list of unknown quantities to be estimated. However, for analysis purposes, the
attention is focused on the problem of estimating Po and Ho first.

Estimation of parametric models

To insinuate the fact that a model is to be found by system identification techniques,
a variable θ is used to denote the unknown quantity present in a linear model that
needs to be estimated. For notational convenience, the plant Po and the noise filter
Ho are stacked into

To := [Po Ho] (3.7)

and the parameter dependency of a model of the unknown transfer function To is
indicated by

T (θ) = [P (θ) H(θ)] (3.8)

where the variable θ denotes the (finite dimensional and real-valued) parameter of a
model T (θ) to be estimated. The model T (θ) is built up from a noise model H(θ)
and an input-output model P (θ) respectively to model Ho and Po. In general, θ may
be used to denote the numeric values present in a state space realization or a transfer
function description of T (θ) stacked into a vector. As such, θ denotes a real valued
parameter vector that needs to be estimated in order to complete a model.

On the basis of the notation given above, a parameter vector θ being estimated
will be denoted by θ̂. As a result, the notation T̂ will be used to denote T (θ̂) or
equivalently, P̂ = P (θ̂) and Ĥ = H(θ̂). As indicated in Assumption 3.2-2, a finite
number N of (time domain) samples are available for estimation purposes. To indicate
specifically that the parameter vector is estimated on the basis of a finite number N

of samples, the notation θ̂N will be adopted. Similar to the argumentation mentioned



3.2 Identification and Closed-Loop Data 71

in Section 2.2.2, additional arguments such as the shift operator q or the complex
valued argument z for a discrete-time transfer function are being omitted to simplify
the notations.

As a free parameter vector θ is used to represent and estimate models T (θ), this
approach is often paraphrased by parametric identification or identification of para-
metric models (Ljung 1987). This notion is used in order to distinguish between
so-called non-parametric identification methods such as spectral analysis or Fourier
analysis (Priestley 1981). In these methods, a model for To is represented by a finite
number of frequency points instead of a real valued parameter vector θ. In both para-
metric and non-parametric identification a model is estimated and represented by a
finite number of real or complex valued parameters. However, in parametric identifi-
cation typically a model is found by estimating a limited number of parameters.

Remark 3.2-5 Although the difference between parametric and non-parametric be-
comes questionable once the dimension of the parameter vector θ increases, the distinc-
tion between parametric and non-parametric will be used here for reasons of clarity.

The way in which the parameter vector θ enters into the model T (θ) is determined
by the parametrization. Formally, a parametrization is a map Π that maps the
parameter vector θ onto a specific model T (θ) as follows

Π : θ �→ T (θ), θ ∈ Θ ⊂ IRd (3.9)

In the above formulation, IRd is used to denote the dimension d of the real valued
parameter vector θ. The additional condition that θ should lie within a prespecified
parameter space Θ being a subset of IRd allows the possibility to put additional
constraints on the parameter vector θ being estimated. Such constraint may include
stability considerations of the model being estimated. In case of the Prediction Error
(PE) framework, an (open) parameter space Θ is used to restrict the predictor to be
stable, see e.g. Ljung (1987), chapter 4.

It should be noted that the map Π in (3.9) does not specify the way in which model
T (θ) is being constructed from a parameter vector θ. As such, the map Π may include
various ways to parametrize a multivariable input-output model P (θ) and noise model
H(θ). Parametrizations of state space matrices as introduced in McKelvey (1996) or a
fully parametrized state space matrices employed in a subspace method (Viberg 1994)
can also be represented by a map Π similar to (3.9). However, a parametrization that
uses a parameter vector θ that has the smallest possible dimension d to represent a
model T (θ) is said to be a minimal parametrization. An important property that a
minimal parametrization may exhibit, is reflected by the notion of identifiability. A
formal definition of identifiability is adopted from Ljung (1987) and is listed below.
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Definition 3.2-6 Consider the map Π given in (3.9). The parametrization Π is
called locally identifiable at θ� if

Π(θ) = Π(θ�) ⇒ θ = θ� ∀θ ∈ Θ

Subsequently, the parametrization Π is globally identifiable if it is locally identifiable
at almost all θ� ∈ Θ.

It can be observed from Definition 3.2-6 that (global) identifiability of a
parametrization Π is concerned with the bijectivity of the map Π. Therefore, identifia-
bility of the parametrization can be considered as a property of finding a unique value
of a parameter vector θ when applying an estimation procedure to find an estimate
θ̂.

A classical result for multivariable models is the impossibility to construct one
bijective continuous map Π that is able to cover all multivariable models up to a pre-
specified McMillan degree (Luenberger 1967). To circumvent this problem, various
alternative parametrizations have been proposed that satisfy the identifiability prop-
erty mentioned in Definition 3.2-6. Well known examples are canonical (overlapping)
parametrizations of state space realizations (Glover and Willems 1974, van Overbeek
and Ljung 1982, Corrêa and Glover 1984, Corrêa and Glover 1986, Janssen 1988) or
the closely related matrix polynomial parametrizations, see e.g. (Guidorzi 1975, Gev-
ers and Wertz 1984, Van den Hof 1989). Alternative canonical parametrization based
on balanced state space realizations (Ober 1987, Ober 1991) can also be used to define
an identifiable parametrization.

Parametrization of transfer function models

In the parametrization Π given in (3.9), both the transfer function of the input-
output model P (θ) and the noise model H(θ) have been parametrized by the same
parameter vector θ. As a consequence, estimation of θ will influence both P (θ) and
H(θ). A frequently used model parametrization that exhibits such mutual influence
of both P (θ) and H(θ) is an Auto Regressive, Moving Average with eXogenous input
(ARMAX) model (Åström and Bohlin 1965).

Adopting to the notation of parametrized transfer functions as used in the frame-
work of the prediction error identification (Ljung 1987), the following prediction error
model is considered

y(t) = P (q, θ)u(t) + H(q, θ)ε(t, θ) (3.10)

where ε(t, θ) denotes the (one step ahead) prediction error and H(q, θ) a monic stable
and stably invertible noise filter. Following (3.10), the parametrization of a discrete-
time linear time invariant ARMAX-model structure can be characterized as follows.

A(q, θa)y(t) = B(q, θb)u(t) + C(q, θc)ε(t, θ) (3.11)
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In (3.11), the parameter vector θ = [θT
a θT

b θT
c ]T while ε(t, θ) is the prediction error.

As mentioned Section 3.2.1, the signals y(t) and u(t) are considered to be obtained
from the plant. The parameter vector θ is used as an argument of the prediction error
ε(t, θ) and denotes the unknown coefficients to be estimated that appear linearly in
the (matrix) polynomials A(q, θa), B(q, θb) and C(q, θc) (Ljung 1987).

Closely related to the ARMAX-model of (3.11) is an ARX-model or equation error
model structure

A(q, θa)y(t) = B(q, θb)u(t) + ε(t, θ) (3.12)

for which the moving average part C(q, θc) in (3.11) is set to identity and θ = [θT
a θT

b ]T

consequently. As the unknown coefficients appear linearly in the matrix polynomials,
(3.12) yields a prediction error ε(t, θ) that is linear in the parameters θa and θb to be
estimated. Linear appearance of the parameter vector θ in the prediction error ε(t, θ)
greatly facilitates the estimation of θ and for that reason ARX-models are popular in
the field of system identification (Rao 1973, Ljung 1987).

As can be seen from (3.11) and (3.12), P (q, θ) = A(q, θa)−1B(q, θb) while
H(q, θ) = A(q, θa)−1C(q, θc) and H(q, θ) = A(q, θa)−1 respectively for the ARMAX-
model (3.11) and the ARX-model (3.12). Clearly, the polynomial A(q, θa) enforces
a mutual influence between the input-output model and the noise model that may
be undesirable. To decouple this mutual influence an independent parametrization of
the input-output model and the noise model can be used.

Π :

[
ϑ

η

]
�→ [P (ϑ) H(η)], ϑ ∈ Θϑ, η ∈ Θη, Θϑ × Θη ⊂ IRd (3.13)

As indicated in (3.13), the parameter vector θ is split up in θ = [ϑT ηT ]T to accomplish
an independent parametrization. Such an independent parametrization of the transfer
functions P (q, ϑ) and H(q, η) is fulfilled in a Box-Jenkins (BJ) model structure (Box
and Jenkins 1970). Again adopting the notation of Ljung (1987), the parametrization
of a Box-Jenkins model structure can be characterized by

y(t) = F (q, ϑf )−1B(q, ϑb)u(t) + D(q, ηd)−1C(q, ηc)ε(t, θ) (3.14)

where P (q, ϑ) = F (q, ϑf )−1B(q, ϑb), H(q, η) = D(q, ηd)−1C(q, ηc) and the parameter
vector θ = [ϑT

f ϑT
b ηT

d ηT
c ]T .

A special case of an independent parametrization Π is obtained by choosing a fixed
value η = η� for the noise filter H(η). As the noise filter is fixed to H(η�), θ = ϑ is
the only free parameter in the parametrization of (3.13). Such a parametrization is
useful if one is interested to find a model for Po, whereas the estimation of a noise
model is considered to be of less importance. A commonly used parametrization that
uses such a fixed noise filter is an Output Error (OE) model structure (Ljung 1987)

y(t) = F (q, θf )−1B(q, θb)u(t) + ε(t, θ) (3.15)
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having a noise model H(η) that has been set to identity. In this way, the estimation of
a noise model is completely decoupled from the estimation of an input-output model.

Additionally, setting F (q, θ) = 1 in (3.15) can be used to facilitate the estimation
of the parameter vector θ. Similar to (3.12), a Finite Impulse Response (FIR) model
with

y(t) = B(q, θb)u(t) + ε(t, θ), B(q, θb) :=
nb∑

k=0

Bkq−k (3.16)

has the property of having both a prediction error ε(t, θ) expressed linearly in the
parameter θ = θb and an independent estimation of the input-output model. Although
the estimation of the parameter vector θ benefits from the linear regression structure
given in (3.16), typically the number of coefficients nb to be estimated in (3.16)
expands dramatically in case a lightly damped plant must be modelled (Heuberger
et al. 1995). This is due to the fact that the poles of the discrete-time input-output
model P (q, θ) = B(q, θ) are all fixed to zero.

The number of parameters to be estimated in the linear regression structure of
(3.16) can be reduced by using a linearly parametrized model structure that is able
to incorporate poles that are unequal to zero. Such a linear regression structure has
been proposed in Heuberger (1991) and is based on an expansion using orthonormal
basis functions Vk(q) that generalize the orthonormal function q−k as used in (3.16).
Following Heuberger (1991), a linear regression model can be formulated as

y(t) =
nl∑

k=0

LkVk(q)u(t) + ε(t, θ) (3.17)

where the orthonormal functions Vk(q) may contain information on the location of
the (stable) poles of the plant Po, see also Heuberger et al. (1995) or Ninness and
Gómez (1995). The parameter vector θ now represents the parameters Lk to be
estimated in the model structure labelled as ORTFIR (Heuberger et al. 1995). Due
to the additional knowledge incorporated in Vk(q), the number of coefficients nl to
be estimated can be reduced significantly compared to the number of coefficient nb

in the FIR-model structure given in (3.16) (Heuberger et al. 1995).

Consistent and approximate estimation

Evaluating the map Π : θ �→ T (θ) given in (3.9) over the allowable parameter space Θ
yields all possible models that are captured by the parametrization Π. In this respect,
a model set M1 can be characterized as follows.

M := {T (θ) | θ ∈ Θ} (3.18)

A similar model set M can be found for the independent parametrization mentioned
in (3.13). In that case, the model set M is built up from models [P (ϑ) H(η)].

1Not to be confused with the notion of a set of models P as given in Definition 2.2-16.
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Clearly, the model set M of (3.18) contains both input-output models P (θ) and
noise models H(θ). For notational convenience, a model set that contains the input-
output models P (θ) only is denoted by G. Formally, this model set Gis defined by

G := {P (θ) | θ ∈ Θ} (3.19)

Perhaps superfluously, it is mentioned that the following two relations hold

To ∈ M ⇒ Po ∈ G
Po �∈ G ⇒ To �∈ M

(3.20)

where To ∈ M is equivalent to the existence of a parameter θo ∈ Θ such that T (θo) =
To. Similarly, Po ∈ G is equivalent to the existence of a parameter θo ∈ Θ such that
P (θo) = Po.

The relations mentioned in (3.20) play an important role in characterizing the
problem of estimating models on the basis of (closed-loop) observations. With the
use of the previously defined model sets M and G, a distinction can be made be-
tween consistent and approximate identification. This distinction is based on the fact
whether or not the models to be identified are an element of either the model set M
or G.

Within the PE framework, estimation of the parameter θ is done by minimizing
the variance of the prediction error ε(t, θ). Given N time domain samples, an estimate
of θ is denoted by θ̂N and is obtained by performing the following minimization

θ̂N = min
θ∈Θ

1
N

N∑
t=1

tr{ε(t, θ)Wε(t, θ)T } (3.21)

where tr{·} denotes the usual trace operator, W is an optional scalar weighting matrix
and ε(t, θ) is the prediction error as found in (3.10). In case the prediction error ε(t, θ)
is a scalar signal, the weighting matrix W can be omitted. In the sequel, the weighting
matrix W will be omitted without loss of generality. The prediction error ε(t, θ) in
(3.21) can also be replaced by a filtered prediction error εf (t, θ) given by

εf (t, θ) = L(q)ε(t, θ)

where the filter L(q) can be used to emphasize,reduce or modify the frequency contents
of the prediction error signal, if needed. With notation of the estimated parameter
θ̂N given in (3.21), the following definition can be given.

Definition 3.2-7 Consider To given in (3.7) and let the model sets M and G respec-
tively be defined in (3.18) and (3.19).
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• The consistent identification problem is defined as the estimation of a parameter
θ̂N ∈ Θ for the situation To ∈ M in which there exists a θo ∈ Θ such that
T (θo) = To. The estimation of θ̂N is consistent if

lim
N→∞

T (θ̂N ) = T (θo) w.p. 1. (3.22)

• The partial consistent identification problem is defined as the estimation of a
parameter θ̂N ∈ Θ for the situation Po ∈ G in which there exists a θo ∈ Θ such
that P (θo) = Po while T (θo) �= To. The estimation of θ̂N is partial consistent if

lim
N→∞

P (θ̂N ) = P (θo) w.p. 1. (3.23)

• The approximate identification problem is defined as the estimation of a param-
eter θ̂N ∈ Θ for the situation Po �∈ G. Approximate identification specifically
considers the problem of estimating approximate models with a limited or pre-
specified McMillan degree.

In case a model set M is chosen such that both the plant Po and the noise model
Ho can be modelled exactly, a consistent estimate of the parameter θo is preferable.
The problem of consistent estimation of both plant and noise model has been studied
extensively in the literature.

Results on either open- or closed-loop data (direct identification) using a PE-
framework can be found in Ljung (1987) and Söderström and Stoica (1989). Con-
sistent estimation of both the plant Po and the noise model Ho (and possibly the
controller used for the closed-loop experiments) based on a so-called joint-input joint-
output method can be found in e.g. Caines and Chan (1975), Caines and Chan (1976)
or Gevers and Anderson (1981). Surveys of several identification techniques for the
consistent identification problem can also be found in Gustavson et al. (1977) and
Gustavson et al. (1981).

Clearly, requiring To ∈ M implies that both the plant Po and the noise filter
Ho have to be an element of the model set M. In most practical situations this
requirement enforces the model set M to be highly complex in order to be able to
guarantee To ∈ M. This is due to the fact that either the plant Po or the noise filter
Ho can have a high order or McMillan degree. In most control applications modelling
of the noise filter Ho is inferior to the estimation of a model for the plant Po. Clearly,
it is the plant Po who is operating in a feedback connection. In the case that the
stability of a feedback connection T (Po, C) is analyzed on the basis of a model, an
inaccurate modelling of a stable and stably invertible noise model will not affect the
outcome. On the other hand, an inaccurate model of the plant Po does give the
opportunity to draw an incorrect conclusion (Schrama 1992b).

In this perspective, the partial consistent estimation given in Definition 3.2-7 is
a reasonable alternative. Approaches to the (partial) consistent identification prob-
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lem using instrumental variable methods, that were originally developed for open-
loop based identification, have been analyzed in Söderström and Stoica (1981) and
Söderström and Stoica (1983) in case the reference signals are used as instruments.
Indirect methods that first estimate the complete closed-loop system in order to re-
compute a consistent estimate of the plant Po can be found in Ljung et al. (1974) or
Gevers (1978). More recent approaches using a subspace based estimation technique
can be found in Verhaegen (1993). Another indirect method that is able to address
the partial consistent identification problem is the two-stage method presented in
Van den Hof and Schrama (1993). An alternative indirect method, that uses a correc-
tion of the parameters of the closed-loop system being estimated via an ARX-model
structure, is reported in Zheng and Feng (1995).

Approximate identification

Despite of the results available on the (partial) consistent identification problems
mentioned in Definition 3.2-7, the possibility to handle the approximate identification
problem would be more valuable. In that case, a (deliberate) approximate modelling
of a complex and unknown plant Po can be used to find low complexity models. This
opens the possibility to estimate models with a predescribed and fixed complexity,
so as to keep track of the order of the model being estimated. Requiring Po ∈ G,
might imply the estimation of unnecessarily high order models contained in the set G
in order to be able to capture the dynamics of the plant completely.

However, the approximate identification will yield a model P (θ̂N ) �= Po. Even in
the case of having an infinite number of data points N , as mentioned in (3.23), the
model being estimated will only yield an approximation of the actual plant Po. For
the limiting case of N → ∞, such a model is characterized by P (θ�) with

lim
N→∞

P (θ̂N ) = P (θ�), w.p. 1 (3.24)

provided that this limit exists. It has been shown in (Ljung 1987) that for the general
framework of PE-methods, the limit (3.24) is well defined and θ� denotes a parameter
vector that satisfies θ� ∈ Θ.

Due to the approximate identification, P (θ̂N ) �= Po in (3.24) and it is desirable to
have an expression of the misfit between the plant Po and the model P (θ̂N ). Such
a tunable (bias) expression can be exploited to shape the approximation being made
and may serve as a design tool while estimating an approximate model of the plant
Po.

Within the PE-framework, the availability of such a tunable and explicit expression
of the misfit between the plant Po and the limiting model P (θ�) can be characterized
by writing down an equivalent frequency domain expression of (3.21). In conformance
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with (Ljung 1987), the variance of ε(t, θ) as used in (3.21) for N → ∞, is denoted by

E{ε(t, θ)ε(t, θ)} := lim
N→∞

1
N

N∑
t=1

E{ε(t, θ)ε(t, θ)T } (3.25)

where E{·} denotes the usual expectation operator. By Parseval’s relation (Ljung
1987, Jackson 1991) the following frequency domain expression holds

E{ε(t, θ)ε(t, θ)T } =
1
2π

∫ π

−π

Φε(ω, θ) dω

where Φε denotes the (auto) spectrum of the prediction error ε. As a consequence, for
the limiting case N → ∞ the estimate θ̂N is given by the following frequency domain
expression.

lim
N→∞

θ̂N := θ� = min
θ∈Θ

1
2π

∫ π

−π

tr{Φε(ω, θ)} dω (3.26)

Equation (3.26) is a fundamental expression in deriving frequency domain expres-
sions for the misfit between the plant Po and the model being estimated, in case of
an approximate identification.

3.2.3 Approximate identification without feedback

In case of open-loop identification, (3.6) reduces to u = r1, while the data coming
from the plant Po given in (3.2) can be reduced to

y(t) = Po(q)u(t) + Ho(q)e(t) (3.27)

describing the open-loop operational conditions of the plant Po. In (3.27), u is uncor-
related with the noise v(t) = Ho(q)e(t) acting on the output of the plant.

Considering the variance of an unfiltered2 prediction error ε(t, θ) mentioned in
(3.25), in Ljung (1987) a frequency domain expression for the misfit between the plant
Po and the limiting model P (θ�) of (3.24) is formulated. For the case in which the
input-output model P (θ) and the noise model H(θ) may have parameters in common,
an expression for the misfit between the plant and the model being estimated can be
obtained by observing that

ε(t, θ) = H(q, θ)−1((Po(q) − P (q, θ))u(t) + Ho(q)e(t))

= H(q, θ)−1((Po(q) − P (q, θ))u(t) + (Ho(q) − H(q, θ))e(t)) + e(t).
(3.28)

As both Ho(q) and H(q, θ) are monic noise filters and e(t) is a white noise, it can
be verified that E{e(t)ẽ(t)} = 0, where ẽ(t) := (Ho(q) − H(q, θ))e(t). Furthermore,

2Similar expression can also be obtained in case a filtered version of the prediction error is being

minimized.
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E{e(t)u(t − τ)T } = 0 ∀τ as e(t) and u(t) are assumed to be uncorrelated. Restricting
to the single-input single-output case to simplify notations, the following (frequency
domain) expression for the auto spectrum Φε(ω, θ) of the prediction error ε(t, θ) can
be obtained

Φε(ω, θ) =
|Po(e iω) − P (e iω , θ)|2Φu(ω) + |Ho(e iω)|2λ

|H(e iω , θ)|2

=
|Po(e iω) − P (e iω , θ)|2Φu(ω) + |Ho(e iω) − H(e iω , θ))|2λ

|H(e iω , θ)|2 + λ

(3.29)

by taking expectation and applying Fourier transform subsequently to (3.28). In
(3.29), Φu(ω) denotes the auto spectrum of the input signal u, while λ denotes the
level of the (constant) auto spectrum of the white noise e(t), making Φε(ω) ≥ λ.

For the limiting case N → ∞, the estimation of a parameter θ� found by mini-
mizing the variance of the prediction error ε(t, θ) as a function of θ, can be written
as

min
θ∈Θ

1
2π

∫ π

−π

|Po(e iω) − P (e iω, θ)|2Φu(ω) + |Ho(e iω) − H(e iω , θ)|2λ
|H(e iω , θ)|2 dω (3.30)

by using (3.26). The above expression is slightly different from the frequency domain
expression mentioned in Ljung (1987, pp. 224), as the level λ in (3.29) of the (constant)
auto spectrum Φe of the white noise e has been eliminated, so that the integral in
(3.30) is larger than or equal to zero.

It can be observed from (3.30) that a trade off is made in the approximate identi-
fication on the basis of open loop data using an input-output model and noise model
with common parameters (ARX- or ARMAX-model structure). This trade off con-
sists of fitting an input-output model P (θ) to Po and fitting a noise model H(θ) to Ho.
In this trade off, the difference |Po −P (θ)|2 is weighted by the (frequency dependent)
input spectrum Φu and the difference |Ho −H(θ)|2 is weighted by a constant λ, while
both are weighted by 1/|H(θ)|2.

Although (3.30) yields an expression for the resulting estimate obtained by ap-
proximate identification and illuminates the trade off being made, it is not an explicit
expression for the misfit between plant Po and a model P (θ) being estimated. This is
due to the fact that the noise filter H(θ�) to be estimated influences the approximate
estimate P (θ�) being obtained, while H(θ�) is not known beforehand.

As indicated in Section 3.2.2, the mutual influence of the estimation of a noise filter
on the estimation of the input-output model can be decoupled by employing an inde-
pendently parametrized model structure (3.13) such as a BJ-model structure (3.14).
Specifically in the case of choosing a fixed noise filter H(η�), not necessarily equal to
Ho, the difference between |Ho − H(η�)| will not contribute to the minimization of
(3.30). Hence, an explicit and tunable expression for the bias or misfit between the
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plant Po and the model P (θ�) can be formulated. In case of the OE-model structure
(3.15) for which H(η�) is set to identity, (3.30) modifies into

min
θ∈Θ

1
2π

∫ π

−π

|Po(e iω) − P (e iω , θ)|2Φu(ω) dω (3.31)

which is ‘a clear-cut best mean-square approximation’ (Ljung 1987) of Po obtained
via a minimization of the additive difference between the plant Po and the model
P (θ), weighted by the frequency dependent input spectrum Φu.

As mentioned above, the integral in (3.31) is larger than or equal to zero and it
can be observed that (3.31) is zero or minimized when P (θ) = Po in case Po ∈ G.
This addresses the partial consistent identification problem of Definition 3.2-7 and is
a known result (Ljung 1987). In case Po �∈ G, an explicit and tunable expression for
the bias of a model found by approximate identification on the basis of open loop
experiments is obtained.

3.2.4 Ignoring the feedback: direct identification

Approximate identification on the basis of data obtained under feedback controlled
conditions has attained attention only recently in the literature. Results on the es-
timation of models on the basis of closed-loop data, that address the approximate
identification problem according to Definition 3.2-7, are less plentiful. This is due to
the fact that finding an explicit and tunable (bias) expression for the misfit between
the plant Po and a modelP (θ) being estimated is more involved in case closed-loop
data is used for the approximate identification.

To illustrate the effects associated to approximate identification on the basis of
closed-loop data, consider the data coming from the plant Po given in (3.2). The
prediction error (3.10) with

ε(t, θ) = H(q, θ)−1(y(t) − P (q, θ)u(t))

can be proposed to (directly) use the input u and output y signal of the plant Po in
an open-loop way for identification purposes. In this way, the feedback is ignored and
such an identification is labelled as a direct closed-loop identification.

As the signals u and y are obtained under feedback, substitution of (3.4) yields
the following prediction error

ε(θ) = H(θ)−1((Po − P (θ))Sinr + (I + P (θ)C)SoutHoe) (3.32)

In (3.32) the arguments t and q are omitted for clarity. Furthermore, r denotes the
signal given in the shorthand notation (3.3), whereas Sin and Sout are given in (3.5).
As mentioned in Corollary 3.2-4, r and e are uncorrelated. Again restricting to the
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single-input single-output case to simplify notations, the following (frequency domain)
expression for the auto spectrum Φε(ω, θ) can be obtained

Φε(θ) =
|Po − P (θ)|2|Sin|2Φr + |1 + P (θ)C|2|Sout|2|Ho|2λ

|H(θ)|2 (3.33)

where the arguments e iω and ω are omitted to further simplify notations and Φr

denotes the (frequency dependent) auto spectrum of the reference signal r given in
(3.3).

Again it can be verified from (3.33) that a trade off is made between fitting a
input-output model to Po and a noise model to Ho by minimizing

min
θ∈Θ

1
2π

∫ π

−π

Φε(ω, θ) dω (3.34)

where Φε(ω, θ) is given in (3.33). However, compared to (3.29), the following two
observations can be made.

• The input Sin and output sensitivity function Sout act as additional frequency
dependent weightings. This is due to the fact that the signals used for identifi-
cation are obtained under feedback or closed-loop conditions. As a result, the
reference signal r, used to excite the input u of the plant, will be filtered by the
input sensitivity Sin. In a similar way, the additive noise v will appear filtered
by the output sensitivity Sout on the output of the plant.

• The noise filter is weighted by an additional term (1 + P (θ)C) that depends on
the model P (θ) to be estimated. This is due to the fact that the input signal u

is correlated with the noise v due to feedback.

The latter causes (3.33) to be untunable expression for the misfit between the
plant Po and a model P (θ) being estimated. Even in the case when a fixed noise filter
H(η�) �= Ho is chosen, the term

|1 + P (θ)C|2|Sout|2|Ho|2λ
|H(η�)|2 (3.35)

still contributes to the minimization (3.34) as P (θ) appears in (3.35), whereas this is
not the case in an open-loop identification. Hence, the estimation of an input-output
model that uses the input u and output y of the plant directly, is implicitly influenced
by the noise contribution present on the data. The misfit between a model and the
plant cannot be tuned explicitly, making the closed-loop more complicated than an
open-loop approximate identification.

To illustrate the problem associated to a closed-loop identification, consider an
OE-model structure with H(η�) = 1. In that case, Φε(ω, θ) given in (3.33), reduces
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to
|Po(e iω) − P (e iω, θ)|2|Sin(e iω)|2Φr(ω)+

+|1 + P (e iω , θ)C(e iω)|2|Sout(e iω)|2|Ho(e iω)‖2λ

(3.36)

As can be seen from (3.36), no explicit and tunable expression for the misfit between
Po and P (θ) is obtained, as in the open-loop case. The noise (filter Ho) still influences
the estimate of the input-output model P (θ) in the second term of (3.36).

Furthermore, the minimization (3.34) of (3.36) with Po ∈ G does not imply
P (θ�) = Po, as minimization of the second term in (3.36) does not imply P (θ�) = Po.
This result on partial consistency was found in the open-loop case, but does not hold
in case closed-loop data is used. In the extreme situation of Φr = 0 ∀ω (no reference
signal) a model P (θ�) is found that minimizes

1
2π

∫ π

−π

|1 + P (e iω, θ)C(e iω)|2|Sout(e iω)|2|Ho(e iω)|2λdω (3.37)

In the case that −C−1 ∈ G, the minimum of (3.37) is attained at P (θ�) = −C−1, even
if Po ∈ G. Clearly, this is an undesired biased estimate of the plant Po and is caused
by the fact that without a reference signal, no distinction can be made between Po

and C present in the feedback connection T (Po, C). As indicated in Figure 3.2, a
natural consequence is the estimation of a model that approximates the inverse of the
controller, no matter what the plant Po might be.
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Fig. 3.2: Closed-loop identification without reference signal.

Assumption 3.2-2 mentions the fact that the external reference signals are intro-
duced to provide sufficiently excitation of the feedback connection T (Po, C). Insuf-
ficient excitation may lead to problems associated with the consistent estimation of
the plant Po, as indicated above. Hence, in many practical situations both reference
and noise are present on the feedback connection T (Po, C) while gathering data for
identification purposes.

Still, even in the case of choosing a fixed noise filter H(q, η�), the term (3.35) will
remain to influence the model P (θ) being estimated. This influence is not known
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beforehand and depends on the noise present on the closed-loop data. As a result, a
model P (θ) being estimated will be biased, even if no approximate identification is
performed, where the bias or misfit between the model and the plant Po depends on
the noise present on the closed-loop data.

Example 3.2-8 The noise may highly influence an identification that is based di-

rectly on the input u and output y signal of a plant Po obtained under feedback. To

illustrate this effect, consider the plant

Po(q) =
q − 0.6

(q − 0.95)(q − 0.95)
=

q−1 − 0.6q−2

1 − 1.9q−1 + 0.9025q−2

that is controlled by unity feedback (C = 1) to form a feedback connection T (Po, C)
as depicted in Figure 3.1. The reference signal r = r1 + Cr2 is chosen as a zero

mean normally distributed white noise signal with variance 1. The noise v acting on

T (Po, C) is given by

v(t) = λHo(q)e(t), Ho(q) =
q − 0.1
q − 0.9

(3.38)

where e(t) is a zero mean normally distributed white noise signal with variance 1 and

uncorrelated with r. To illustrate the influence of the noise v acting on the system,

the noise intensity variable λ in (3.38) is used to modify the variance of the noise.

To model the plant Po, an OE-model (3.15) is used with

F (q, θ) = 1 + f1q
−1 + f2q

−2, B(q, θ) = b0 + b1q
−1 + b2q

−2

hence, Po ∈ G but To �∈ M. For the identification of a model, 1000 data points of the

closed-loop input u and output y signals are used. To illustrate the effect of the noise,

3 different experiments are simulated where the noise intensity λ in (3.38) is set to 5,

1 and 0.2 respectively, while the variance of the reference signal r is kept the same.

On the basis of these 3 experiments, 3 OE-models are estimated. A Monte Carlo

simulation is performed where the above mentioned experiments and subsequent OE-

model identification are invoked 10 times. An amplitude Bode plot of the resulting

models P (θ̂) being estimated is plotted in Figure 3.3.

It can be observed from Figure 3.3 that the intensity of the noise highly influences

the bias of the input-output model, whereas no noise model is being estimated. Fur-

thermore it can be seen that the models are biased from the plant Po, even though an

OE-model structure is chosen that is able to capture the dynamics of the plant com-

pletely. In case the noise level is large (λ = 5) the model being estimated approaches

−C−1 = −1. ♦
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Fig. 3.3: Amplitude Bode plots of plant Po(e iω) (—) and 10 realizations of OE-
models P (e iω , θ̂) being estimated for noise intensity λ = 5 (· · · ), λ =
1 (− −) and λ = 0.2 (− · −).

3.2.5 The closed-loop identification problem

In case of a closed-loop identification, noise is fed back to the input. As indicated
in Example 3.2-8, a model estimated on the basis of the input u and output data
y directly, depends on the noise acting on the feedback connection. No explicit
and tunable expression is obtained for the misfit between the plant and a model
being estimated and even the partial consistent identification problem mentioned in
Definition 3.2-7 cannot be handled in case the identification uses the closed-loop input
u and output y of the plant Po directly. For the direct identification, two situations
can be distinguished that are able to deal with the partial consistency identification
problem.

• λ = 0

This means that no noise is present on the closed-loop data. In that case, (3.33)
modifies into

Φε(ω, θ) = |Po(e iω) − P (e iω , θ)|2|Sin(e iω)|2Φr(ω) (3.39)

that is similar to the integrand of (3.31) as Φu(ω) = |Sin(e iω)|2Φr(ω) in case
no noise is present on the input signal u. The same results, as obtained for
the open-loop situation, can be applied to the closed-loop identification in the
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absence of noise. A closed-loop identification without noise can be treated as
an open-loop identification problem. An explicit and tunable expression for the
misfit between the model P (θ) and the plant Po is obtained, although the misfit
does depend on the unknown transfer function of the input sensitivity function
Sin in (3.39).

• H(q, η�) = Ho(q)

Choosing a fixed noise filter H(η�) equal to the actual (but unknown) noise
filter Ho modifies (3.33) into

Φε(ω, θ) = |Po(e iω) − P (e iω , θ)|2 |Sin(e iω)|2Φr(ω)
|H(e iω, η�)|2 +

|1 + P (e iω , θ)C(e iω)|2|Sout(e iω)|2λ
(3.40)

Although (3.40) is slightly more complicated than (3.39), it can be observed
that P (θ�) = Po in case Po ∈ G. As

1
2π

∫ π

−π

Φε(ω, θ) dω ≥ λ (3.41)

the minimum of (3.41) is attained at P (θ�) = Po as (1 + PoC)Sout = 1. Unfor-
tunately, in case of approximate identification (3.40) does not provide a tunable
expression for the misfit between a model P (θ) and the plant Po as the level λ

of the noise still determines the trade off between the two terms in (3.40).

Actually, having both H(q, η�) = Ho and Po ∈ G is equivalent to the situation
of To ∈ M addressing the consistent identification problem. The result on
consistent identification in the presence of feedback is known to hold (Ljung
1987).

Both situations discussed above cannot be emulated in many practical situations.
Noise free data is considered to be unavailable, whereas choosing a noise filter H(η�) =
Ho can be considered as an identification problem involving a consistent estimation
of the noise filter dynamics. As such, the partial consistent identification problem for
closed-loop data needs to be addressed in more detail. Additionally, an identification
on the basis of closed-loop data that allows an explicit tuning of the misfit between
model and plant is required as a design tool for estimating an approximate model of
the plant Po.

In the direct identification, only the input u and output y of the (possibly un-
stable) plant Po are used for identification. In order to formalize the closed-loop
identification problem discussed here, the information to be used for the closed-loop
identification is not restricted solely to the signals u and y. Additional knowledge of
either the reference signals r1 and r2, the controller C or any other information of the
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components in (3.4) remains open and in this perspective, the following closed-loop
identification problem is considered here.

Definition 3.2-9 Consider the model set G given in (3.19) and the assumptions posed
in Assumption 3.2-2. Based on the available knowledge of signals in (3.4) or addi-
tional information on the feedback connection T (Po, C), the closed-loop identification
problem is defined as the estimation of a (nominal) model P̂ = P (θ̂N ) for which the
limiting model P (θ�) in (3.24) should satisfy the following requirements.

• The closed-loop partial consistent estimation problem: in case Po ∈ G, the model
P (θ�) should satisfy P (θ�) = Po.

• The closed-loop approximate estimation problem: in case Po �∈ G, an expression
should be obtained in which the misfit between the plant Po and a model P (θ�)
of specified limited complexity is tunable and can be made independent of the
noise v present on the closed-loop data.

The first item in Definition 3.2-9 addresses the partial consistent identification
problem mentioned also in Definition 3.2-7. The second item is concerned with the
approximate identification of the plant Po. Specifically, an explicit and tunable expres-
sion for the misfit or bias of the model that approximates the plant Po is formulated
as a desired property.

Although the estimation of the noise filter Ho is not explicitly mentioned in
Definition 3.2-9, both items (may) incorporate the approximate identification of a
noise model, as To ∈ M is not required. As mentioned before, the plant Po is a
crucial element in the construction of a feedback connection T (Po, C) and therefore
the main attention is focused on modelling the plant Po in this thesis.

3.3 Approaches to the Closed-Loop Identification Problem

3.3.1 Exploiting the knowledge of feedback

In the classical approaches to closed-loop identification such as the joint-input-joint-
output method (Anderson and Gevers 1982, Söderström and Stoica 1989) or the
direct identification (Ljung 1987, Ljung 1993a) as discussed in Section 3.2.4, neither
the (exact) knowledge of the reference signals r1 and r2 nor the feedback controller C

is used. Only the input u and output y signals are used for identification purposes.
Although the classical approaches provide consistency results in case To ∈ M,

these approaches cannot deal with the partial consistent or the approximate closed-
loop identification problems mentioned in Definition 3.2-9. During the last decade,
the approximate identification on the basis of closed-loop data has considered to
be of more practical importance. As a result, alternative methods to deal with data
obtained under feedback have been proposed. In light of the closed-loop identification
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problem mentioned in Definition 3.2-9, some of these methods will be summarized in
this section.

As mentioned in Definition 3.2-9, available knowledge of the signals in (3.4) or
additional information on the feedback connection T (Po, C) can be used for the iden-
tification on the basis of closed-loop data. Exploiting the freedom in specifying this
knowledge enables the formulation of alternative solutions to the closed-loop identifi-
cation problem. In order to delineate the various approaches to tackle the closed-loop
identification problem, the following distinction is being made.

Remark 3.3-1 The available knowledge of the signals in (3.4) and the additional
information on the feedback connection T (Po, C) is considered to consists of the fol-
lowing items.

• Knowledge of input signal u and/or output signal y.

• Knowledge of the reference signals r1 and/or r2.

• Knowledge of the controller C.

In most of the closed-loop identification procedures discussed here, the (possibly
disturbed) input u and output y signal of the plant Po are assumed to be known and
measurable in order to estimate a model of the plant. Requirements on the knowledge
of the reference signals r1 and/or r2 can refer to either known and measurable reference
signals or knowledge regarding the presence and excitation properties of reference
signals. In the latter, the reference signals are considered to be unknown, as they
are not used for identification purposes but merely for excitation of the closed-loop
system. Finally, the knowledge of the (possibly unstable) controller that creates a
stabilizing feedback connection T (Po, C) can be used in the identification of models.
In accordance with Assumption 2.2-4, the knowledge of the linear controller C is given
by either a transfer function or a state space representation.

It should be noted that knowledge of the signals u and/or y, the reference signals
r1 and r2 or the controller C cannot be considered to be independent. With (3.3) it
can be seen that

r1 + u = C(r2 − y)

and implies that knowledge of C the reference signals r1 and r2 and the output signal
y can be used to compute u. Alternatively, knowledge of the reference signals r1 and
r2 and the input u and output y signals implies knowledge of the controller C, as
r2 − y and r1 + u are respectively the noise free input and output signals of C.

A further classification of the different approaches of closed-loop (approximate)
identification discussed in this chapter, is based on the following properties that in-
volve stability.
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Remark 3.3-2 With respect to stability of the plant Po and the controller C the
following items play a role while estimating a model on the basis of closed-loop data.

• The possibility to consistently estimate unstable plants Po.

• The ability to deal with closed-loop experiments obtained with an unstable con-
troller C.

• The guarantee that a model P̂ being estimated is stabilized by the controller C

used in the feedback connection T (Po, C).

Both the plant and the controller are allowed to be unstable, as long as the feedback
connection T (Po, C) is stable. Consequently, a closed-loop identification technique
should also be able to identify an unstable plant Po, on the basis of time domain data
obtained via a stabilizing feedback connection T (Po, C). The ability to deal with
an unstable controller C during the identification procedure is due to the fact that
many controllers, like a PID, are equipped with an integrator to provide steady-state
tracking of the reference signal r2 (Maciejowski 1989, Boyd and Barrat 1991). As
a consequence, the controller is marginally stable and the identification procedure
should be able to deal with such controllers. Finally, the possibility to guarantee that
a model found by a system identification technique is guaranteed to be stabilized by
the controller C, used during the closed-loop experiments, is sometimes preferable. A
model of a plant Po that is not stabilized by a controller C, while the same controller
is used in a stable feedback connection T (Po, C), will certainly cast doubts on the
quality of the model.

Basically, three main approaches to address the closed-loop identification problem
are discussed in the remaining part of this section. These three approaches are split
up in the following distinguishable closed-loop identification methods.

1. Indirect identification

2. Customized identification

3. Two-stage identification

The above mentioned methods provide valuable tools and insights for the items as-
sociated to the closed-loop identification problem mentioned in Definition 3.2-9. The
items mentioned in Remark 3.3-1 and Remark 3.3-2 will be quoted in the discussion
of the closed-loop identification procedures presented in the remaining part of this
section. Each of the different methods will be evaluated for their usefulness consider-
ing the closed-loop identification problem mentioned in Definition 3.2-9 and the above
mentioned items.
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3.3.2 Indirect identification

Opposite to the direct identification mentioned in Section 3.2.4, an alternative to deal
with closed-loop experiments is called indirect identification. This method is based
on the idea of first estimating a closed-loop transfer function and then recalculating
the model by using the knowledge of the controller C present in the estimated closed-
loop transfer function. Summarizing, an indirect identification method consists of the
following two steps.

1. Identify a closed-loop transfer function by considering the reference r1 and/or
r2 as input signals and the plant signals u and/or y as output signals.

2. Recalculate an open-loop model P̂ (and a noise filter model Ĥ) from the iden-
tified closed-loop transfer functions (possibly by using the knowledge of the
controller C)

Referring to the Remark 3.3-1, the indirect method of closed-loop identification
requires the knowledge (known and measurable) of at least one of the reference signals
r1 or r2 and one of the plant signals u or y. These signals are used to estimate a
closed-loop transfer function. Additionally, the knowledge of the controller is needed
to recompute an (open-loop nominal) model P̂ on the basis of identified closed-loop
transfer functions.

A model P̂ is estimated indirectly, as first a closed-loop transfer function is being
estimated from which the model P̂ is computed. The crucial part is the reconstruction
of a (nominal) model P̂ from the identified closed-loop transfer function. Both steps
are discussed in more detail.

Estimation of closed-loop transfer function

It can be observed from (3.2) that essentially four possible closed-loop input-output
transfer functions and two possible closed-loop noise models can be accessed on the
basis of closed-loop data. The four different transfer functions are given by the entries
of the T (Po, C) matrix given in (2.5), while the two different noise filters consists of
SoutHo and −CSoutHo as given in (3.4).

The first step in indirect identification is the estimation of a closed-loop transfer
function. For notational convenience, the four available closed-loop transfer functions
in T (Po, C) are denoted by the short hand notation

Go =

[
Go,11 Go,12

Go,21 Go,22

]
:=

[
PoSinC PoSin

SinC Sin

]
(3.42)

while the two different noise filters are denoted by

Lo =

[
Lo,1

Lo,2

]
:=

[
I

−C

]
(I + PoC)−1Ho (3.43)
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Similar to (3.10) a prediction error model can be defined that uses the reference signals
col(r2, r1) as inputs and col(y, u) as outputs. Consequently, a prediction error model
can be expressed as follows[

y(t)

u(t)

]
= G(q, θ)

[
r2(t)

r1(t)

]
+ L(q, θ)ε(t, θ) (3.44)

where G(q, θ) and L(q, θ) are used to model respectively the closed-loop input-output
transfer function Go given in (3.42) and the closed-loop noise filter Lo given in (3.43).
Clearly, depending on the available knowledge of the reference signals r1, r2 and the
plant signals u, y, either all or parts of Go or Lo can be estimated.

The reasoning to estimate a closed-loop transfer function first, is induced by the
fact that the identification does not suffer from undesirable bias effects. The reference
signals that are used for the identification are not correlated with the noise acting
on the feedback connection T (Po, C) as in a direct identification. As a result, the
estimation of a closed-loop transfer function reduces to a standard open-loop identi-
fication problem, as discussed in Section 3.2.3. The only difference is the estimation
of a (closed-loop) input-output model Ĝ and noise filter L̂, instead of estimating an
(open-loop) model P̂ and noise filter Ĥ directly.

Under the same conditions as in the open-loop case, a consistent estimation can
be obtained of a closed loop transfer function. Furthermore it should be noted that
not all the closed loop transfer functions in (3.42) need to be estimated. Similar
to the open-loop case, an OE-model structure in (3.44) allows a separate consistent
estimation, or partial consistent estimation see Definition 3.2-7, of the closed-loop
input-output transfer function Go given in (3.42).

Computation of a model

From the estimated closed-loop transfer functions, either an estimate of the plant Po,
noise filter Ho or the controller C can be computed. This constitutes the second step
in an indirect closed-loop identification. The reconstruction of the different elements
within the feedback connection T (Po, C) can be done in different ways.

It can be observed from (3.42) that the controller C can be reconstructed via
C = G−1

o,22Go,21. Hence, estimating models Ĝ22 and Ĝ21 to model respectively Go,22

and Go,21 can be used to come up with an estimate of the controller given by Ĝ−1
22 Ĝ12.

In a similar way, a model P̂ of Po and a noise model Ĥ of Ho can be reconstructed
from the estimates Ĝ11, Ĝ12, Ĝ22 and L̂1 via

P̂ = Ĝ12Ĝ
−1
22

Ĥ = (I − Ĝ11)−1L̂1

(3.45)

These estimates can be computed, provided that the inverse of Ĝ22 and (I − Ĝ11) are
well-defined. As Ĝ22 and (I − Ĝ11) are estimates of respectively the input sensitivity
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(I + CPo)−1 and the output sensitivity (I + PoC)−1 invertibility can be guaranteed,
since T (Po, C) is assumed to be a well-posed feedback connection. Finally, some
remarks can be given with respect to the monicity of the constructed noise filter Ĥ .
Clearly, the estimate of Ĥ is monic if (I − Ĝ11)−1 is monic, as L̂1 is estimated as a
monic stable noise filter. As (I − Ĝ11) is an estimate of the input sensitivity function
(I + CPo)−1, the inverse (I − Ĝ11)−1 is likely to be monic. In fact, if the model Ĝ11

does not have a feedthrough term, the inverse (I − Ĝ11)−1 is monic.
Procedures that estimate all the closed loop transfer functions in (3.42) in order

to reconstruct an estimate of Po and possibly C and Ho, have been presented in Bret-
thauer and Heckert (1991) and Verhaegen (1993). In Verhaegen (1993) a subspace
identification method is used that aims at estimating the closed-loop transfer func-
tion Go given in (3.42) and/or the closed-loop noise filter Lo in (3.43) consistently.
Subsequently, models for Po, C (and Ho) can be reconstructed as mentioned above.

In case the controller C is known, this knowledge can be used to recompute models
of Po (or the noise filter Ho). Instead of estimating multiple input-output transfer
functions, it suffices to estimate only one input-output closed-loop transfer function
(Van den Hof and de Callafon 1996). The result has been summarized in the following
proposition.

Proposition 3.3-3 Let Ĝ11, Ĝ12, Ĝ21 and Ĝ22 denote estimates of the input-output
closed-loop transfer functions given in (3.42) while L̂1 and L̂2 denote estimates of
the closed-loop noise filters given in (3.43). Under the assumption that T (P̂ , C) is a
well-posed feedback connection, the following reconstructions of an (open-loop) model
P̂ and an (open-loop) noise filter Ĥ can be considered by using the knowledge of the
controller C.

(a) Ĝ11 = P̂ (I + CP̂ )−1C and L̂1 = (I + P̂C)−1Ĥ imply that Q̂ := (I − Ĝ11)−1 is
well defined and

P̂ = (Q̂ − I)C†

Ĥ = Q̂L̂1

(3.46)

provided that C has a right inverse C†

(b) Ĝ12 = P̂ (I + CP̂ )−1 and L̂1 = (I + P̂C)−1Ĥ imply that Q̂ := (I − Ĝ12C)−1 is
well defined and

P̂ = Q̂Ĝ12

Ĥ = Q̂L̂1

(3.47)

(c) Ĝ21 = (I + CP̂ )−1C and L̂2 = −C(I + P̂C)−1Ĥ imply that Q̂ := (Ĝ21C
−1)−1

is well defined and
P̂ = C−1(Q̂ − I)

Ĥ = −C−1Q̂L̂2

(3.48)
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provided that C has an inverse C−1

(d) Ĝ22 = (I + CP̂ )−1 and L̂2 = −C(I + P̂C)−1Ĥ imply that Q̂ := (Ĝ22)−1 is well
defined and

P̂ = C†(Q̂ − I)

Ĥ = −C†Q̂L̂2

(3.49)

provided that C has a left inverse C†

Proof: It can be verified that the transfer function Q̂ denotes either the input sensi-
tivity (I+CP̂ )−1 or output sensitivity (I+CP̂ )−1 for which the inverse is well defined.
The subsequent expressions for P̂ and Ĥ are found by algebraic manipulations. �

The reconstructions of a (nominal) model P̂ and noise filter Ĥ in Proposition 3.3-3
point to the different situations that may occur in the application of indirect closed-
loop identification. The different situations depend on the availability of the reference
signals r1, r2 and plant signals u, y used during the first step of an the indirect
identification.

The reconstruction in (a) occurs when the reference signal r2 is used as an input
signal and y is used as an output signal. In that case G11 = PoSinC and L1 = SoutHo

need to be estimated. In a similar way, the other situations can be characterized in
terms of the use or availability of the reference signals r1 or r2 and the plant signal u

or y. In the following, the attention is focused on the estimation of a (nominal) model
P̂ as this is of main interest for the closed-loop identification problems mentioned in
Definition 3.2-9.

Special attention deserves situation (b) mentioned in Proposition 3.3-3. It can be
observed that for (3.47) no conditions on the controller C are posed. In all other
situations, either a left inverse, right inverse or both (an inverse) of the controller
must be computable in order to reconstruct the model. Situation (b) reflects the
situation in which r1 is used as an input and y as an output signal in the first step of
the indirect identification. With (3.3), this is also the situation where the signal r can
be considered to be an input signal while identifying the closed-loop transfer functions
G22 and L1. As mentioned in Remark 3.2-3, using the signal r directly requires the
controller C to be stable in order reconstruct r from the available r1 and r2.

As the reconstruction in (3.47) does not pose any conditions on the controller C,
most of the indirect closed-loop identification schemes are based on the estimation of
the closed-loop transfer function Go,12 = PoSin (Ljung et al. 1974, Söderström and
Stoica 1975, Zhu et al. 1988, Söderström and Stoica 1989, Zheng and Feng 1995). It
should be noted that not every indirect method uses the reconstruction of a model P̂

accordingly to Proposition 3.3-3. In Zheng and Feng (1995) the relation between the
parameters of an open-loop model and an estimated closed-loop transfer function is
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used to recompute an open-loop model P̂ . In some of the closed-loop indirect identifi-
cation schemes, such as Zhu et al. (1988), the reconstruction of a nominal (open-loop)
model P̂ is omitted and the estimated closed-loop transfer function is considered to
be a model of the plant Po operating in feedback. In that case, knowledge of the
controller C is not required as no open-loop model P̂ is being computed. Although
the other reconstructions may be used in case the appropriate conditions on the con-
troller C are satisfied, an indirect identification that uses either (3.47) of (3.45) will
be considered in the sequel.

Evaluation

As the first step of the indirect identification is just an open-loop identification prob-
lem, a consistent estimate Ĝ of a closed-loop transfer function Go can be obtained,
provided that the reference signals are persistently exciting (Assumption 3.2-2). Sub-
sequently, either from (3.45) or (3.47) an estimate P̂ of Po can be obtained. It can
be verified that Go,12 = Ĝ12 implies Po = P̂ , hence the indirect identification is able
to deal with the closed-loop partial consistent identification problem.

In order to get a consistent estimation of a closed-loop transfer function, a model
set M must be used that is able to capture both the dynamics of the plant Po and
the controller C. Provided that no pole/zero cancellations occur between the plant
Po and the controller C, the McMillan degree ng of the closed-loop transfer functions
given in (3.42) is the sum of the McMillan degree no of Po and the McMillan degree
nc of C. Consequently, a consistent identification of a closed-loop transfer function in
the first step of an indirect method requires a model set M that parametrizes models
having a McMillan degree ng = no + nc that is higher than needed in order to model
the plant Po.

Additionally, a (nominal) model P̂ computed via (3.45) or (3.47), in general will
have a McMillan degree that is larger than or equal to the McMillan degree ng of
the estimated closed-loop transfer function. Possible pole/zero cancellations (unob-
servable or uncontrollable modes) must be eliminated to find a low order model P̂ .
This also effects the closed-loop approximate identification problem mentioned in
Definition 3.2-9. Referring to the construction of P̂ described in (3.47), an approxi-
mate identification of Go,12, using an OE-model G12(θ) similar to (3.15), leads to the
following frequency domain expression for the variance of the prediction error

1
2π

∫ π

−π

|Go,12(e iω) − G12(e iω , θ)|2Φr(ω) dω (3.50)

Clearly, the integral expression in (3.50) is similar to (3.31) and yields a tunable
expression for the misfit between Go,12 and the closed-loop transfer function model
Ĝ12 being estimated. Furthermore, the approximate identification is independent of
the noise v acting on the feedback connection T (Po, C).
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There is however an essential difference between the integral expressions of (3.31)
and (3.50). Although Ĝ12 = P̂ (I +CP̂ )−1 implies P̂ = (I− Ĝ12C)−1Ĝ12, the transfer
function G12(θ) in (3.50) is not parametrized according to P (θ)(I + CP (θ))−1. In
other words, the tuning of the approximate identification of P̂ is clear from (3.50),
but the set of models M over which the optimization takes place is different. This
is due to the fact that the model P (θ) in the direct identification is parametrized as
P (θ) = (I − Ĝ12(θ)C)−1Ĝ12(θ). As a result, the estimation of a low order (nominal)
model becomes difficult as the McMillan degree of the model P (θ) is influenced by the
order of G(θ) and he controller C. Consequently, in general the indirect identification
cannot deal with the closed-loop approximate identification problem mentioned in
Definition 3.2-9.

Referring to Remark 3.3-2, it can be observed that the indirect method is able
to estimate possibly unstable models. In fact, there is no restriction on the stability
of the nominal model P̂ being constructed. Furthermore, it is possible to deal with
closed-loop data obtained from a feedback connection T (Po, C) in which both the
plant Po and the controller C may be unstable as the estimation is done via stable
closed-loop transfer functions. However, the different possibilities of Proposition 3.3-3
or the construction of a signal r in (3.3) as mentioned above, come with additional
restrictions on the controller C. These conditions might include the existence of a left
and/or right inverse or stability of C.

Although stability of the nominal model P̂ is not enforced, stability of T (P̂ , C)
can be guaranteed in specific cases (Van den Hof and de Callafon 1996). These specific
cases can be found by posing stability conditions on the controller C that is used in
the feedback connection T (Po, C) when gathering data for closed-loop observations.
One of these special cases, that can occur in many practical situations, is found when
the controller C is stable.

Corollary 3.3-4 Consider situation (b) of Proposition 3.3-3 where the controller C

satisfies C ∈ RH∞ and let the model P̂ being constructed according to (3.47). Then
T (P̂ , C) ∈ RH∞ if and only if Ĝ12 ∈ RH∞.

Proof: Investigation of T (P̂ , C) ∈ RH∞ in case C ∈ RH∞ was discussed in
Corollary 2.2-11, from which the result immediately follows. �

In case the controller C is not stable, but the inverse of C exist and is stable, a
similar corollary can be given by considering situation (c) in Proposition 3.3-3.

Corollary 3.3-5 Consider situation (c) of Proposition 3.3-3 and let the model P̂

being constructed according to (3.48) where the inverse C−1 satisfies C−1 ∈ RH∞.
Then T (P̂ , C) ∈ RH∞ if and only if Ĝ21 ∈ RH∞.
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Proof: Necessity is obvious. Sufficiency is found by considering Ĝ12 = (I +
CP̂ )−1C ∈ RH∞ and C−1 ∈ RH∞. Then Ĝ12C

−1 = (I + CP̂ )−1 ∈ RH∞,
I−Ĝ12C

−1 = P̂ (I+CP̂ )−1C ∈ RH∞ and (I−Ĝ12C
−1)C−1 = P̂ (I+CP̂ )−1 ∈ RH∞.

�

The above mentioned corollaries provide stability results for the feedback con-
nection T (P̂ , C) in case a specific indirect closed-loop identification is being used.
The indirect method to closed-loop identification gives a possibility to deal with the
closed-loop partial consistent estimation problem as mentioned in Definition 3.2-9.
However, the approximate closed-loop identification is not fully covered. Although it
is clear how the nominal model is tuned in terms of a frequency domain expression,
an explicit tuning of a fixed order approximate nominal model P̂ becomes intractable.

3.3.3 Customized identification

Mainly due to the fact that a closed-loop transfer function G(θ) is not parametrized
in terms of the model P (θ) to be estimated, the McMillan degree of the model P̂

found by a recomputation will generally be larger than the McMillan degree of the
estimated closed-loop transfer function. As mentioned before, this parametrization
issue makes an explicit tuning of a fixed order approximate model P̂ intractable.

Customized parametrization

A natural extension of the indirect method to accommodate the approximate
closed-loop identification problem is to perform an estimation of a closed-loop
transfer function G(θ) in which a model P (θ) has been parametrized explicitly.
In this way a customized or so-called tailor-made parametrization (Landau and
Boumäıza 1996, Donkelaar and Van den Hof 1996) is used while estimating a closed-
loop transfer function. In the light of the PE-framework, such a customized identifi-
cation involves the minimization of a prediction error

ε(t, θ) =

[
y(t)

u(t)

]
− G(q, θ)

[
r2(t)

r1(t)

]
(3.51)

where G(q, θ) is parametrized in conformance with the map (2.5) and given by

G(q, θ) =

[
P (q, θ)

I

]
(I + C(q)P (q, θ))−1

[
I C(q)

]
, θ ∈ Θ (3.52)

or

G(q, θ) =

[
P (q, θ)

I

]
(I + C(q)P (q, θ))−1, θ ∈ Θ (3.53)
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in case r from (3.3) is considered to be an input signal to the OE-model (3.51).
Alternatively, only specific parts of the closed-loop transfer function G(q, θ) in (3.52)
need to be parametrized, in case only one of the reference signals col(r2, r1) or one of
the plant signals col(y, u) is available. In Donkelaar and Van den Hof (1996) such a
(SISO) customized identification is performed where the closed-loop transfer function
to be estimated is restricted to Go,12. Consequently, the tailor-made parametrization
reads as follows

G12(q, θ) =
P (q, θ)

1 + C(q)P (q, θ)
, θ ∈ Θ (3.54)

and involves the estimation of only one of the transfer function given in (3.52).
The estimation of Go,12 corresponds to the scenario reflected by option (b) in

Proposition 3.3-3 but in case of a customized identification, G12(q, θ) is equipped with
the customized parametrization (3.54). Similar to the indirect method of closed-loop
identification, knowledge (known and measurable) of the reference signals r1 and/or
r2, the plant signals u and/or y and knowledge of the controller C is required in case
a customized identification needs to be performed.

Clearly, a least-squares minimization of the prediction error ε(t, θ) in the OE-
model (3.51) requires a dedicated non-linear optimization. Even in the case when a
model P (θ) is restricted to be a FIR-model (3.16) or the poles of the model P (θ) are
fixed in case of an ORTFIR-model (3.17), the least-squares minimization of ε(t, θ) in
(3.51) requires a non-linear minimization, whereas in an open-loop based situation
a linearly parametrized model structure can be used to facilitate the least-squares
estimation.

Additionally, it can be observed from (3.51) that G(q, θ) is required to be stable
for all θ ∈ Θ in order to have a well-defined and bounded prediction error ε(t, θ).
As such, it must be verified whether or not restricting G(q, θ) to be stable is going
to effect the non-linear optimization. Requiring stability of G(q, θ) may result in an
allowable parameter space Θ that is not (path-wise) connected (Ljung 1987), which
will greatly complicate the optimization. Restricting G12(q, θ) to be stable, in Donke-
laar and Van den Hof (1996) a sufficient condition on the path-wise connectivity of Θ
is formulated in terms of the order or McMillan degree of the model P (q, θ) and the
controller C(q). As long as the order np of the parametrized model P (q, θ) is larger
than or equal to the order nc of the controller, the parameter set Θ is (path-wise)
connected. As such, the model to be estimated must have a higher complexity than
the controller used for the closed-loop experiments in order to ensure connectivity of
the parameter set Θ.

Evaluation

Provided that the reference signals col(r2, r1) are persistently exciting, which is men-
tioned in Assumption 3.2-2, and the parametrization of G(q, θ) is rich enough to
capture Go, minimizing (a norm of) the difference between Go(q) and the customized
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parametrization G(q, θ) given in (3.52) must yield an estimate Ĝ = G(q, θ�) = Go for
the limiting case N → ∞. Clearly, Ĝ = Go implies P̂ = Po and the customized identi-
fication is able to deal with the partial consistent identification problem as mentioned
in Definition 3.2-9.

To discuss the approximate closed-loop identification problem, consider the tailor-
made parametrization given in (3.54). For the limiting case mentioned in (3.25)
and (3.26), minimizing the least-squares prediction error using the tailor-made
parametrization of (3.54) gives rise to the following frequency domain expression

min
θ∈Θ

1
2π

∫ π

−π

| Po(e iω)
1 + C(e iω)Po(e iω)

− P (e iω, θ)
1 + C(e iω)P (e iω , θ)

|2Φr(ω) dω (3.55)

It can be observed from (3.55) that an expression for the misfit between Po and the
model P (θ) to be estimated is obtained in which the difference between two closed-loop
transfer functions is being minimized for a model P (θ) of specified limited complexity.

Although, (3.55) does not characterize explicitly an additive difference between
the plant Po and the model P̂ being estimated, it is clear that the approximate
identification deals with finding a model P̂ by matching two closed-loop transfer
functions. In case of (3.55), G12(θ) is used to approximate the closed-loop transfer
function Go,12, but this can be generalized to the case in which all transfer function
G(θ) in (3.52) are used to approximate the map col(r2, r1) to col(y, u) given in (2.5).
Furthermore, the approximate identification is independent of the noise v acting on the
feedback connection T (Po, C). As such, the customized identification is able to deal
with the approximate closed-loop identification problem mentioned in Definition 3.2-9
at the sake of a (non-standard) non-linear optimization.

With respect to Remark 3.3-2, the same remarks as given for the indirect identifi-
cation can be given. Clearly, an estimated stable closed-loop transfer function G(θ̂) as
given in (3.52) is equivalent to T (P̂ , C) ∈ RH∞. In case only a stable model G12(θ̂)
as given in (3.54) is found, similar to Corollary 2.2-11 and Corollary 3.3-4, stability
of T (P̂ , C) is guaranteed provided that C ∈ RH∞.

3.3.4 Two-stage identification

Both the indirect and the customized identification use the knowledge of the con-
troller respectively to recompute an open-loop plant model or to set up a specific
customized parametrization. As such, both methods heavily rely on the knowledge
of the controller C being used. An alternative method that does not use the knowl-
edge of the controller C and is still able to perform an approximate identification of
a model with a specified limited complexity is known under the name of two-stage
method (Van den Hof and Schrama 1993).

In order to estimate a model on the basis of observations obtained from a feedback
connection T (Po, C), the two-stage method requires, as expected, two steps. Based on
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the reduced form (3.4) that describes the data coming from the feedback connection
T (Po, C) the following two steps are considered.

1. Identify a model Ŝin of the input sensitivity Sin by considering the map from
r1 or r in (3.3) to the plant input u and simulate a so-called intermediate or
input signal ur(t) via

ur(t) = Ŝin(q)r(t) (3.56)

2. Estimate a model P̂ for Po by considering the map from the noise free interme-
diate signal ur(t) to the output signal y of the plant Po.

Compared to the indirect method, the open-loop model P̂ of the plant Po is
being estimated on the basis of closed-loop data, instead of reconstructing it from
the estimated closed-loop (sensitivity) transfer function. As the reference signals
are uncorrelated with the noise v acting on the feedback connection T (Po, C), the
intermediate signal ur(t) is not perturbed by the noise v directly. Consequently the
correlation of the input u with the noise v as mentioned in (3.4) is eliminated. As a
result, the approximate identification of a model P̂ can be decoupled from the noise
v present on the closed-loop data.

Clearly, the two-stage method does not require the knowledge of the controller
C. Only knowledge of the reference signals and the output signal y of the plant Po

are needed to perform the two-stage method. The knowledge of the reference signals
might be limited to r1 or r2 in case either CSin is being estimated in the first step
or the reference signal r (3.3) is being used to estimate Sin. The two steps will be
summarized in the following.

Estimation of sensitivity

The estimation of the (input) sensitivity function in the first step of the two stage
method is used solely to reconstruct the (noise free) intermediate signal ur mentioned
in (3.56). For the simulation of ur in (3.56) no noise model is required and the
estimation of Sin can be limited to the estimation of an input-output model Ŝin only.

For this purpose, an OE-model structure

u(t) = S(q, β)r(t) + ε(t, β) (3.57)

can be used, where r(t) can be either r1 or r in (3.3). As mentioned above, instead
of estimating a model for the input sensitivity, a model for CSin can be identified in
case the reference signal r2 is available only.

Due to the OE-model structure and the open-loop character of (3.57), a consistent
estimate Ŝin = S(q, β̂) can be obtained, irrespective of the noise present on the input
signal u. In case a consistent estimate of the input sensitivity Sin is obtained, the
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intermediate signal ur in (3.56) will match the noise free part of the input signal u in
(3.4), as

u(t) = Sin(q)r(t) − C(q)Sout(q)v(t) = ur(t) − C(q)Sout(q)v(t).

where it is assumed that Ŝin = Sin.
It should be noted that the estimate Ŝin is used solely to simulate the intermediate

signal ur and therefore the model Ŝin only acts as a filter. The actual estimation
of a limited complexity (nominal) model that is able to deal with the closed-loop
identification problem mentioned in Definition 3.2-9 is performed in the second step
of the two stage method.

To accommodate the optimization involved in estimating the parameter β in
(3.57), a linear parametrized model structure that maintains the OE-model struc-
ture of (3.57) can be used. As mentioned in Section 3.2.2, such a model structure
can be either a FIR- or ORTFIR-model structure, respectively given in (3.16) and
(3.17). Although the complexity (McMillan degree) of a FIR or ORTFIR-model can
be reasonably high, the model Ŝin is used only for filtering. Successful application of
such an ORFIR-model structure in the first step of the two-stage procedure has been
reported for example in de Callafon et al. (1993).

Estimation of open-loop plant model

In the second step of the two-stage procedure, the intermediate signal ur is used as
an input signal to estimate a model P̂ for the plant Po. The use of ur as an input
signal opens the possibility to estimate a (nominal) model P̂ in an open-loop way.
This is due to the fact that ur in (3.56) is uncorrelated with the noise v acting on the
feedback connection T (Po, C) and the output y in (3.4) can be written as

y(t) = Po(q)Sin(q)u(t) + Sout(q)v(t) = Po(q)ur(t) + Sout(q)v(t)

in case Ŝin in (3.56) satisfies Ŝin = Sin. Consequently, estimating a (nominal) model
P̂ of the plant Po can be achieved by employing an OE-model structure

y(t) = P (q, θ)ur(t) + ε(t, θ) (3.58)

where the intermediate signal ur(t) is considered to be an input signal.
Note that the estimation of a model P̂ by minimizing a least squares criterion

on the prediction error ε(t, θ) in (3.58) again reduces to an open-loop identification
problem, as ur in (3.56) is uncorrelated with the noise v in (3.58). Consequently,
the same results on both consistent and approximate identification as mentioned in
Section 3.2.3 will apply to the second step of the two stage method.

Even in the case where the estimate Ŝin from the first step does not satisfy Ŝin =
Sin, the simulated intermediate signal ur in (3.56) remains uncorrelated with the
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noise v in (3.58). However, the situation in which Ŝin �= Sin will effect the result on
approximate identification, as ur will not match the noise free part of the input signal
u. This effect will be discussed in the following.

Evaluation

As the second step of the two stage procedure is just an open-loop identification
problem, a consistent estimate P̂ of the plant Po can be obtained, provided that the
reference signals are persistently exciting and a consistent estimate Ŝin of the input
sensitivity is obtained in the fist step. In case Ŝin is an inaccurate, approximate
or inconsistent estimate of the input sensitivity Sin, a consistent estimation in the
second step of the two stage procedure requires the modelling of a more complicated
closed-loop transfer function. This is due to the fact that

y(t) = PoSinr(t) + Soutv(t) = PoSinŜ−1
in ur(t) + Soutv(t)

requiring a consistent estimation of PoSinŜ−1
in . Consequently, performing an accurate

identification on the basis of the input signal ur and output signal y(t) might lead
to the conclusion that the identified model P̂ is a consistent estimation of the plant
Po, while actually a consistent estimation of PoSinŜ−1

in is obtained. Henceforth, an
accurate estimate, or even better a consistent estimate, of the input sensitivity Sin is
required to attain a consistent estimation of the plant Po(Van den Hof and Schrama
1993). Concluding, the two-stage procedure is able to deal with the partial consistent
identification problem as mentioned in Definition 3.2-9.

Due to the similarity of the second step in the two-stage procedure with an or-
dinary open-loop identification problem, the approximate closed-loop identification
problem of Definition 3.2-9 can be addressed quite easily. For the limiting case
N → ∞ mentioned in (3.24), an approximate identification of a model P̂ = P (θ�) is
obtained that satisfies

θ� = arg min
θ∈Θ

1
2π

∫ π

−π

|Po(e iω)Sin(e iω) − P (e iω , θ)S(e iω , β�)|2Φr(ω) dω (3.59)

where
β� = argmin

β∈Θ

1
2π

∫ π

−π

|Sin(e iω) − S(e iω, β)|2Φr(ω) dω (3.60)

is the estimate Ŝin = S(β�) obtained in the first step of the two-stage procedure. In
(3.59) and (3.60), the possibility that Ŝin is not a consistent estimate of the input
sensitivity Sin has been incorporated. Clearly, if Ŝin = Sin, the integrand of (3.59)
reduces to

|[Po(e iω) − P (e iω, θ)]Sin(e iω)|2Φr(ω) (3.61)

which is again ‘a clear-cut best mean-square approximation’, similar as in the open-
loop situation discussed in Section 3.2.3. Clearly, a tunable expression for the misfit
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between the plant Po and the model P̂ of limited is obtained and as such, the two-
stage procedure is able to deal with the approximate closed-loop identification problem
mention in Definition 3.2-9. In case Ŝin �= Sin, the integrand of (3.59) can be rewritten
as follows.

|[Po(e iω) − P (e iω , θ)]Sin(e iω) + P (e iω , θ)[Sin(e iω) − S(e iω, β�)]|2Φr(ω) (3.62)

From (3.62) it can be observed that a term P (θ)[Sin − S(β�)] is introduced that
will effect the fitting of P (θ) to Po, weighted by Sin. Clearly, no explicit tunable
expression for the misfit between Po and P̂ is obtained. However, this term can be
made small by fitting S(β) to Sin where P (θ) is relatively large.

Although the open-loop character of the second step in the two-stage procedure
allows an explicit and tunable expression for the misfit between the plant Po and the
(nominal) model P̂ , it brings along one disadvantage. As the plant Po is identified in
an open-loop way, the estimation of an unstable plant Po using PE-based methods is
not always possible. This problem can be avoided if a model parametrization is used
where both the input-output model P (θ) and the noise model H(θ) are parametrized
dependently, see e.g. example 4.4 in Ljung (1987). Unfortunately, such a model
parametrization is unfavourable in case an explicit tuning of the misfit between model
P (θ) to be estimated and the plant is desired. As such, it can be mentioned that the
two-stage method in general is not able to handle the (approximate) estimation of
unstable plants.

In case the reference signal r1 is available, the first step should estimate Sin, being
the map from r1 to u. Alternatively, in case r2 is available, CSin should be estimated
in the first step. In case both r1 and r2 are available, the reconstruction of r in (3.3) is
not possible in case the controller C is unstable, whereas the two-stage method aims at
not using the knowledge of the controller explicitly. As the knowledge of the controller
is not used to construct and/or parametrize the model P̂ , no statements with respect
to the stability of the feedback connection T (P̂ , C) can be given beforehand.

3.4 Precis

The three main stream approaches described in the previous section address the prob-
lem of approximate identification on the basis of closed-loop data. Clearly, every ap-
proach has its favourable properties and its specific disadvantages. In case a specific
disadvantage is taken for granted, the previously discussed methods can be well suited
for approximate identification on the basis of closed-loop data.

Furthermore, in some special cases a disadvantage can be evaded. As an example, a
memory-less (constant gain) feedback controller is not going to enlarge the McMillan
degree of the model P̂ being computed via e.g. (3.47). In that case, the indirect
identification is well suited for the purpose of estimating (approximate) models on
the basis of closed-loop data. Although the two-stage method does not require the
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knowledge of the controller C to estimate an approximate (nominal) model P̂ of the
plant Po, the customized identification is able to exploit this knowledge entirely at
the sake of a slightly more complicated parametrization and associated optimization.

Although the above mentioned procedures provide tools to deal with the closed-
loop identification problem mentioned in Definition 3.2-9, a more general approach
that can be used without any restrictions is preferable. Such a general approach should
cover special situations such as employing the possible knowledge of an unstable
controller C and the estimation of a possibly unstable plant Po. The approach should
be able to estimate a (nominal) model P̂ of limited complexity via an approximate
identification consistent with Definition 3.2-9. Additionally, such an approach should
allow a possible solution to Procedure 2.5-4, in which the identification and control
are intertwined for the purpose of designing a robust and high performing controller.
Not only a nominal model P̂ , but a set of models P needs to be estimated on the basis
of closed-loop data. In the next chapter it will be clarified that a fractional approach
is able to provide such a general solution to the closed-loop identification problem.
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4
Identification Using Closed-Loop Data: a

Fractional Approach

4.1 Fractional Representations

4.1.1 Motivations and background

One of the primary motivations to use fractional model representations is due to the
fact that both stable or unstable systems can be represented by (the ratio of two)
stable factors (Desoer et al. 1980, Vidyasagar 1985, Antsaklis 1986, Bakri 1988). To
anticipate on the definitions given below, it can be said here that a (possibly unstable)
system P is represented by P = ND−1 where (N, D) constitutes a right fractional
representation of P in which both N and D are BIBO stable mappings. As such, a
unified approach to handle both stable and unstable systems can be formulated. The
opportunity to deal with stable factorizations, can be exploited in the identification
of an unstable plant Po, as only its stable factorizations have to be estimated.

Additionally, the algebraic approach to fractional model representations of Desoer
et al. (1980) or Vidyasagar (1985) has opened alternatives to study stability of inter-
connected systems, such as feedback connections T (Po, C) (Nett 1986, Smith 1989).
On the basis of this algebraic approach, also a set of all stabilizing controllers for
a given system P can be characterized and is known as the Youla parametrization
(Youla et al. 1976b, Youla et al. 1976a). This set of controllers is expressed in terms of
possible factorizations of the controllers that are based on a factorization of the system
P and a factor that is allowed to vary over all stable transfer functions. The results
on the possibility to parametrize a set of stabilizing controllers have for example been
used in the characterization of H∞ optimal controllers (Doyle 1984, Francis 1987, Mc-
Farlane and Glover 1990). Alternatively, a factorizational approach is used frequently
to discuss the problems associated to robust or simultaneous stabilization (Saeks and
Murray 1982, Anantharam 1985, Obinata and Moore 1988, Sefton et al. 1990).
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The possibility to represent an unstable system P by a stable factorization (N, D)
is used in Vidyasagar et al. (1982) to define a graph of a system P and to set up a graph
topology. One of the main results obtained with the graph topology shows that small
perturbations of the graph of a system P do not violate the stability of a feedback
connection T (P , C). As a result, approximation of an (unknown) plant Po by a model
P̂ in the graph topology, either by considering the graph-metric (Vidyasagar 1984)
or the gap-metric (El-Sakkary 1985, Packard and Helwig 1989), is considered to be a
promising approximation in view of a feedback in which both Po and P̂ are operating.

Not surprisingly, the application of the algebraic framework of fractional model
representation for the purpose of system identification has been recognized and used
by several researchers. The possibility to be able to estimate an unstable plant Po via
the estimation of (only) a stable factor has been recognized in Hansen and Franklin
(1988) and Hansen (1989) as a favourable property. Additionally, the fractional ap-
proach to system identification provides a method to deal with closed-loop exper-
iments and to perform an (approximate) identification on the basis of closed-loop
data (Hansen et al. 1989, Schrama 1991, de Bruyne 1996). Using this property, sev-
eral approaches to closed-loop identification using fractional model representations
have been developed (Zhu and Stoorvogel 1992, Mäkilä and Partington 1992, Lee et
al. 1993a).

4.1.2 The use of fractional model representations in this thesis

It is shown in this chapter that the approximate identification of stable factorizations
is readily applicable to data coming from a feedback controlled plant Po. As a result
the closed-loop identification problem, mentioned in the previous chapter, can be
solved when the approximate identification is able to estimate a stable factorization
of Po. To anticipate on the results mentioned in this chapter it can be mentioned here
that a stable factorization is not unique but it is shown in this chapter that a simple
filtering of the closed-loop data can provide access to any stable factorization of Po.
With the opportunity of choosing this filter operation, access to stable factorizations
of the plant Po can be obtained that have favourable properties, such as a minimal
McMillan degree or normalized comprime factorization.

Furthermore, for the characterization and estimation of a set of models P , as men-
tioned in Chapter 2, a set P is used that is tuned towards the intended robust control
design of Procedure 2.5-4. The characterization (2.11) of this set of models P is post-
poned until the chapter 5 but it can be mentioned here that the characterization of
P is also based upon a fractional model representation. Consequently, the charac-
terization and estimation of the coefficient matrix Q in Definition 2.2-16 is entirely
based on a fractional model approach in this thesis. As the coefficient matrix Q will
contain an estimate of a nominal model (or nominal factorization), in this chapter
special attention is given to the approximate identification of a nominal model on the
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basis of closed-loop data.
Closely related to the topics discussed in this thesis it is worth mentioning that

the approximation identification in view of the feedback design using fractional model
representations has been studied previously in Schrama (1992b). However, the iden-
tification in Schrama (1992b) primarily focuses on the control relevant approximate
estimation of nominal models P̂ or nominal factorizations (N̂ , D̂). This thesis aims
at estimating sets of models P tuned towards a robust control design application, as
mentioned in Procedure 2.5-4, instead of estimating a nominal model only.

4.2 Factorizations, Coprimeness and Stability

4.2.1 Coprime factorizations

Following Vidyasagar (1985), coprime factorizations are defined using the algebraic
theory based on rings. Using this ring theory, a principal ring or principal ideal domain
is used to built up the algebraic structure and opens the possibility to study various
(multivariable) dynamical systems in a rigorous mathematical way. This study might
include topological aspects of (feedback) systems (Vidyasagar et al. 1982), fractional
approaches to feedback system design (Desoer et al. 1980) or stability analysis of
feedback systems described by fractional representations (Desoer and Gündes 1988).

The primary motivation to introduce this algebraic framework in this thesis, is to
study the properties of FDLTI dynamical systems. For that purpose it satisfies to
associate the principal ring with RH∞, being the set of all stable proper real-rational
systems with bounded H∞ norm. In the sequel, the association of RH∞ with the
principal ring is used without mentioning. Accordingly, the following definition of a
coprime factorization (over RH∞) will be used.

Definition 4.2-1 Let N, D ∈ RH∞ then the pair (N, D) is a right coprime factor-
ization (rcf) if there exist X, Y ∈ RH∞ such that

XN + Y D = I (4.1)

Let Ñ, D̃ ∈ RH∞ then the pair (D̃, Ñ) is a left coprime factorization (lcf) if there
exist X̃, Ỹ ∈ RH∞ such that

ÑX̃ + D̃Ỹ = I (4.2)

The difference between a rcf and a lcf is due to the non-commutative property
of multivariable systems. To create a notational distinguishability between a rcf and
a lcf, a lcf is equipped with a ,̃ while the ordering of the pair (D̃, Ñ) is reversed,
compared to the pair (N, D).

Both (4.1) and (4.2) are called Bezout identities. According to Definition 4.2-1,
existence of the Bezout identities (4.1) and (4.2) implies the coprimeness of respec-
tively the pair (N, D) and (D̃, Ñ). The Bezout identities also imply the fact that a
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coprime factorization cannot have a common unstable zero. This can be verified as
follows. In case of a rcf, such a common unstable zero must be cancelled by a common
unstable pole in X and Y in order to be able to make the right hand side of (4.1)
equal to identity. However, both X and Y are restricted to be an element of RH∞,
hence the Bezout identity cannot be satisfied.

With the notion of coprimeness given in Definition 4.2-1, a rcf or lcf of a system
P can be defined as follows.

Definition 4.2-2 Let (N, D) be rcf and (D̃, Ñ) be a lcf. Then the pair (N, D) is a
rcfof a system P if

• det{D} �≡ 0

• P = ND−1

Similarly, the pair (D̃, Ñ) is a lcfof a system P if

• det{D̃} �≡ 0

• P = D̃−1Ñ

The requirement on the determinant of D and D̃ is needed to ensure that D−1

and D̃−1 are well-defined, real rational transfer functions. Due to the multiplication
of N and D−1 in case of a rcf and Ñ and D̃−1 in case of a lcf, a coprime factorization
of a system P is not unique.

Corollary 4.2-3 Let (N, D) and (D̃, Ñ) be respectively a rcf and a lcf of a system
P . Consider a Q and a Q̃ for which det{Q} �≡ 0 and det{Q̃} �≡ 0. Then (NQ, DQ)
is a rcf of P if and only if Q, Q−1 ∈ RH∞. Similarly, (Q̃D̃, Q̃Ñ) is a lcf of P , if and
only if Q̃, Q̃−1 ∈ RH∞.

Proof: A proof can be found in Vidyasagar (1985). �

As Corollary 4.2-3 indicates, a coprime factorization is not unique and any non-
proper coprime factorization can be modified into a (strictly) proper coprime factor-
ization. Furthermore, for any (strictly) proper transfer function P there always exists
a rcf, or a lcf, that consists of (strictly) proper N , Ñ and proper D, D̃. This result is
summarized in the following corollary.

Corollary 4.2-4 Consider a (strictly) proper real-rational system P , then there exist
rcf’s (N, D) and lcf’s (D̃, Ñ) of P that satisfy[

Y X

−Ñ D̃

] [
D −X̃

N Ỹ

]
=

[
I 0

0 I

]
(4.3)

and for which N , Ñ are (strictly) proper, D, D̃ are proper and D−1, D̃−1 are well
defined proper transfer functions.
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Proof: A proof can be found in Nett et al. (1984) where the explicit state space
formulae of the double coprime factorization (4.3) can be found. �

Uniqueness of a coprime factorization can be addressed by considering a special
kind of coprime factorizations that are said to be normalized. In the sequel, the notion
of a normalized coprime factorization will be used frequently.

Definition 4.2-5 A rcf (Nn, Dn) is called a normalized right coprime factorization
(nrcf) if the rcf satisfies

N∗
nNn + D∗

nDn = I (4.4)

Similarly, a lcf (D̃n, Ñn) is called a normalized left coprime factorization (nlcf) if the
lcf satisfies

D̃nD̃
∗
n + ÑnÑ

∗
n = I (4.5)

Restricting a coprime factorization to be normalized, restricts the freedom in con-
structing the coprime factorization. According to Corollary 4.2-3, the freedom in a rcf

is given by a stable and stably invertible parameter Q. In case of a nrcf, the freedom
is narrowed. This can be seen by substituting Nn = NQ and Dn = DQ in (4.4),
where (N, D) is also a nrcf. This implies Q∗Q = I and hence Q is restricted to be a
unimodular matrix.

As mentioned before, state space formulae for coprime factors can be found in
Nett et al. (1984). State space solutions to the computation of normalized coprime
factors can for example be found in Meyer and Franklin (1987), Vidyasagar (1988) or
Bongers and Bosgra (1993) for continuous-time and in Meyer (1990) or Bongers and
Heuberger (1990) for discrete-time systems.

4.2.2 Youla parametrization

With the algebraic framework based on coprime factorizations, an alternative formu-
lation of internal stability of a feedback connection can be given. In Lemma 2.2-10
the internal stability of a feedback connection T (P , C) is stated in terms of the trans-
fer function matrix T (P, C) given in (2.5). Formally, to check internal stability, all
transfer functions in T (P, C) must be evaluated. As mentioned in Corollary 2.2-11
and Corollary 2.2-12, special situations in which either the controller C or the system
P is stable require only the evaluation of a single transfer function.

On the basis of the algebraic framework, testing internal stability of T (P , C) can
be brought down to an evaluation of a single transfer function, regardless of P or C

being stable. The result is summarized in the following lemma.

Lemma 4.2-6 Let P = ND−1 = D̃−1Ñ where (N, D) is a rcf and (D̃, Ñ) a lcf of
P . Let C = NcDc

−1 = D̃−1
c Ñc where (Nc, Dc) is a rcf and (D̃c, Ñc) a lcf of C. The

following statements are equivalent
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i. the feedback connection T (P , C) given in Figure 2.2 is internally stable

ii. T (P, C) ∈ RH∞

iii. Λ−1 ∈ RH∞, with Λ :=
[

D̃c Ñc

] [ D

N

]

iv. Λ̃−1 ∈ RH∞, with Λ̃ :=
[

D̃ Ñ
] [ Dc

Nc

]

Proof: The equivalency of item i and ii was already proven for Lemma 2.2-10. A
proof of the equivalency of iii or iv can be found in Schrama (1992b) or Bongers
(1994) and is based on the fact that T (P, C) in (2.5) can be written as

T (P, C) =

[
N

D

]
Λ−1

[
Ñc D̃c

]
(4.6)

where Λ = D̃cD + ÑcN . �

From (4.6) it can be observed that the map from col(r2, r1) to col(y, u) given
by T (P, C), is a series connection of the lcf (D̃c, Ñc) ∈ RH∞ of the controller, the
(possibly unstable) map Λ−1 and the rcf (N, D) ∈ RH∞ of the system P . Provided
that Λ−1 ∈ RH∞, the matrix T (P, C) remains stable. A similar argumentation holds
in case Λ̃ is being considered.

For a given rcf (N, D) of a system P , a lcf (D̃c, Ñc) of a controller C that satisfies
Λ−1 ∈ RH∞ can readily be found from (4.1). Setting (D̃c, Ñc) = (Y, X) makes
(D̃c, Ñc) a lcf. As in this case Λ = I, Λ−1 ∈ RH∞, making C = Y −1X an internally
stabilizing controller. Clearly, C = Y −1X is not the only possible stabilizing controller
for the feedback connection T (P , C). Varying the lcf (D̃c, Ñc) such that Λ−1 remains
stable, characterizes all controllers C = D̃−1

c Ñc that yield a stable feedback connection
T (P , C). Such a characterization of all stabilizing controllers is known as the Youla
parametrization (Youla et al. 1976a, Vidyasagar 1985).

Clearly, by interchanging the role of P and C, a characterization of all systems
P = ND−1 that yield an internally stable feedback connection T (P , C) can also be
given. Since such a characterization is dual to the well-known Youla parametrization,
it is labelled as a dual-Youla parametrization and reads as follows.

Lemma 4.2-7 Let (Nx, Dx) be a rcf of an arbitrary auxiliary model Px = NxDx
−1

and (Dc, Nc) be a rcf of a controller C = NcDc
−1 such that T (Px, C) ∈ RH∞, then a

system P with a rcf (N, D) satisfies T (P, C) ∈ RH∞ if and only if ∃ R ∈ RH∞ such
that

N = Nx + DcR

D = Dx − NcR
(4.7)
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Proof: For a proof one is referred to Schrama (1992b). �

Consequently, allowing R in (4.7) to vary freely over all possible transfer func-
tions in RH∞ such that det{Dx − NcR} �≡ 0, characterizes a set of LTI systems P ,
written in terms of a rcf, that are internally stabilized by the controller C. Although
Lemma 4.2-7 is based on a rcf of the system, a similar result can be written down for
a lcf of P , see e.g. Lee et al. (1992), Lee et al. (1993a) or de Bruyne (1996).

4.3 Fractional Approach to Closed-Loop Identification

4.3.1 Algebraic framework in system identification

The algebraic framework of coprime factorizations opens the possibility to charac-
terize a possibly unstable plant Po by a stable factorization. From an identification
point of view, this means that an unstable plant Po, operating in a stabilized feed-
back connection T (Po, C), can be estimated by simply estimating the stable transfer
functions associated to a coprime factorization of the plant.

Two different approaches can be distinguished. Firstly, the identification can
be directed towards the estimation of a rcf of the (unknown) plant Po (Schrama and
Bosgra 1993, Zhu and Stoorvogel 1992, de Callafon and Van den Hof 1997). Secondly,
with explicit knowledge of the controller C, the dual-Youla parametrization can be
used to parametrize a rcf of the plant and to estimate the stable transfer function R

in (4.7) (Hansen 1989, Lee et al. 1993a, de Bruyne 1996, Lee et al. 1995). In both
cases, the identification involves the estimation of stable transfer functions to find
models of the (possibly unstable) plant Po.

Both approaches are discussed below. As mentioned in Corollary 4.2-3, a rcf of the
pant Po is not unique and the question arises how to access different rcf’s of the plant.
Furthermore, the problem of identifying a factorization of the plant Po on the basis
of closed-loop data is illuminated. As such, the question whether or not a fractional
approach to closed-loop identification is able to address the closed-loop identification
problem mentioned in Definition 3.2-9 is elaborated in more detail.

4.3.2 Estimation using dual-Youla parametrization

In the feedback connection T (Po, C) of (unknown) plant Po and (possibly known)
controller C, the knowledge or information of the feedback controller C is useful in
analyzing the feedback connection T (Po, C). This knowledge might include the fact
that the controller C forms a stable feedback connection T (Po, C). If, in addition, full
knowledge of the controller C is available, the fact that T (Po, C) is a stable feedback
connection, opens the possibility to characterize a rcf (No, Do) of the plant Po with a
dual-Youla parametrization.
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The use of the dual-Youla parametrization

As the feedback connection T (Po, C) is internally stable, Lemma 4.2-7 states that
there exists a Ro ∈ RH∞ that can characterize the rcf (No, Do) of the plant Po as
follows

No = Nx + DcRo (4.8)

Do = Dx − NcRo (4.9)

In the above equations, (Nx, Dx) is a rcf of any auxiliary model that satisfies
T (Px, C) ∈ RH∞ and (Nc, Dc) is a rcf of the controller C. The transfer function
Ro in (4.8) and (4.9) is an unknown, but stable, transfer function.

Henceforth, estimation of a model R̂ of the stable transfer function Ro would yield
an estimate (N̂ , D̂) of a rcf of the plant Po. According to (4.8) and (4.9), a rcf (N̂ , D̂)
of a model P̂ = N̂D̂−1 to be estimated can be represented by

N̂ = Nx + DcR̂

D̂ = Dx − NcR̂
(4.10)

where R̂ ∈ RH∞ indicates a model of the stable transfer function Ro. Representing
a rcf of a model P̂ according to (4.10) has a favourable property.

Remark 4.3-1 If the estimate R̂ is a stable mapping, the resulting model P̂ = N̂D̂−1

computed from the rcf’s given in (4.10) is guaranteed to be stabilized by the controller
C used in the feedback connection T (Po, C). This is a direct consequence of the dual-
Youla parametrization, as mentioned in Lemma 4.2-7.

The guarantee to find a model P̂ that will satisfy T (P̂ , C) ∈ RH∞ provided that
the estimated model R̂ ∈ RH∞ is advantageous. Since the controller C used in the
feedback connection T (Po, C) is know to stabilize the unknown plant Po, it is worth-
while to find a model P̂ of the plant Po that is also stabilized by the same controller
C. A model P̂ that is not stabilized by the controller C will certainly cast doubt on
the ability of the model to describe the dynamical aspects of the plant Po. Therefore
it is worthwhile to parametrize a model P̂ with the dual-Youla parametrization to
guarantee T (P̂ , C) ∈ RH∞.

Access to dual-Youla parameter

Access to and estimation of the stable dual-Youla parameter Ro has been studied for
example in Hansen (1989), Lee et al. (1993a) and Schrama (1991). The main conclu-
sion in these references is the fact that the estimation of the dual-Youla parameter,
either in a parametrization using a lcf or a rcf, is an open-loop identification problem
that can be tackled by standard system identification techniques (Ljung 1987).
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To clarify the equivalent open-loop identification problem of the dual-Youla pa-
rameter Ro in the characterization of the rcf (No, Do) given in (4.8) and (4.9), consider
the following result.

Lemma 4.3-2 Consider the data coming from a plant Po operating in an internally
stable feedback connection T (Po, C) be described by (3.2). Let the controller C have
a rcf (Nc, Dc) and consider an auxiliary model Px with a rcf (Nx, Dx) that satis-
fies T (Px, C) ∈ RH∞. If the so-called intermediate signal x is defined by the filter
operation

x := (Dx + CNx)−1
[

C I
] [ y

u

]
(4.11)

and the so-called dual-Youla signal z is defined by the filter operation

z := (Dc + PxNc)−1
[

I −Px

] [ y

u

]
(4.12)

then (3.2) can be rewritten into

z = Rox + Soe (4.13)

where x is uncorrelated with e and the transfer functions of Ro and So respectively
are given by

Ro = Dc
−1(I + PoC)−1(Po − Px)Dx (4.14)

So = Dc
−1(I + PoC)−1Ho (4.15)

Proof: The conditions on the internal stability of T (Po, C) and T (Px, C) allow the
use of the the dual-Youla parametrization given in (4.8) and (4.9). Post-multiplication
of (4.9) with −Px and adding (4.8) yields

(Dc + PoNc)Ro = (PoDx − Nx)

and with Px = NxDx
−1, C = NcDc

−1 this can be rewritten into (4.14). Furthermore,
post-multiplication of (4.8) with C and adding (4.9) yields Do + CNo = Dx + CNx,
making

(I + CPo)−1 = Do(Dx + CNx)−1 (4.16)

With Po = NoDo
−1 and C = NcDc

−1, (4.16) can be used to rewrite (3.4) into[
y

u

]
=

[
No

Do

]
(Dx + CNx)−1r +

[
I

−C

]
SoutHoe (4.17)
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Defining the intermediate signal x as in (4.11) and using the dual-Youla parametriza-
tion given in (4.8) and (4.9), (4.17) can be rewritten into[

y

u

]
=

[
Nx

Dx

]
x +

[
Dc

−Nc

]
Rox +

[
Dc

−Nc

]
Soe (4.18)

where So is given in (4.15). With Corollary 3.2-4 it can be verified that the interme-
diate signal x = (Dx + CNx)−1r, and hence x is uncorrelated with e. Subsequently,
computing y − Pxu with Px = NxDx

−1 yields

y − Pxu = (Dc + PxNc)Rox + (Dc + PxNc)Soe

which reduces to (4.13), in case z is given as in (4.12). �

In the representation of the closed-loop data in (3.2), the plant Po and the noise
filter Ho are unknown and need to be identified. However, rewriting (3.2) into the
short hand notation of (4.13) indicates that Ro and So replace the missing knowledge
of plant Po and the noise filter Ho by an alternative characterization of Po and Ho.
This alternative characterization of Po and Ho in terms of Ro and So is given by

Po = (Nx + DcRo)(Dx − NcRo)−1

Ho = Dc(I + PoC)So

(4.19)

and is found by using (4.8), (4.9) and (4.15). However, opposite to the identification
of Po and Ho on the basis of closed-loop data, the identification of Ro and So is
equivalent to a standard open-loop identification problem and will be discussed in the
following.

Estimation of models in a dual-Youla parametrization

It can be seen from (4.18) that Ro and So are the only unknown transfer functions
needed to describe the data col(y, u) coming from the feedback connection T (Po, C).
The rcf (Nx, Dx) of the auxiliary modelPx and the rcf (Nc, Dc) of the controller C in
(4.18) are assumed to be known and given.

It should be pointed out that (4.18) is just an alternative representation of the
closed-loop data as given in (3.2). This representation involves an alternative charac-
terization of the unknown plant Po and the unknown noise filter Ho with respectively
an unknown dual-Youla parameter Ro and an unknown noise filter So.

However, this alternative representation serves an important purpose, as the es-
timation of Ro in (4.14) and So in (4.15) can be done by an equivalent open-loop
identification. The open-loop identification is due to the fact that the so-called inter-
mediate signal x mentioned in Lemma 4.3-2, is uncorrelated with the noise e. Hence,
the intermediate signal x of (4.11) and the output signal z in (4.12) can be considered
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as respectively an input and (possibly) disturbed output signal, for which the input
x is uncorrelated with the disturbance acting on the output signal z. The represen-
tation (4.18) can be visualized in the block-diagram given in Figure 4.1, where the
equivalent open-loop identification problem has also been indicated.
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Fig. 4.1: Block diagram of the reparametrization of plant Po and noise filter Ho given
in (4.18).

Equivalent to (4.19), models P (θ) and H(θ) of the plant Po and the noise filter
Ho are represented in a dual-Youla parametrization as

P (θ) = (Nx + DcR(θ))(Dx − NcR(θ))−1

H(θ) = Dc(I + P (θ)C)S(θ)
(4.20)

where R(θ) and S(θ) are parametrized models of respectively Ro and So. As men-
tioned in Remark 4.3-1, the parametrization (4.20) has a favourable property. How-
ever, it can be observed from (4.20) that the McMillan degree of the model P̂ = P (θ̂)
is determined by the order of the controller C with the rcf (Nc, Dc), the order of the
model Px with the rcf (Nx, Dx) and the McMillan degree of the estimate R̂ = R(θ̂)
of Ro given in (4.14).
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In Schrama (1992b) the alternative characterization of Po and Ho in (4.19) or the
parametrization of the model P̂ and Ĥ in (4.20) is labelled as an R, S-parametrization.
The estimation of a model R̂ and a noise model Ŝ can be solved by the standard open-
loop identification techniques mentioned in Section 3.2.3.

Relation with the indirect identification method

The reparametrization and the equivalent open-loop identification problem seems to
be innovative, but it can be viewed as a generalization of the indirect identification
method discussed in Section 3.3.2 as observed in Van den Hof and de Callafon (1996).
It can be observed from (4.14) or (4.15) that the transfer functions to be estimated
in the equivalent open-loop identification problem are closed-loop transfer functions.
Although the closed-loop transfer functions involve additional weightings such as Dc,
Dx or Px, the R, S-parametrization and the equivalent open-loop identification can
be made equivalent to the indirect identification problem, in case either the plant Po

or the controller C is known to be stable.

Example 4.3-3 Consider a feedback connection T (Po, C) for which the controller C

satisfies C ∈ RH∞. In that case, a rcf (Nc, Dc) of C can be given by (Nc, Dc) = (C, I).
An auxiliary model Px that satisfies T (Px, C) ∈ RH∞ can be chosen as Px = 0, since

the controller C is known to be stable already, and the rcf (Nx, Dx) can be set to

(Nx, Dx) = (0, I). As a result, the transfer function for Ro in (4.14) and So in (4.15)

to be identified are given by

Ro = (I + PoC)−1Po = Po(I + CPo)−1

So = (I + PoC)−1Ho

(4.21)

It can be verified that the transfer functions Ro and So to be estimated are equivalent

to the closed-loop transfer functions of the indirect identification approach discussed

in Proposition 3.3-3(b). ♦

In case the controller C is unstable, the dual-Youla parametrization or the R, S-
parametrization generalizes the indirect identification method. As mentioned in
Remark 4.3-1, in the case where it must be guaranteed beforehand that the model
P̂ is stabilized by the controller C used in the feedback connection T (Po, C), the
dual-Youla parametrization can serve this purpose.

4.3.3 Access to factorizations

An alternative to the approach mentioned in the previous section, is the identification
of a rcf (No, Do) of the plant Po directly, without using the dual-Youla parametriza-
tion. As mentioned in the previous section, the order of the model P̂ is highly in-
fluenced by the controller C, the auxiliary model Px and the model R̂ used in the
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parametrization (4.20). To eliminate this effect, a direct identification of the rcf of
the plant is a reasonable alternative. It is shown below that in this way the order
of the resulting model can be controlled more efficiently, as no controller or auxiliary
model dependent parametrization is used to characterize the rcf being estimated.

Access to a stable factorization

To illustrate the idea of accessing and estimating a coprime factorization of an un-
known plant Po, consider the reduced form of the closed-loop data generating system
(3.2) as given in (3.4). [

y

u

]
=

[
PoSin

Sin

]
r +

[
SoutHo

−CSoutHo

]
e (4.22)

Since the controller C is used for the closed-loop experiments, the feedback connection
T (Po, C) is again assumed to be internally stable and Lemma 2.2-10 yields T (Po, C) ∈
RH∞ making both PoSin, Sin ∈ RH∞.

Hence, PoSin, Sin can be considered to be a stable, right, but not necessarily
coprime, factorization (No, Do) of the plant Po, with No := PoSin and Do := Sin.
This stable factorization can accessed easily by considering the map from r in (3.3)
or (3.6) to col(y, u). On the coprimeness of the pair (PoSin, Sin) the following result
can be obtained.

Corollary 4.3-4 Let a system P and a controller C create an internally stable feed-
back connection T (P , C) then (PSin, Sin) is a rcf of P if and only if C ∈ RH∞.

Proof: Since T (P , C) is internally stable, T (P, C) ∈ RH∞ and implies (PSin, Sin) ∈
RH∞ and it remains to show that ∃ X, Y ∈ RH∞ such that XPSin + Y Sin = I for
coprimeness of (PSin, Sin).
⇐ If C ∈ RH∞, taking X = C ∈ RH∞ and Y = I ∈ RH∞ immediately shows
coprimeness of (PSin, Sin).
⇒ Prove by contradiction: consider C to be unstable and assume (PSin, Sin) to be a
rcf of P . Now let (N, D) be any rcf of the system P then XPSin + Y Sin = I can be
rewritten into XN [D + CN ]−1 + Y D[D + CN ]−1 = I which equals

XN + Y D = [D + CN ] (4.23)

Using the fact that N , D ∈ RH∞ and X , Y ∈ RH∞, the left hand side in the equality
of (4.23) is stable, while the right hand side is unstable, since C is unstable and N and
D are coprime. This contradicts the assumption on the existence of X , Y ∈ RH∞
in XPSin + Y Sin = I. Hence (PSin, Sin) is not coprime in case the controller C is
unstable. �
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Hence, a factorization (PoSin, Sin) of the plant Po is not a rcf in case the con-
troller C is unstable. Limiting to the case of stable controllers is restrictive, as many
controllers are equipped with an integral action for tracking purposes. Additionally
to the lack of coprimeness of the factorization, the signal r given in (3.3) or (3.6)
with r2 �= 0 yields an unbounded signal for an unstable controller C. Furthermore,
a factorization in general is not unique and access to factorizations different from
(PoSin, Sin) is desirable to exploit the freedom in choosing a factorization.

Access to coprime factorizations

In order to deal with the problems mentioned above an additional filtering of the signal
r can be proposed. Defining this filtered signal as x := Fr, similar as in Van den
Hof et al. (1995) or de Callafon and Van den Hof (1995b), with (3.6) the following
relations are obtained

x = F
[

C I
] [ r2

r1

]
= F

[
C I

] [ y

u

]
(4.24)

and (4.22) now rewrites into[
y

u

]
=

[
PoSinF−1

SinF−1

]
x +

[
SoutHo

−CSoutHo

]
e (4.25)

where (PoSinF−1, SinF−1) can be considered to be a (right) factorization of the plant
Po. The choice for the filter F determines whether or not (PoSinF−1, SinF−1) is a
rcf. Furthermore, the filter F can be used to access all possible rcf’s of the plant Po.
This result has been summarized in the following lemma.

Lemma 4.3-5 Let a system P and a controller C with a lcf (D̃c, Ñc) form an inter-
nally stable feedback connection T (P , C). Then the following statements are equivalent
and moreover, each of these statements imply F [C I] ∈ RH∞.

i. (PSinF−1, SinF−1) is a rcf.

ii. F = WD̃c with W , W−1 ∈ RH∞

Proof:
i ⇒ ii (PSinF−1, SinF−1) is a rcf and hence ∃ X̄ , Ȳ ∈ RH∞ such that

X̄PSinF−1 + Ȳ SinF−1 = I. (4.26)

Taking any rcf (N, D) of P and the lcf (D̃c, Ñc) of C, (4.26) can be rewritten into

[X̄NΛ−1 + Ȳ DΛ−1]D̃cF
−1 = I (4.27)
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where Λ = [D̃cD + ÑcN ] ∈ RH∞ according to Lemma 4.2-6. Postmultiplication of
(4.27) with FD̃c

−1
yields

W := FD̃c
−1

= [X̄NΛ−1 + Ȳ DΛ−1] ∈ RH∞ (4.28)

Since (PSinF−1, SinF−1) is a rcf, also[
PSin

Sin

]
F−1 ∈ RH∞ (4.29)

holds. With the definition of F = WD̃c from (4.28) and X , Y ∈ RH∞ from XN +
Y D = I, (4.29) can be rewritten into[

N

D

]
Λ−1W−1 ∈ RH∞ (4.30)

and premultiplication of (4.30) with Λ[X Y ] ∈ RH∞ yields W−1 ∈ RH∞.
ii ⇒ i With any rcf (N, D) of P , the lcf (D̃c, Ñc) of C and F = WD̃c

−1
, where W ,

W−1 ∈ RH∞, the factorization (PSinF−1, SinF−1) can be rewritten into[
PSin

Sin

]
F−1 =

[
N

D

]
Λ−1W−1 ∈ RH∞

and hence both factors are stable. Consider X , Y ∈ RH∞ with

XN + Y D = I (4.31)

where (N, D) is any rcf of P . Since Λ, Λ−1, W , W−1 ∈ RH∞, premultiplication of
(4.31) with WΛ and postmultiplication with Λ−1W−1 yields

X̄NΛ−1W−1 + Ȳ DΛ−1W−1 = I (4.32)

with X̄ := WΛX ∈ RH∞, Ȳ := WΛY ∈ RH∞. However, (4.32) equals

X̄PSinF−1 + Ȳ SinF−1 = I

which proves coprimeness of (PSinF−1, SinF−1).
Both conditions are equivalent and it suffices to show that one of the conditions implies
F [C I] ∈ RH∞. Consider X̃ , Ỹ ∈ RH∞ from ÑcX̃ + D̃cỸ = I where (D̃c, Ñc) is the
lcf of C. Then

F
[

C I
] [ X̃

Ỹ

]
= FD̃c

−1
[

Ñc D̃c

] [ X̃

Ỹ

]
= FD̃c

−1
= W ∈ RH∞

hence F [C I] ∈ RH∞. �
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A similar result can be found in Van den Hof et al. (1995), but there the freedom in
choosing the filter F is found by restricting both the factorization (PSinF−1, SinF−1)
and the map F [C I] in (4.24) to be stable. However, stability of the map F [C I] is not
necessary in general. In the case that r2(t) = 0 ∀t, x = Fr1 and hence only stability
of F is required. By restricting (PSinF−1, SinF−1) to be a rcf, stability of F [C I] is
implied directly, as mentioned in Lemma 4.3-5.

Lemma 4.3-5 is a generalisation of Corollary 4.3-4 and characterizes the freedom
in choosing the filter F by the choice of any stable and stably invertible transfer
function W . Moreover, with the additional freedom in W it is possible to have access
to all possible right coprime factorizations of a plant Po. To indicate that the rcf of
the plant Po depends on the filter F used in Lemma 4.3-5, the following remark is
given.

Remark 4.3-6 The rcf of the plant Po that can be accessed by considering the map
from x to col(y, u) depends on the choice of the filter F used in (4.24). This depen-
dency is denoted by adopting the notation (No,F , Do,F ) to indicate the particular rcf

of the plant Po given by [
No,F

Do,F

]
=

[
PoSinF−1

SinF−1

]
.

A stable and stably invertible transfer function W in Lemma 4.3-5 can be con-
structed easily. However, from Lemma 4.3-5 it is not clear how the choice of a stable
and stably invertible W will change the rcf (PoSinF−1, SinF−1) of the plant Po. To
illuminate this effect, the freedom in choosing W can be related to the choice of a rcf of
a so-called auxiliary model Px and a lcf of an auxiliary controller Cx. In this perspec-
tive, the auxiliary model Px and controller Cx may represent respectively knowledge
of the plant Po and the controller C used in the feedback connection T (Po, C).

Proposition 4.3-7 Let (Nx, Dx) be any rcf of any auxiliary model Px and (D̃c,x, Ñc)
be any lcf of any auxiliary controller Cx then

W := [D̃c,xDx + Ñc,xNx]−1

satisfies W , W−1 ∈ RH∞ if and only if T (Px, Cx) ∈ RH∞.

Proof: Follows directly from Lemma 4.2-6 with Λ = [D̃c,xDx + Ñc,xNx]. �

With Proposition 4.3-7 the freedom of choosing a stable and stably invertible
filter W is replaced by the choice of a rcf (Nx, Dx) of an auxiliary model Px and a lcf

(D̃c,x, Ñc,x) of an auxiliary controller Cx. It should be noted that the specific choice of
W in Proposition 4.3-7 is not a restriction on the set of all possible stable and stably
invertible filters W . In fact, it can be shown that for any given controller C, the
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freedom in choosing a stable and stably invertible filter W can be fully characterized
by the freedom in choosing the rcf (Nx, Dx) of the auxiliary model Px. This result
has been stated in the following proposition.

Proposition 4.3-8 Let W be a filter that satisfies W , W−1 ∈ RH∞ and consider a
controller C with a lcf (Ñc, D̃c). Then there exists an auxiliary model Px with a rcf

(Nx, Dx) such that W = [D̃cDx + ÑcNx]−1 and T (Px, C) ∈ RH∞.

Proof: As (Ñc, D̃c) is a lcf of C, there exist X̃, Ỹ ∈ RH∞ such that

ÑcX̃ + D̃cỸ = I. (4.33)

Postmultiplying (4.33) with W−1 and taking the inverse yields

[ÑcX̃W−1 + D̃cỸ W−1]−1 = W ∈ RH∞.

With (X̃, Ỹ ) satisfying (4.33) and W , W−1 ∈ RH∞, it can be verified that
(Nx, Dx) := (X̃W−1, Ỹ W−1) is a rcf of a model Px that satisfies W = [D̃cDx +
ÑcNx]−1. Furthermore, T (Px, C) ∈ RH∞ from Lemma 4.2-6. �

As mentioned above Cx can be any (auxiliary) controller. In case Cx is used to
represent the knowledge of the controller C used in the feedback connection T (Po, C),
the filter F in Lemma 4.3-5 can be characterized as follows.

F = WD̃c = [Dx + CNx]−1 = Dx
−1[I + CPx]−1 (4.34)

Hence, the role of the lcf of the controller Cx drops out in (4.34). This gives rise to
an alternative characterization of the filter F to create the signal x in (4.24). This
result is summarized in the following corollary.

Corollary 4.3-9 Let a plant Po and a controller C create an internally stable feedback
connection T (Po, C) and let (Nx, Dx) be any rcf of any auxiliary model Px, then

F = [Dx + CNx]−1

satisfies the conditions of Lemma 4.3-5 if and only if T (Px, C) ∈ RH∞.

Proof: Follows by application of Proposition 4.3-7 with Cx = C and (4.34). �

With F given by Corollary 4.3-9, the rcf (No,F , Do,F ) is related to the rcf (Nx, Dx)
of the auxiliary model Px used in the construction of the filter F . This result is
summarized in the following corollary.
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Corollary 4.3-10 The rcf (No,F , Do,F ) of the plant Po that can be accessed on the
basis of the map from x to col(y, u) in (4.25) satisfies[

No,F

Do,F

]
=

[
Po

I

]
SinF−1 =

[
Po

I

]
[I + CPo]−1[I + CPx]Dx (4.35)

and
[Do,F + CNo,F ] = F−1 = [Dx + CNx] (4.36)

Proof: Equation (4.35) is found directly with No,F = PoSinF−1 and Do,F = SinF−1

and substituting (4.34). Subsequently, [Do+CNo] = [I+CPo]SinF−1 = F−1, proving
equation (4.36). �

From an identification point of view [Do,F + CNo,F ] is unknown, since it contains
the rcf (No,F , Do,F ) of the unknown plant Po, but (4.36) indicates that this can be re-
placed by the filter operation F−1, which is completely known. From Corollary 4.3-10
it can also be seen that (No,F , Do,F ) can be of high order and containing redundant
dynamics. A sensible choice of the auxiliary model Px may lead to cancelling of
redundant dynamics (Van den Hof et al. 1995).

4.3.4 Identification of fractional representations

It can be noted that the construction of the signal x in (4.24) with the filter F given in
Corollary 4.3-9 is similar to the intermediate signal x as used in (4.11). The filtering
(4.24) is visualized in Figure 4.2 and it can be seen that the intermediate signal x is
found by a simple filtering of the signal col(y, u).
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Fig. 4.2: Construction of signal x in (4.24) and admittance to rcf (No,F , Do,F ) of
plant Po operating in a feedback connection T (Po, C).

However, in the delineation presented here, it is indicated that it is possible to
access and estimate any rcf of the plant Po operating in closed-loop conditions by
simply filtering the signals present during the closed-loop experiments.



4.3 Fractional Approach to Closed-Loop Identification 121

Equivalent open-loop identification of coprime factors

As the signal x is uncorrelated with the noise present on either the plant input signal
u or the plant output signal y, estimation of the rcf (No,F , Do,F ) of the plant Po is
again on open-loop based identification problem. With the result of Lemma 4.3-5 the
following proposition for the identification of a right coprime factor can be given, see
also Van den Hof et al. (1995) or de Callafon and Van den Hof (1995b).

Proposition 4.3-11 Let the plant Po and a known controller C create a stable feed-
back system T (Po, C), then the closed-loop data col(y, u) in (4.22) can be rewritten
into [

y

u

]
=

[
No,F

Do,F

]
x +

[
Dc

−Nc

]
Soe

where So is given in (4.15), x given in (4.24) is uncorrelated with e, F is any filter
satisfying Lemma 4.3-5 and (No,F , Do,F ) is a rcf of the plant Po that satisfies (4.35)
and (4.36).

Proof: By use of (4.25) with No,F := PoSinF−1 and Do,F := SinF−1 and direct
application of Corollary 4.3-9. �

The signal x is uncorrelated with the noise v acting on the feedback connection
T (Po, C). Consequently the fractional approach to system identification yields an
equivalent open-loop identification of the plant’s coprime factorization (No,F , Do,F )
on the basis of closed-loop data. A similar observation was made in (Schrama 1992b)
on the basis of the intermediate signal x in (4.11). Here it can be seen that different
intermediate signals can be used to access any rcf (No,F , Do,F ) of the plant Po by
modifying the filter F in (4.24) and depicted in Figure 4.2. The (open-loop) map
(No,F , Do,F ) from the intermediate signal x to the closed-loop signals col(y, u) has
been depiced in Figure 4.3.

Compared to the parametrization mentioned in (4.20) estimating the rcf

(No,F , Do,F ) of the plant Po yields a model P̂ and a noise model Ĥ that are
parametrized as follows.

P (θ) = N(θ)D(θ)−1

H(θ) = Dc(I + P (θ)C)S(θ)
(4.37)

where (N(θ), D(θ)) is a parametrized model for the rcf (No,F , Do,F ) given in (4.35)
and S(θ) is a parametrized model for So given in (4.15). Although the parametrization
of H(θ) is the same compared to (4.20), the factorization (N(θ), D(θ)) of the model
P (θ) is estimated directly. In this way, the McMillan degree of the parametrized
model P (θ) is influenced only by the order of the factorization (N(θ), D(θ)) being
estimated. As such, the filter F will not affect the complexity of the model P̂ = P (θ̂)
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Fig. 4.3: Equivalent open-loop identification of the rcf (No,F , Do,F ) of the plant Po

using the signal x of (4.24) and the closed-loop data col(y, u).

being estimated. Opposite to (4.20), the auxiliary model Px that can be used to
construct a filter F , will not be reused in the reconstruction of a model P̂ .

Remark 4.3-12 The filter F in (4.24) is only used to construct the signal x for
identification purposes. As such, the complexity of F does not affect the complexity
of the model P̂ in (4.37) being estimated.

However, the filter F does have an effect on the rcf (No,F , Do,F ) that can be
accessed on the basis of the (filtered) closed-loop data. It can be observed from (4.35)
that choosing a (high order) auxiliary model Px with a rcf (Nx, Dx) such that Px = Po

would simplify the rcf (No,F , Do,F ) to[
No,F

Do,F

]
=

[
Nx

Dx

]

In that case, the coprime factors of the plant Po that can be accessed on the basis
of closed-loop data are equivalent to the (high order) rcf of Px. This motivation has
been used in de Callafon et al. (1994) and Van den Hof et al. (1995) to gain access
and to estimate a nrcf of a plant Po.

To anticipate on the results mentioned in Chapter 6, it can be mentioned here the
order of the model P̂ can be made less than or equal to the order of the factorization
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(N̂ , D̂) being parametrized. For that purpose, N(θ) and D(θ) should be parametrized
in either a state space realization with a common A and B matrix or a Matrix Fraction
Description (MFD) with a common right polynomial matrix. More details can be
found in Section 6.2.3.

Relation with two-stage identification method

The same approach to use a (filtered) signal in order to obtain an equivalent open-
loop identification problem is also being used in the two-stage identification method
(Van den Hof and Schrama 1993) as described in Section 3.3.4. In this method the
filter F is given by an (accurate) estimate of the input sensitivity function Sin =
(I + CPo)−1. With this filter F , the signal x has the interpretation of a noise free
input signal entering the plant Po in the closed-loop configuration. As a result, the
factorization (No,F , Do,F ) to be identified becomes (Po, I), since No,F = PoSinF−1,
Do = SinF−1. In the two-stage method, an estimate of Po is found by estimating the
coprime factor No,F only, since Do,F is assumed to be equal to identity.

It should be noted that F = (I+CPo)−1 does not satisfy the conditions mentioned
in Lemma 4.3-5 and clearly, the factorization (No,F , Do,F ) is not coprime over RH∞
for an unstable plant Po. If the filter F is given by an approximation of the input
sensitivity function (I + CPo)−1, where the plant Po or the controller C is unstable,
the situation can become even worse since both No,F and Do,F can be unstable. This
is due to the fact that F−1, which is the inverse of the estimated input sensitivity
function, will be unstable and the unstable modes will not be cancelled completely
in the operation PoSinF−1 or SinF−1. The consequence for the two-stage method is
that in the second step an unstable transfer function PoSinF−1 needs to be estimated.

4.4 Closed-loop Identification Problem Revisited

To summarize, the fractional approach to closed-loop identification, either based on
the dual-Youla parametrization or the direct identification of a coprime factorization
of the plant, basically consists of three steps.

1. Filtering: the construction of an intermediate signal, being a filtered version of
the signals measured from the feedback connection T (Po, C).

2. Identification: an equivalent open-loop identification of a fractional representa-
tion of the plant Po and/or the estimation of a closed-loop noise model.

3. Reconstruction: computation of model and noise model from the estimates
obtained.

The filtering step is needed to construct the signals used for the identification in the
second step. In this step, knowledge of the input signal u and the output signal y or
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knowledge of r1 and r2 is used. In case of the dual-Youla parametrization, knowledge
of the controller C is also required to construct the intermediate signal in (4.11),
The direct coprime factor identification approach is more robust against incomplete
knowledge of the controller C. As indicated in Lemma 4.3-5, the minimum knowledge
needed is the location of unstable poles of the controller that should appear in the
factor D̃c to construct the filter F .

As the identification step is just an equivalent open-loop identification problem, a
consistent estimate of either the transfer function Ro in (4.14) of the rcf (No,F , Do,F )
in (4.35) and/or the closed-loop noise model So can be obtained, provided that the
reference signals are persistently exciting (Assumption 3.2-2). Depending on the
method used, either from (4.20) or (4.37) a consistent estimate P̂ of Po can be ob-
tained. As such, the closed-loop partial consistent estimation problem mentioned in
Definition 3.2-9 can be solved. Furthermore, the equivalent open-loop identification
problem also enables the estimation of tunable approximate models of either Ro or
(No,F , Do,F ) having a limited complexity and independent of the noise v present on
the closed-loop data col(y, u).

Due to fractional approach in which only stable transfer functions are being es-
timated, there is no distinction between the estimation of stable or unstable plants
Po. Furthermore, the controller is also factorized in a stable factorization, so that no
distinction have to be made between stable or unstable controllers. In this way the
methods are applicable to situations in case both the plant and the controller, used
in the feedback connection T (Po, C), are unstable.

However, there are differences between the two fractional approaches discussed in
this chapter. These differences are due to the different parametrizations of the model
P (θ) used in (4.20) for the dual-Youla approach and (4.37) for the coprime factor
approach. As mentioned in Remark 4.3-1, the dual-Youla parametrization enables the
property to guarantee that a model P̂ being estimated, is stabilized by the controller
C used in the feedback connection T (Po, C). This property is not shared when a
model P̂ is estimated and constructed via (4.37).

On the other hand, a serious drawback from the dual-Youla parametrization is
the complexity of the model P̂ being estimated. As mentioned before, the McMillan
degree of the model P̂ found by (4.20) is determined by the order of the controller
C with the rcf (Nc, Dc), the order of the model Px with the rcf (Nx, Dx) and the
McMillan degree of the estimate R̂ of Ro given in (4.14). Hence, performing an
approximate identification of Ro to obtain a low complexity model R̂ will still lead to
a high complexity model P̂ in case either the controller C or the auxiliary model Px

being used in (4.20) have a relatively high McMillan degree.
In case of the parametrization given in (4.37), the complexity of a controller C and

a filter F 1 will not affect the complexity of the model P̂ being estimated. Therefore,

1The filter F may be based on an auxiliary model Px, see Corollary 4.3-9.
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directly estimating a coprime factorization (No,F , Do,F ) is found to be more suitable
to find low complexity models P̂ to address the closed-loop approximate estimation
problem mentioned in Definition 3.2-9.

Therefore, the estimation of a model P̂ of low complexity will be based on the
coprime factor approach in the remaining part of this thesis. This approach is gener-
ally applicable and able to handle the problem of approximate identification of stable
and unstable plants Po on the basis of closed-loop data. However, the favourable
properties associated to the dual-Youla parametrization will be elaborated in the
construction of a set of model P for which an estimated nominal factorization (N̂ , D̂)
will serve as a nominal model.

In this chapter the attention is focused solely on the estimation of a nominal model
P̂ on the basis of closed-loop data using the coprime factor approach. However, the
nominal model is just a part of the set of models P needed in Procedure 2.5-4. The
following chapter discusses the construction of the set of models P and the role of
the identification of the set P within Procedure 2.5-4 in more detail. After that,
in chapter 6, the tools presented in this chapter and chapter 5 will be combined to
elucidate the identification of a set of models P , including a nominal model P̂ , on the
basis of closed-loop data.
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Part III

Procedure
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5
Control and Performance Enhancement

using a Set of Models

5.1 Retrospect on the Problem Formulation

Looking back on the problem formulation discussed in the first chapter and the ap-
proach outlined in Section 2.5.2 of Chapter 2, it has become clear that the knowledge
of the (unknown) plant Po is represented by means of a set of models P. Henceforth,
the design of an enhanced performing feedback controller for the plant Po must be
done on the basis of this set P . To be able to complete the design of such an enhanced
performing controller C on the basis of a set of model P , the following three main
ingredients must be considered.

• Characterization of the set of models P.

As mentioned in Section 2.5.3, the set of models P should allow the evaluation of
the closed loop performance assessment test (2.19) and the closed loop validation
test of (2.20) and (2.21) in a non-conservative way.

• Definition of the performance.

In Remark 2.2-15, the performance has been characterized by the norm
‖J(P , C)‖∞ of a control objective function J(P , C) ∈ RH∞. A specification of
the control objective function is required to perform the steps of Procedure 2.5-4.

• Design of a robust controller on the basis of a set of models.

Once the structure of the set of models P and the H∞ norm-based control
objective has been defined, a robust performing controller, according to step 2
in Procedure 2.5-4, must be computed.

As of now, these items have not been discussed in detail, but do constitute the main
ingredients of Procedure 2.5-4. In this chapter, the above mentioned ingredients will
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be discussed and the exact formulation and characterization of the set of models P ,
the performance and the design of a robust controller is illuminated. As such, this
chapter presents new results on the characterization of a set of models P using a dual-
Youla perturbation. It is shown how this set of models is constructed and motivated
from the perspective of a closed-loop performance evaluation. Furthermore, for this
set of models, performance evaluation and robust control design will be discussed.
These results are based on the existing theory of µ-analysis and synthesis.

According to Section 2.5.3, there is a fourth main ingredient to be considered: the
identification procedure to actually estimate the set of models P. The estimation
of a set P plays an important role in step 1 and step 3 of Procedure 2.5-4. As the
identification procedure is subjected to the control objective function J(P , C) and the
structure of the set P being used, a discussion of the estimation of P is postponed
and can be found in the next chapter.

The outline of this chapter is as follows. In light of the favourable properties
associated to the identification of fractional model representations mentioned in the
previous chapter, the fractional approach will be continued here to define the structure
of the set of models P . In Section 5.2 this fractional approach to construct a set
of models P is illuminated and additional benefits are mentioned. Subsequently, in
Section 5.3 the form of the H∞ norm-based control objective function J(P , C) is given
and the way in which the closed loop performance assessment test (2.19) and the closed
loop validation test of (2.20) and (2.21) can be evaluated. Finally, in Section 5.4 the
procedure to the design of an enhanced and robust performing controller on the basis
of the set of models P is given.

5.2 Characterization of the Set of Models

5.2.1 Motivation for fractional approach

The fractional approach presented in the previous chapter does not distinguish be-
tween the estimation of stable or unstable systems. Similarly, the knowledge of a
feedback controller C is also represented by a stable factorization and no distinction
has to be made between stable and unstable controllers. Finally, it has been illus-
trated in the previous chapter that the estimation of a rcf of the plant Po on the basis
of data obtained under closed-loop conditions does not differ much from a standard
open-loop identification problem.

In light of the advantages associated to this fractional model approach, it is a
natural consequence to exploit the framework of fractional model representations in
the characterization of a set of models P used to represent the knowledge of the
possibly unstable plant Po. As indicated in Section 2.2.4, the set P is built up from a
nominal model P̂ along with an allowable model perturbation ∆. The allowable model
perturbation ∆ represents the incomplete knowledge of the plant Po with respect to
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the nominal model P̂ and allows the construction of a set P such that Po ∈ P .
In this section, some of the possibilities to construct a set of models P on the

basis of perturbations within a fractional model approach are illustrated. In the
next section, the construction of a set of models based on additive (or multiplicative)
perturbations on coprime factorizations and distance measures based uncertainty sets
are presented. In Section 5.2.4, a set of models described by a perturbation in a
dual-Youla parametrization will be discussed in more detail. The latter has several
favourable properties and motivates to structure the set of models P accordingly, in
order to be used in Procedure 2.5-4 for both system identification and control design
purposes.

5.2.2 Perturbations on coprime factors and distance measures

In the fractional approach discussed in the previous chapter, the plant Po is repre-
sented by a rcf (No,F , Do,F ) as given in (4.35) and the nominal model P̂ is repre-
sented by a rcf (N̂ , D̂). Following Example 2.2-17, a typical set of models P can be
constructed straightforwardly by considering either additive or multiplicative pertur-
bations on the rcf (N̂ , D̂) of the nominal model P̂ .

In case of additive perturbations on the rcf (N̂ , D̂) the following a set of models
PA can be considered.

PA(N̂ , D̂, V, W ) =

{
P | P = ND−1 where

[
N

D

]
=

[
N̂

D̂

]
+

[
∆N

∆D

]
with[

∆N

∆D

]
∈ RH∞ and ∆ :=

[
V11 V12

V21 V22

][
∆N

∆D

]
W satisfies ‖∆‖∞ < 1

} (5.1)

It can be observed from (5.1) that a set of models P is found by considering an additive
stable perturbation (∆N , ∆D) on the nominal rcf (N̂ , D̂) where the perturbation
(∆D, ∆N) is assumed to be unknown but bounded. The weighting functions V and
W serve as appropriate frequency dependent weighting functions to normalize the
H∞ norm bound on the allowable model perturbation ∆. In a similar way, a set of
models P based on a (input or output) multiplicative perturbation can be constructed.

In general, a rcf (N̂ , D̂) of a model P̂ is not unique and in (5.1) the rcf (N̂ , D̂)
being chosen is not specified. Furthermore, the size of the (unweighted) perturbation
(∆N , ∆D), measured by ∥∥∥∥∥

[
∆N

∆D

]∥∥∥∥∥
∞

=

∥∥∥∥∥
[

N

D

]
−
[

N̂

D̂

]∥∥∥∥∥
∞

depends on the difference between the specific rcf (N, D) of any system P ∈ P and
the chosen rcf (N̂ , D̂) of the nominal model P̂ . Restricting the rcf (N̂ , D̂) to be
normalized and considering the smallest difference between the rcf (N̂ , D̂) and the rcf



132 Control and Performance Enhancement using a Set of Models

(N, D) can be formalized by the notion of a distance measure, known as the gap- and
graph-metric (El-Sakkary 1985, Vidyasagar 1984, Vidyasagar 1985, Zhu 1989).

Definition 5.2-1 Let the distance between two systems P 1 and P 2 in the graph and
gap metric respectively be denoted by d(P 1, P 2) and δ(P 1, P 2), and let P i = N iD

−1
i

where (N i, Di) be a nrcf for i ∈ [1, 2].
Then d(P 1, P 2) is defined by

d(P 1, P 2) := max{�d(P 1, P 2), �d(P 2, P 1)}, with

�d(P i, P j) := inf
Q∈RH∞, ‖Q‖∞≤1

∥∥∥∥∥
[

Di

N i

]
−
[

Dj

N j

]
Q

∥∥∥∥∥
∞

and δ(P 1, P 2) is defined by

δ(P 1, P 2) := max{�δ(P 1, P 2), �δ(P 2, P 1)}, with

�δ(P i, P j) := inf
Q∈RH∞

∥∥∥∥∥
[

Di

N i

]
−
[

Dj

N j

]
Q

∥∥∥∥∥
∞

The distance δ(P 1, P 2) ∈ [0, 1] is called ‘the gap’ between the systems P 1, P 2. It
should be noted that, formally, the gap and graph metric are defined in terms of the
graph topology (El-Sakkary 1985, Vidyasagar 1985), whereas the above mentioned
definitions are obtained from the result mentioned in Georgiou (1988). Note that the
computation of a nrcf and the minimization in Definition 5.2-1 are needed to compute
the distance between the two systems P 1 and P 2, while the minimization associated
to the gap-metric is much easier to perform (Georgiou 1988). However, due to the
similarity between the two distance measures, the gap and the graph metric can be
related by the following triangular inequality (Packard and Helwig 1989)

d(P 1, P 2) ≤ δ(P 1, P 2)

making the gap between P 1 and P 2 an upper bound for the graph metric.
On the basis of the distance measures as given in Definition 5.2-1, again a set of

models P can be characterized. Using the gap metric as distance measure between
two systems, a set of models P	δ can be formulated as

P	δ(P̂ , �δmax) := {P | �δ(P̂ , P )�δ−1
max < 1} (5.2)

where �δmax ∈ IR. In Sefton and Ober (1993) and de Callafon et al. (1996b) the
similarities between the set P	δ in (5.2) and the set PA in (5.1) have been investigated.
In these references it has been shown that both sets can be made identical for specific
choices of the rcf of the nominal model P̂ .
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5.2.3 Introducing knowledge of the controller

In de Callafon et al. (1996b) it is observed that either in the set PA in (5.1) or P	δ

in (5.2), the closed-loop operation of any system P ∈ P is not taken into account.
Stated differently, knowledge of a controller C is not used in the construction of any
of the sets of models as discussed above.

Clearly, in case it is known that the (unknown) plant Po is stabilized by a certain
feedback controller C, this knowledge can and should be exploited to construct a set of
models P. During the construction of P this information can be taken into account.
As result, the set of models P can be tuned towards the available information that
is based on the closed-loop operation of the plant Po. An attempt to exploit the
knowledge of a stabilizing controller is the use of a weighted gap or so-called Λ-gap
as introduced in Bongers (1991) or Bongers (1994).

Definition 5.2-2 Let P i = N iD
−1
i , where (N i, Di) is a nrcf for i ∈ [1, 2]. Let

C = D̃−1
c Ñc be any controller having a nlcf (D̃c, Ñc), that creates an internally stable

feedback connection T (P 1, C) then �δΛ(P 1, P 2) is defined as

�δΛ(P 1, P 2) := inf
Q̄∈RH∞

∥∥∥∥∥
[

D1

N1

]
Λ−1 −

[
D2

N2

]
Q̄

∥∥∥∥∥
∞

with Λ = [D̃cD1 + ÑcN1].

The difference between �δ(P 1, P 2) and �δΛ(P 1, P 2) is the additional shaping of the
nrcf (N1, D1) of P 1 with Λ−1 into a rcf (N̄ , D̄) that makes Λ̄ := D̃cD̄ + ÑcN̄ = I. As
a result, the distance between P 1 and P 2 is measured via a rcf (N̄ , D̄) of P 1 that takes
into account the closed loop operation of P 1. This makes the distance between P 1

and P 2 dependent on (the nrcf of) the controller C. However, the distance measure
�δΛ(P 1, P 2) is not a metric since �δΛ(P 1, P 2) �= �δΛ(P 2, P 1) as to the influence of the
controller C that may be different for P 2 and P 1.

Similar to the set P	δ as given in (5.2), a set of models described by the Λ-gap can
be defined as follows

P	δΛ
(P̂ , �δΛ,max) := {P | �δΛ(P̂ , P )�δ−1

Λ,max < 1}. (5.3)

The tuning of the set of models P	δΛ
so that knowledge of a stabilizing feedback

controller C is used, yields a favourable property not shared by other “open-loop”
based uncertainty sets as given in (5.1), (5.2) or Example 2.2-17. To clarify this
property, consider the following result.

Proposition 5.2-3 Consider the set P	δ given in (5.2) and the set P	δΛ
given in

(5.3), where �δ−1
max = �δ−1

Λ,max. Let Pstab denote all systems P for which T (P , C) is an
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internally stable feedback connection and C is the feedback controller as used in the
construction of the set P	δΛ

. If

Pa := P	δ ∩ Pstab

Pb := P	δΛ
∩ Pstab

then Pa ⊂ Pb.

Proof: For a proof one is referred to de Callafon et al. (1996b). �

Clearly, the above mentioned proposition addresses the robust stability problem
as given in Definition 2.2-18. In words, Proposition 5.2-3 indicates that the set of
models that are stabilized by the controller C and described by the structure given in
(5.3) encloses the set of models that are stabilized by the controller C and described
by the structure given in (5.2).

As a set of models P is used to capture the limited knowledge available on the plant
Po, it is obvious to use the knowledge that the plant Po is stabilized by a controller C.
This knowledge is helpful in estimating and constructing a set of models P for which
is known beforehand that all systems P ∈ P are stabilized by the controller C. With
the definition of Pstab given in Proposition 5.2-3, the knowledge of the controller C

must be used in a more elaborated way to guarantee that the set of models Pi being
estimated satisfies P = Pstab. The construction of such a set of models can be found
in the next section.

5.2.4 Perturbations in a dual-Youla parametrization

The dual-Youla parametrization of Lemma 4.2-7 parametrizes all systems P that are
internally stabilized by a controller C on the basis of an auxiliary model Px which
is chosen to be stabilized by the controller C. This property can be elaborated in
structuring and defining a set of models P in such a way, that all systems P ∈ P are
guaranteed to be stabilized by the controller C. A set of models P that satisfies this
property is given in the following definition.

Definition 5.2-4 Let a nominal model P̂ with a rcf (N̂ , D̂) and a controller C with
a rcf (Nc, Dc) form an internally stable feedback connection T (P̂ , C). Then the set of
models P is defined by

P(N̂ , D̂, Nc, Dc, V̂ , Ŵ ) := {P | P = (N̂ + Dc∆R)(D̂ − Nc∆R)−1

with ∆R ∈ RH∞ and ∆ := V̂ ∆RŴ satisfies ‖∆‖∞ < γ−1}
(5.4)

and V̂ , Ŵare stable and stably invertible weighting functions.
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The set P essentially depends on the factorization (N̂ , D̂) of the nominal model
P̂ , the factorization (Nc, Dc) of the controller C and the weighting functions V̂ ,
Ŵ . Similar to the set of models defined above, the unknown, but bounded model
perturbation ∆ takes into account the incomplete knowledge of the plant Po that
should lie in the above mentioned set of models P .

Remark 5.2-5 Without loss of generality, the bound on the uncertainty in (5.4) can
also be normalized by the weighting functions V̂ or Ŵ . Hence, the set P does not
essentially depend on the numerical value of γ, but bounding it by γ−1 will simplify
notation considerably in the sequel. For similar reasons of notational simplicity, it
will be assumed that ∆R in (5.4) is an unstructured and stable LTI operator.

Clearly, in case ∆R in (5.4) is a scalar, the perturbation ∆R can be bounded by
a single scalar stable and stably invertible weighting function. To avoid confusion in
case ∆R is multivariable, the pre- and post-multiplication with respectively V̂ and Ŵ

is maintained.

Remark 5.2-6 To keep track of a multivariable perturbation ∆R, a notation involv-
ing the pair (V̂ , Ŵ ) is used to indicate the bound on ∆R.

Referring back to Procedure 2.5-4, the set Pi used in the identification of step 1
and the control design in step 2 of Procedure 2.5-4 can be characterized by employing
the knowledge of the stabilizing controller Ci that is implemented on the actual plant
Po. Employing the characterization given in Definition 5.2-4, the set of models Pi used
in step 1 and step 2 of Procedure 2.5-4 can be specified. Using (Nc,i, Dc,i) to denote
the rcf of Ci and a nominal model P̂i with a rcf (N̂i, D̂i) that satisfies T (P̂i, Ci) ∈
RH∞, the set Pi is given by

Pi(N̂i, D̂i, Nc,i, Dc,i, V̂i, Ŵi) = {P | P = (N̂i + Dc,i∆R)(D̂i − Nc,i∆R)−1

with ∆R ∈ RH∞ and ∆i := V̂i∆RŴi satisfies ‖∆i‖∞ < γi
−1}

(5.5)

for stable and stably invertible weighting functions V̂i and Ŵi.
The arguments of the set P in (5.4) or the set Pi will be omitted in the sequel,

since the dependency mentioned above is clear from Definition 5.2-4. However, a
distinction must be made between the arguments assumed to be known and those
who have to be estimated or identified when constructing the set of models P.

Remark 5.2-7 From an identification point of view, the arguments equipped with a
-̂symbol (N̂ , D̂, V̂ and Ŵ ) are the arguments to be identified and have to be obtained
by employing a system identification technique. In accordance with Remark 2.5-2, the
rcf (Nc, Dc) of the controller C, used to construct the set of models, is assumed to be
known.
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Due to the close connection with the dual-Youla parametrization, the set of models
(or model uncertainty set) P in (5.4) contains only models that are stabilized by
the currently implemented and known controller C, regardless of the value γ. This
advantage, observed also by (Schrama 1992b, pp. 139-141) or Sefton et al. (1990), is
not shared by alternative uncertainty characterizations, such as the open-loop additive
uncertainty description given in (5.1) or the uncertainty sets described in (5.2) or
(5.3). As a result, the set of models P , as defined in (5.4), covers all systems that are
stabilized by the controller C, used to build up the set of models P .

To anticipate on the results presented in the following sections, it can be noted
here that the structure of the set of models P given in (5.4) will yield an affine
expression in ∆R to evaluate the control objective function J(P , C) ∀P ∈ P. This
is an additional motivation to structure the set of models as in (5.4), which will be
explained in more detail in the next chapter. First, the definition of the set of models
P as given in (5.4) will be rewritten in a standard form based on LFT’s as mentioned
in Section 2.2.4.

5.2.5 Representations via LFT’s

The use of LFT representations enables the possibility to rewrite the set of models P of
Definition 5.2-4 in a standard form that is beneficial for notational and computational
purposes. To apply the LFT framework to the set P given in (5.4), the perturbation
on the nominal model P̂ , or nominal factorization (N̂ , D̂), is represented by an LFT
with a norm bounded uncertainty ∆ ∈ RH∞. This framework has been discussed in
Section 2.2.4 and the general form of model perturbation has again been visualized
in Figure 5.1.

�
�

Q

∆ 	

�
u y

zd

Fig. 5.1: LFT representation of model perturbation.

In Figure 5.1, the signals u and y denote respectively the input and output of any
system P ∈ P, while the uncertainty or allowable perturbation on the nominal model
P̂ is represented by the mapping ∆ between the fictitious signals d and z. In this
way, the mapping from u onto y for some ∆ ∈ RH∞ is given by the upper LFT

Fu(Q, ∆) := Q22 + Q21∆(I − Q11∆)−1Q12



5.2 Characterization of the Set of Models 137

as previously defined in (2.9).
The entries of the coefficient matrix Q in (2.9) depend on the nominal model P̂

and the way in which the allowable model perturbation ∆ will affect the nominal
model P̂ . By defining d = V̂ ∆RŴ z, it can be verified that the map form col(d, u)
onto col(z, y) for any system P ∈ P given in (5.4) can be represented by Figure 5.2.

Ŵ
−1

� N̂D̂
−1

�
Nc Dc

�	

�




�

V̂
−1

�

� ��
�
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�z

u

d

+ + +
+

Fig. 5.2: Representation of Q for the set P given in (5.4).

From Figure 5.2 it can be observed that the nominal map (for ∆R = 0) equals
the nominal model P̂ = N̂D̂−1. Alternative systems are found by the dual-Youla
perturbation ∆R that relate the fictitious signals d and z via d = V̂ ∆RŴ z and
modifies the nominal map according to the upper LFT given in (2.9). On the basis
of Figure 5.2, a characterization of the coefficient matrix Q in (2.9) can be given and
an alternative representation of the set of models P in (5.4) can be obtained.

Corollary 5.2-8 The set of models P given in (5.4) can be written as

P = {P | P = Fu(Q, ∆) with ∆ ∈ RH∞, ‖∆‖∞ < γ−1 and

Q =

[
Q11 Q12

Q21 Q22

]
=

[
Ŵ−1D̂−1NcV̂

−1 Ŵ−1D̂−1

(Dc + P̂Nc)V̂ −1 P̂

] (5.6)

Proof: The entries of Q can be found by defining ∆ = V̂ ∆RŴ and considering the
map from col(d, u) onto col(z, y) in Figure 5.2. �

Although the coefficient matrix Q in (5.6) looks complicated, it can be written as
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as simple multiplication

Q =

[
Ŵ−1 0

0 I

][
Q̄11 Q̄12

Q̄21 Q̄22

] [
V̂ −1 0

0 I

]

where the entries of the (unweighted) coefficient matrix Q̄ is given by[
Q̄11 Q̄12

Q̄21 Q̄22

]
=

[
D̂−1 0

0 I

][
I 0

P̂ I

] [
C I

I 0

][
Dc 0

0 I

]
. (5.7)

The multiplication of the transfer functions in (5.7) indicates the construction of
the (unweighted) coefficient matrix Q̄. Furthermore, it can be observed that Q̄ is
invertible, as all the matrices in (5.7) are known to be invertible, whereas[

I 0

P̂ I

]
and

[
C I

I 0

]

are unimodular. From the multiplication in (5.7) it can be observed that Q will have
a McMillan degree equal to the sum of the McMillan degree of the (nominal) model
P̂ and the controller C. A state space realization of the coefficient matrix Q, based
on the multiplication (5.7) is given in Appendix A.

Although the expressions mentioned in (5.6) and (5.7) are valid for the multivari-
able case, it is worth mentioning here that in case the (allowable) model perturbation
∆R in (5.4) is multivariable, it may be beneficial to represent the perturbation ∆ in
Figure 5.1 in a diagonal form. Especially in the case where stable and stably invert-
ible scalar weighting filters V̂ ij are available that upper bound each element (i, j) of
∆R separately via

‖V̂ ij∆Rij‖∞ ≤ γ−1. (5.8)

In this way, the perturbation ∆ in Figure 5.1 is given by ∆ = diag{∆Rij V̂ ij} instead
of the matrix multiplication V̂ ∆RŴ given in (5.4). In that case, the expression for
the coefficient matrix Q in (5.6) is slightly modified. To illustrate this modification,
consider a 2 × 2 (unweighted) perturbation ∆ that is given by

∆ =

[
∆11 ∆12

∆21 ∆22

]

which can be linked to a diagonal representation of ∆ via

[
∆11 ∆12

∆21 ∆22

]
=

[
I I 0 0

0 0 I I

]
︸ ︷︷ ︸

T1

⎡
⎢⎢⎢⎢⎣

∆11 0

∆12

∆21

0 ∆22

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

I 0

0 I

I 0

0 I

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
T2
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Incorporating the abovementioned unitary scaling matrices T1 and T2 into the un-
weighted coefficient matrix Q̄ of (5.7) will modify Q̄ into[

T2 0

0 I

][
Q̄11 Q̄12

Q̄21 Q̄22

][
T1 0

0 I

]

where the perturbation ∆ has the above mentioned diagonal form.
An LFT representation with this modified coefficient matrix can still be used to

characterize all models within a set of models P. To avoid the cumbersome nota-
tion associated to the diagonal form of the model perturbation ∆, as mentioned in
Remark 5.2-6, a notation involving the pair (V̂ , Ŵ ) is used to indicate the bound on
∆R.

Finally it can be mentioned that the coefficient matrix Q completely characterizes
the set of models in (5.6). Similar to the definition of the set of models P given in (5.4),
the coefficient matrix Q depends on the nominal factorization (N̂ , D̂) of the nominal
model P̂ , the rcf (Nc, Dc) of the controller C and the stable and stably invertible
weighting filters (V̂ , Ŵ ). It should be noted that in the construction of the set of
models P according to Corollary 5.2-8, the condition T (P̂ , C) ∈ RH∞ is not required.
However, as mentioned in Section 5.2.4, the favourable properties associated with the
dual-Youla parametrization are beneficial only if this condition is indeed taken into
account. Henceforth, for the construction of the coefficient matrix Q, stable and stably
invertible weighting filters (V̂ , Ŵ ), a nominal factorization (N̂ , D̂) of a nominal model
P̂ and a controller C with a rcf (Nc, Dc) is needed, where T (P̂ , C) ∈ RH∞.

5.3 Performance Characterization

5.3.1 Control objective function

To formalize the performance of a feedback connection of a system P and a controller
C, a control objective function J(P , C) ∈ RH∞ has been introduced in Section 2.2.3.
As pointed out in this section, the control objective function depends at least on both
the controller C and the system P . Although the characterization of performance
may involve the specification of additional weighting functions or the use of time
domain constraints (Boyd and Barrat 1991), the performance essentially depends on
the controller C and the system P that assemble the feedback connection T (P , C) in
Figure 2.2.

Due to the algebraic relations between r1, u and yc and between r2 or v, y and
uc, the various maps present in a feedback connection T (P , C) can be investigated
by the four-block transfer function matrix T (P, C) as defined in (2.5). For reasons of
generality it is a natural consequence to choose the control objective function J(P , C)
equal to some input/output weighted form of the transfer function matrix T (P, C).
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In that case, the performance (level) ‖T (P, C)‖∞ is measured by

‖J(P , C)‖∞ := ‖U2T (P, C)U1‖∞ (5.9)

where U1 and U2 are (square) weighting functions (not necessarily stable or stably
invertible). The weighting functions U1 and U2 can be used for additional shaping of
the T (P, C) matrix.

Although it is impossible to transform any desirable control design objective
into the single norm function ‖U2T (P , C)U1‖∞, the performance characterization
(5.9) has wide applicability. It may include a weighted sensitivity or mixed sen-
sitivity characterization by proper modification of the weighting functions U1 and
U1 (Schrama 1992b). To investigate for example (internal) stability of the feedback
connection, it is necessary to study the map from col(r2, r1) to col(uc, u) (Chen and
Desoer 1982). On the other hand, disturbance attenuation can be reflected by the
map from v to col(y, u) and tracking by the map from r2 onto col(y, u) (Boyd and
Barrat 1991). Therefore, the performance measure mentioned in (5.9) is believed to
be fairly general and suitable for most applications.

Considering the notion of performance (robustness) mentioned in Definition 2.2-19
with a γ > 0 and the set of models P as given in (5.4), then a controller C is said to
satisfy nominal performance if

‖J(P̂ , C)‖∞ = ‖U2T (P̂ , C)U1‖∞ ≤ γ (5.10)

whereas robust performance is satisfied when

‖J(P, C)‖∞ = ‖U2T (P, C)U1‖∞ ≤ γ (5.11)

for all P ∈ P .
In light of Procedure 2.5-4, the above mentioned tests have to be performed for

some controller Ci or Ci+1 using an identified set of models Pi and built around a
nominal model P̂i.

As mentioned in Remark 2.5-3, the weighting functions U1 and U2 are assumed to
be given and fixed in order to compare the performance when updating or redesigning
a controller Ci to Ci+1. In this way, the numerical value of J(P , Ci) and J(P , Ci+1)
for different systems P that belong to a set of models can be compared.

As mentioned before, this does not imply that the weighting functions U2 and U1

in the control objective function are not allowed to be changed. Clearly, the shape
and size of the weighting filters U1 and U2 will highly depend on required control
effort and the dynamics of the plant Po. Such information becomes available once
an identification and controller design (e.g. Procedure 2.5-4) has been performed.
Therefore, it is realistic to assume that the weighting filters U2 and U1 will also be
changed. However, for analysis purposes, the weighting filters U2 and U1 are assumed
to be fixed.
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Finally it can be noted that applying either the controller Ci or Ci+1 in
Procedure 2.5-4 to a set of models Pi as given in (5.5) requires the evaluation of a ro-
bust performance test similar to (5.11). With the LFT framework in Section 5.2.5 to
represent the set of models, a performance robustness test can be formulated straight-
forwardly. This is discussed in the subsequent sections.

5.3.2 LFT representation

Due to the model-based approach, the analysis of the performance when applying
a controller to a set of models and the synthesis of a robust controller for a set of
models can be handled relatively easily. This can be done by evaluating the worst case
performance, or similarly, checking robust performance of a controller when applying
it to all the models within the set of models.

In order to be able to check performance robustness, the performance of a con-
troller C applied to any model P ∈ P of (5.4) is written in terms of an LFT. In this
way, standard results present in literature Zhou et al. (1996) can be used to evaluate
performance robustness. For a clear understanding of the results, a distinction must
be made between the controller applied to the set of models and the controller used
in the construction of the set of models Pi as in (5.5).

Remark 5.3-1 The controller used in the construction of the set of models Pi is
denoted by Ci, while the controller applied to the set of models Pi for performance
(robustness) analysis purposes is denoted by C.

It should be noted that the indexing used in Remark 5.3-1 is consistent with the
indexing used in Procedure 2.5-4. Hence, Ci+1 will denote the controller on which
the set of models Pi+1 is based. With the use of this notation, the following result
can be obtained.

Lemma 5.3-2 Consider the set Pi defined in (5.5) and a controller C such that the
map J(P , C) = U2T (P , C)U1 is well-posed for all P ∈ Pi. Then

Pi = {P | J(P , C) = Fu(M, ∆) with ∆ ∈ RH∞, ‖∆‖∞ < γi
−1}

where the entries of M are given by

M11 = −Ŵi
−1

(D̂i + CN̂i)−1(C − Ci)Dc,iV̂i
−1

M12 = Ŵi
−1

(D̂i + CN̂i)−1
[

C I
]
U1

M21 = −U2

[
−I

C

]
(I + P̂iC)−1(I + P̂iCi)Dc,iV̂i

−1

M22 = U2

[
N̂i

D̂i

]
(D̂i + CN̂i)−1

[
C I

]
U1

(5.12)
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Proof: Consider a LFT representation of Pi similar to (5.6). Create the feedback
connection of Q depicted in Figure 5.1 with a controller C, where u := r1 +C(r2 − y)
and define signals col(w1, w2) and col(d1, d2) such that col(r2, r1) = U1col(w1, w2)
and col(e1, e2) = U2col(y, u). Then it can be verified that the map from col(d, w1, w2)
onto col(z, e1, e2) is given by the transfer function M of (5.12). In here the relations

[
−I Q22

C I

]−1

=

[
−(I + Q22C)−1 (I + Q22C)−1Q22

(I + CQ22)−1C (I + CQ22)−1

]

and [
−I Q22

C I

]−1

+

[
I 0

0 0

]
=

[
Q22

I

]
(I + CQ22)−1

[
C I

]

are used to derive the expressions given in (5.12). Subsequently, the map from
col(w1, w2) onto col(e1, e2) equals the upper LFT Fu(M, ∆). �

With Lemma 5.3-2, the performance ‖J(P , C)‖∞ of a controller C applied to any
models P ∈ Pi can be evaluated by

‖Fu(M, ∆)‖∞ = ‖M22 + M21∆(I − M11∆)−1M12‖∞ (5.13)

for all ∆ ∈ RH∞ with ‖∆‖∞ ≤ γi
−1. Note that the entries of the transfer function

M in (5.12) are determined solely by the controller C, the structure and the variables
used to represent the set Pi of (5.5) and the weightings U2, U1 of the performance
specification (5.9). As such, a distinction must be made between the controller Ci and
its rcf (Nc,i, Dc,i), used in the construction of the set of models Pi, and the controller
C applied to the set Pi. As a special entry of M , one can recognise M11 as the
lower LFT Fl(Q,−C), whereas M22 equals the transfer function U2T (P̂i, C)U1 and is
associated to the nominal performance specification.

As indicated in Remark 5.3-1 the feedback controller C in (5.12) denotes the con-
troller C applied to the set of models Pi for analysis purposes. Hence, substituting
C = Ci can be used for the performance assessment in step 1 a posteriori, while
setting C = Ci+1 can be employed to check and guarantee performance of Ci+1 a
priori in step 2 of Procedure 2.5-4. Similar results can also be obtained for step 3 in
Procedure 2.5-4.

As mentioned before, evaluating (5.13) can be done by applying standard results
available in the literature (Packard and Doyle 1993, Zhou et al. 1996). However, in
order to be able to compute the (worst case) performance for the LFT given in (5.13)
in a non-conservative way, the concept of µ or structured singular value (Packard and
Doyle 1993) is needed. This will be summarized in the next section.
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5.3.3 Structured singular value

The structured singular value is a matrix function, denoted by µ(M), where M can be
any (square) complex matrix. It plays a crucial role in the evaluation of performance
robustness (Doyle et al. 1992), which is the main reason to use it in this thesis.

The definition of µ(·) depends on an underlying (diagonal) structure (Doyle et
al. 1992, Zhou et al. 1996). This structure, which will be denoted by ∆, is determined
by the structure of the uncertainty set and the performance objective function being
used. The structured singular value µ(·) with respect to such a structure ∆ will be
denoted by µ∆(·). Using the symbol σ̄(∆) to denote the maximum singular value of
∆, the definition of µ∆(·) adopted from Doyle et al. (1991) reads as follows.

Definition 5.3-3 For a complex matrix M , the structured singular value µ∆(M) is
defined by

µ∆(M) :=

⎧⎪⎨
⎪⎩

1

min
∆∈∆

{σ̄(∆)} if ∃∆ ∈ ∆ s.t. det(I − M∆) = 0

0 if � ∃∆ ∈ ∆ s.t. det(I − M∆) = 0

In this thesis, the structure ∆ used in Definition 5.3-3 is restricted to have a
diagonal form, having two unstructured uncertainty blocks ∆1 and ∆2 only. Now let
M be partitioned as

M =

[
M11 M12

M21 M22

]
(5.14)

then the blocks ∆1 and ∆2 are compatible in size with M11 and M22, meaning that
both M11∆1 and M22∆2 are square. In this way the structure of ∆ is given by

∆ :=

{[
∆1 0

0 ∆2

]
| ∆1, ∆2 ∈ RH∞, ‖∆1‖∞ < 1, ‖∆2‖∞ < 1

}
. (5.15)

In general µ∆(M) is approximated by computing upper and lower bounds. The
upper bound is derived by the computation of non-negative scaling matrices Dl and
Dr defined within a set D that commutes with the structure ∆. One is referred to
e.g. (Packard and Doyle 1993) for a detailed discussion on the specification of such a
set D of scaling matrices. Basically, the commutation of D with ∆ implies that for
all Dl, Dr ∈ D and for all ∆ ∈ ∆, Dr∆ = ∆Dl and µ∆(M) = µ∆(DlMD−1

r ). This
gives rise to the computation of the following upper bound.

µ∆(M) ≤ inf
Dl,Dr∈D

σ̄(DlMD−1
r ) (5.16)

The infimization formulated in (5.16) can be reformulated as a convex optimization
problem (Packard and Doyle 1993). However, for the special cases of M and ∆ used
in this paper, it is possible to compute µ∆(M) exactly.
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Lemma 5.3-4 Consider the structure ∆ given in (5.15) and µ∆(M) given in
Definition 5.3-3, then

µ∆(M) = inf
Dl,Dr∈D

σ̄(DlMD−1
r )

Proof: The structure ∆ consists of two full blocks. Application of theorem 9.1 in
Packard and Doyle (1993) or theorem 11.5 in Zhou et al. (1996) yields the result. �

The characterization of M in (5.12) will play a crucial role in evaluating robustness
issues. With the above mentioned results, stability and performance robustness for a
controller C applied to a set of models Pi of (5.5) can be evaluated.

5.3.4 Evaluating performance for the set of models

The properties of µ∆(M) as given in Definition 5.3-3 and the result mentioned in
Lemma 5.3-4 can now be used to study the upper LFT Fu(M, ∆) of (5.13). In this
way, both stability and performance robustness can be evaluated by using stan-
dard results that are available in the literature (Packard and Doyle 1993, Zhou
et al. 1996). First, the result on stability robustness is summarized. From this
result, the favourable properties associated to a set of models structured as in
Definition 5.2-4 will be made clear. Subsequently, performance robustness and the
link with Procedure 2.5-4 is mentioned.

Stability robustness

Using the upper LFT Fu(M, ∆) given in (5.13), result on stability robustness can be
formulated. In this section these results are applied to the set of models Pi as given in
(5.5). First the general result on stability robustness of Fu(M, ∆) will be discussed.

Lemma 5.3-5 Let the stable transfer functions M, ∆ ∈ RH∞ construct a basic per-
turbation model Fu(M, ∆) and assume that for all ∆ ∈ RH∞ with ‖∆‖∞ < 1 the
transfer function M21∆(I − M11∆)−1M12 does not exhibit unstable pole/zero can-
cellations1. Then Fu(M, ∆) is well-posed and BIBO stable for all ∆ ∈ RH∞ with
‖∆‖∞ < 1, if and only if

‖M11‖∞ ≤ 1 (5.17)

Proof: Since M ∈ RH∞, and thus M11, M12, M21, M22 ∈ RH∞, the small gain theo-
rem (Zames 1963) directly leads to the sufficient condition of the stability of Fu(M, ∆).
Provided that unstable poles of (I − M11∆)−1 are not cancelled in Fu(M, ∆) for all
∆ ∈ RH∞ with ‖∆‖∞ < 1, this leads to the necessary condition of (5.17). For a
complete proof see Glover and McFarlane (1989) or Zhou et al. (1996). �

1This additional condition, which is often discarded in literature, excludes trivial situations as

e.g. M21 = 0 or M12 = 0.
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With the result of Lemma 5.3-5 and the characterization of M in (5.12), the notion
of robust stability according to Definition 2.2-18 can now be formulated for a set of
models Pi.

Corollary 5.3-6 Consider the set Pi given in (5.5) and a controller C such that the
feedback connection T (P̂i, C) is well-posed, internally stable and satisfies T (P̂i, C) ∈
RH∞. Then the feedback connection T (P , C) is well-posed and internally stable for
all P ∈ Pi, if and only if∥∥∥Ŵi

−1
(D̂i + CN̂i)−1(Ci − C)Dc,iV̂i

−1
∥∥∥
∞

≤ γi (5.18)

Proof: It can be verified from (5.12), that any internal stabilizing controller C that
satisfies T (P̂i, C) ∈ RH∞, will yield stable entries of M , where the weighting functions
U2 and U1 in (5.12) can be set to identity. Furthermore, it can be verified from (5.12)
that for stable and stably invertible filters V̂i and Ŵi, M21∆(I−M11∆)−1M12 cannot
exhibit pole/zero cancellations for any stable ∆. Lemma 5.3-5 can be applied by
extracting M11 from (5.12) and taking into account the scaling γi

−1 in (5.5). For all
P ∈ Pi this yields the necessary and sufficient condition (5.18). �

Similar results have also been be found by Schrama (1992b, pp. 139). However,
in Schrama (1992b) only sufficiency of (5.18) was mentioned. Furthermore, a similar
result is also obtained when considering a perturbation of the controller C, where
the perturbation is described in a dual-Youla parametrization (Schrama 1992b). As
mentioned before, due to the structure of the set of models Pi in (5.5), all systems
P ∈ Pi of (5.5) are stabilized by the controller Ci. This is consistent with the
stability robustness result mentioned in Corollary 5.3-6. Checking stability robustness
for C = Ci applied to the set Pi of (5.5) will result in M11 = 0 and hence (5.18) is
satisfied trivially, regardless of the value of γi.

Remark 5.3-7 Independent of the size of the allowable model perturbation ∆R, sta-
bility robustness is satisfied when the controller Ci is applied to the set of models
Pi given in (5.5). However, application of a (newly designed) controller Ci+1, that
not has been used to construct to the set of models Pi, does require the evaluation of
stability robustness by evaluating (5.18) for C = Ci+1.

Although the possibility to check stability robustness is helpful before implement-
ing a controller to the plant Po, satisfying performance robustness is more essential
and a stronger requirement than stability robustness. For that purpose, the evaluation
of the control objective function for each system P ∈ Pi is required.

Performance robustness

Performance robustness is, in general, a much stronger requirement than stability
robustness (Doyle et al. 1992). In the above mentioned results it was made clear that
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the size of set Pi (measured by the value of γi) is not a limiting factor when evalu-
ating stability robustness of the controller Ci applied to Pi. Performance robustness,
however, may pose additional requirements on the size of the set of models Pi. To
clarify this statement, first the general result on performance robustness of Fu(M, ∆)
will be discussed.

Lemma 5.3-8 Consider stable transfer functions M, ∆ ∈ RH∞ where M is parti-
tioned as in (5.14) and µ∆(M) is defined related to the structure ∆ given in (5.15).
Then Fu(M, ∆) is well-posed, BIBO stable and ‖Fu(M, ∆)‖∞ ≤ γ for all ∆ ∈ RH∞
with ‖∆‖∞ < γ−1, if and only if

µ∆(M) ≤ γ (5.19)

Proof: By setting ∆ = ∆1 and adding a fictitious full block uncertainty ∆2 ∈ RH∞
with ‖∆2‖ < γ−1, the uncertainty structure (5.15) is obtained. Application of the
main loop theorem, similar as in theorem 11.7 in Zhou et al. (1996) now proves the
result. �

The result of Lemma 5.3-8 opens the possibility to evaluate the performance ro-
bustness of a controller C applied to a set of models in a non-conservative way. This
set of models can be either Pi as used in step 1 and step 2 of Procedure 2.5-4, or a
newly identified set of models Pi+1 as used in step 3. The result for evaluating the
performance of a controller C applied to the Pi of (5.5) is stated in the following
theorem. Similar results can be derived for Pi+1.

Corollary 5.3-9 Consider the set Pi defined in (5.5) and a controller C such that
T (P̂i, C) is well-posed, internally stable and satisfies U2T (P̂i, C)U1 ∈ RH∞. Then,
for all P ∈ Pi, the feedback system T (P , C) is well-posed, internally stable and satis-
fies ‖U2T (P, C)U1‖∞ ≤ γi if and only if

µ∆

([
Ŵi

−1
0

0 U2

]
Text(P̂ i, Ci, C)

[
−V̂

−1

i 0

0 U1

])
≤ γi (5.20)

where Text(P̂i, Ci, C) is given by⎡
⎢⎢⎢⎢⎣

Zi(C − Ci)Dc,i Zi

[
C I

]
([

N̂i

D̂i

]
ZiC +

[
I

0

])
(Dc,i + P̂iNc,i)

[
N̂i

D̂i

]
Zi

[
C I

]
⎤
⎥⎥⎥⎥⎦ (5.21)

where Zi = (D̂i + CN̂i)−1 = D̂i
−1

(I + CP̂i)−1.
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Proof: Lemma 5.3-2 connects Fu(M, ∆) with U2T (P , C)U1 for all P ∈ Pi. The
expression for Text(P̂i, Ci, C) can be found by use of (5.12) and algebraic manip-
ulation. Applying Lemma 5.3-8 yields the necessary and sufficient condition for
‖Fu(M, ∆)‖∞ ≤ γi to hold for all P ∈ Pi. �

The analysis result presented in Corollary 5.3-9 can be used in the various steps
mentioned in Procedure 2.5-4. Structuring the set of models Pi as in (5.5), the per-
formance assessment test and the controller and modelling validation tests mentioned
in Remark 2.5-6 can be performed with the result mentioned in Corollary 5.3-9.

Remark 5.3-10 Referring to Procedure 2.5-4, substituting C = Ci in (5.20) can
be used for the a posteriori performance assessment in step 1. On the other hand,
substitution of C = Ci+1 in (5.20) can be used to check and guarantee the a priori
performance robustness of Ci+1 in step 2.

Recall from Lemma 5.3-4 that for structure ∆2 the value of (5.20) can be computed
exactly. Similar results can be derived also for the set of models Pi+1 as used in step 3
of Procedure 2.5-4.

As already mentioned in the discussion on stability robustness, the substitution of
C = Ci in (5.12) yields M11 = 0 and implies stability robustness for the controller Ci

appied to the set of models Pi regardless of the value of γi. However, a requirement
on performance robustness limits the allowable value of value of γi. For C = Ci the
upper LFT Fu(M, ∆) modifies into

M22 + M21∆M12 (5.22)

which is an affine expression in ∆. Consequently, performance robustness limits the
allowable size of ∆ (the uncertainty) as ‖M22 + M21∆M12‖∞ must be less than or
equal to γi.

Fortunately, the specific structure of the set of models as given in Definition 5.2-4
gives rise to an affine expression (5.22) in the uncertainty ∆ to evaluate the control
objective function for each system captured in the set of models. Using system iden-
tification, the uncertainty can be reduced and/or modified. As such, the structure of
(5.22) will be exploited in the next chapter to formulate a (control relevant) identi-
fication problem to estimate the set of models Pi, by employing the knowledge of a
stabilizing controller Ci that is implemented on the (unknown) plant Po. To complete
the analysis of this chapter, the robust control design of step 2 in Procedure 2.5-4 will
be discussed.

2In the case of unstructured ∆R.
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5.4 Robust Control Design

5.4.1 Relation to the procedure being followed

The set of models to be used throughout Procedure 2.5-4 has been structured accord-
ing to Definition 5.2-4. In the previous sections, the favourable properties of such a
set of models have been summarized and the various tests mentioned in Remark 2.5-6
have been analyzed. Consequently, once a set of models has been characterized by the
variables mentioned in Remark 5.2-7, the possibility can be exploited to (re)design
a robust controller on the basis of the set. Basically, this constitutes step 2 in
Procedure 2.5-4, where a controller Ci+1 must be designed on the basis of Pi that
should satisfy performance robustness test in (2.20).

In the sequel of this chapter it is assumed that the variables mentioned in
Remark 5.2-7 are available to complete the characterization of the set of models Pi.
A more detailed discussion on how to obtain a nominal factorization (N̂i, D̂i) and
the stable and stably invertible weighting filters (V̂i, Ŵi) is postponed until chap-
ter 6. Using this set Pi and the results mentioned in the previous section, the design
of a controller Ci+1 in step 2 of Procedure 2.5-4, that should satisfy (2.20), will be
discussed below.

In order to be able to satisfy

‖J(P, Ci+1)‖∞ ≤ γi+1 < γi ∀P ∈ Pi

as mentioned in (2.20), the controller Ci+1 can be designed by minimizing

min
C

sup
P∈Pi

‖J(P, C)‖∞. (5.23)

In this way, the value γi+1 in

sup
P∈Pi

‖J(P, Ci+1)‖∞ ≤ γi+1

is minimized in order to satisfy the requirement γi+1 < γi as mentioned in (2.20).
Formally, (5.23) is a robust control design problem, wherein the controller Ci+1 is
being designed such that the worst case performance J(P , Ci+1) ∀P ∈ Pi is being
optimized. Computation of such a robust controller can be done by existing techniques
based on µ-synthesis (Doyle et al. 1992, Packard and Doyle 1993, Zhou et al. 1996).

5.4.2 Standard plant description

In order to solve the robust control design problem, consider the weighting functions
U2, U1 of the performance specification (5.9) and the set of models Pi structured
accordingly to (5.5). On the basis of this information, the robust control synthesis
can be formulated due to the analysis performed in Corollary 5.3-9. Substitution
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of C = Ci+1 in Corollary 5.3-9 yields a necessary and sufficient condition for the
expression (2.20) to hold. Hence, the minimization (5.23) to synthesise a controller
Ci+1 can be replaced by the minimization

min
C

µ∆

([
Ŵi

−1
0

0 U2

]
Text(P̂i, Ci, C)

[
−V̂i

−1
0

0 U1

])
(5.24)

where Text(P̂i, Ci, C) is given in (5.21).
Basically, (5.24) is a µ-synthesis problem that can be tackled by using the upper

bound (5.16) and solving

min
C

inf
Dl,Dr∈D

∥∥∥∥∥Dl

[
Ŵi

−1
0

0 U2

]
Text(P̂i, Ci, C)

[
−V̂i

−1
0

0 U1

]
D−1

r

∥∥∥∥∥
∞

(5.25)

iteratively for the scaling matrices Dl, Dr and the controller C subjected to internal
stability of the feedback connection of C and P̂i. This iteration is known as the
D-K iteration3 and for fixed scaling Dl, Dr with Dl, D

−1
r ∈ RH∞ (5.25) is an H∞

optimization problem, for which commercially available software exists, see e.g. Zhou
et al. (1996).

It should be mentioned that this section of the thesis does not aim at giving a
complete overview of the properties and the computational procedure associated to
µ-synthesis using a D-K iteration. Instead, the results and the computational proce-
dure of the D-K iteration will be used to tackle the robust control design problem.
Although convergence of the D-K iteration is not guaranteed, several successful ap-
plications have been reported in the literature. Furthermore, it should be stressed
that precise minimization of (5.24) is not needed. If suffices to find a controller Ci+1

that is able to satisfy (5.20).
In order to use the available standard results on H∞ controller synthesis, the

controller C must be extracted from the transfer function M given in (5.12). This
can be done by representing the transfer function M as a lower fractional trans-
formation Fl(G, C), in which the controller C to be computed has been isolated.
Subsequently, for fixed D-scalings, an H∞ controller can be computed by minimizing
‖DlFl(G, C)Dr‖∞, as illustrated in Figure 5.3.

From Figure 5.3 it can be seen that the controller C to be computed is extracted
from a transfer function G. The transfer G only contains the variables needed to
construct the set of models, as mentioned in Remark 5.2-7, and the weightings U2

and U1 associated to the performance characterization given in (5.9). An expression
for the transfer function G (the standard plant description) is given in the following
corollary.

3The naming D-K iteration is widely used in the literature and is adopted here, although D-C

would be more appropriate.
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Fig. 5.3: Controller synthesis via H∞ optimization for fixed D-scaling.

Corollary 5.4-1 Consider the map M given in (5.12), then M = Fl(G, C) where G

is given by

G =

⎡
⎢⎢⎣

Ŵi
−1

0 0

0 U2 0

0 0 I

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎢⎣

D̂i
−1

Nc,i 0 D̂i
−1

D̂i
−1

(Dc,i + P̂iNc,i) 0 P̂i P̂i

0 0 I I

−(Dc,i + P̂iNc,i) I −P̂i −P̂i

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣
−V̂i

−1
0 0

0 U1 0

0 0 I

⎤
⎥⎥⎦

Proof: The entries of G can be found by the map from col(d, w, yc) onto col(z, e, uc)
in Figure 5.3. �

It can be noted that finding H∞ norm-based controllers for a control objective
function J(P , C) = U2T (P, C)U1 has been studied also in Bongers (1994), Schrama
(1992b) or McFarlane and Glover (1992). In these references it has been made clear
that minimizing the (unweighted and nominal) performance characterization

min
C

‖T (P, C)‖∞ (5.26)

can be given a special interpretation. The minimization of (5.26) aims at finding a
controller that has a stability robustness margin which is optimal for a set of models
structured by additive coprime factor perturbations, similar as given in (5.1).

The control design discussed here is a generalization of the robust controller syn-
thesis as presented in e.g. Bongers (1994) or McFarlane and Glover (1992). It can
be verified from Corollary 5.4-1 that by ignoring the map from d onto z (representing
the uncertainty), G reduces to

[
U2 0

0 I

]⎡⎢⎢⎣
0 P̂i P̂i

0 I I

I −P̂i −P̂i

⎤
⎥⎥⎦
[

U1 0

0 I

]

and M = Fl(G, C) = U2T (P̂i, C)U1. In the special case of a diagonal weighting
function U = diag(Uin, U−1

out) with U2 = U and U1 = U−1, the controller Ci+1 that
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minimizes ‖UT (P̂i, Ci+1)U−1‖∞ can be found by loop shaping techniques (Bongers
1994, pp. 107-108). Explicit state space formulae of the optimal controller for this
special case can be found in Bongers (1994) or McFarlane and Glover (1992).

As mentioned before, finding a controller by minimizing ‖DlFl(G, C)Dr‖∞ iter-
atively using the scalings Dl, Dr and the controller C can be solved by available
computational algorithms (Zhou et al. 1996). As this D-K iteration aims at minimiz-
ing (an upper bound) on (5.24), this controller synthesis technique can be used to find
a robust and enhanced performing controller Ci+1 in step 2 of Procedure 2.5-4. With
the set of models Pi structured accrodingly to (5.5) and the performance character-
ization of (5.9), the tools summarized in this chapter constitute the ingredients to
evaluate the closed performance assessment test (2.19) and the closed loop validation
test of (2.20) and (2.21) in a non-conservative way. Furthermore, the robust control
design method on the basis of a set of models Pi in step 2 of Procedure 2.5-4 has been
presented.
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6
Control Relevant Identification of a Model

Uncertainty Set

6.1 Scope of This Chapter

6.1.1 Estimating a set of models

Having characterized the set of models and its favourable properties in the previous
chapter, the problem how to actually obtain the set remains unrequited. The purpose
of this chapter is to complete this task and to estimate a set of models by means
of system identification techniques. The estimated set of models will be denoted
by model uncertainty set to stress that the set of models is obtained via system
identification techniques and characterizes the limited knowledge available on the
plant Po.

For the estimation of the model uncertainty set, the fractional approach for identi-
fication on the basis of closed-loop data, as outlined in chapter 4, will be employed to
complete the fractional characterization of the set of models presented in chapter 5.
In this chapter new results on the closed-loop relevant identification of nominal model
and model uncertainty set are presented. It is shown how the algebraic approach of
fractional model representations can be used to construct a set of models or model
uncertainty set on the basis of closed-loop data coming from a feedback connection
T (Po, C).

Finally it can be noted that the attention is focused on finding a model uncertainty
set of limited complexity. As motivated before, the rationale behind this approach
is to avoid the synthesis of robust controllers on the basis of highly complex models
as much as possible. Such a synthesis inevitably will lead to high order controllers
for which the computation may be badly conditioned. For that purpose, the model
uncertainty set is based on a nominal model and a model uncertainty characterization
that both exhibit a relatively low complexity.
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6.1.2 Link to procedure

Referring to Procedure 2.5-4, the estimation of a set of model P appears both in step 1
and step 3. In this perspective, both steps are similar and require the estimation of a
sets of models Pi and Pi+1 that should satisfy Po ∈ Pi and Po ∈ Pi+1 respectively for
step 1 and step 3. From an identification point of view, the estimation of the set of
models in either step 1 or step 3 of Procedure 2.5-4 is similar and is the identification
problem discussed in this chapter.

However, additional to the conditions that the actual plant Po should lie in the
estimated set of models, the sets Pi and Pi+1 are subjected to a ”quality test” or
”validation test” mentioned respectively in (2.19) and (2.21). Estimating the set of
models Pi in step 1 of Procedure 2.5-4 such that γi is as small as possible, formally
could be achieved by minimizing

sup
P∈Pi

‖J(P , Ci)‖∞ (6.1)

subjected to the condition Po ∈ Pi. Similarly, the estimation of the set Pi+1 in step 3
of Procedure 2.5-4 such that (2.21) will be satisfied can be achieved by solving the
minimization

sup
P∈Pi+1

‖J(P, Ci+1)‖∞ (6.2)

subjected to the condition Po ∈ Pi+1.
Clearly, the optimization involved in both the identification of Pi and Pi+1 to

satisfy the ”quality test” or ”validation test” is similar. The only difference between
step 1 and step 3 of Procedure 2.5-4 is the controller C being used in the optimization.
To avoid a separate discussion of the above mentioned optimization problems, the
identification problem addressed in this chapter is concerned solely with the estimation
of a set of models P using a controller C. Consequently, applying the appropriate
subscripts will reflect either the estimation of the set Pi using the controller Ci or the
estimation of the set Pi+1 using the controller Ci+1.

6.1.3 Separate estimation of nominal model and uncertainty

The identification of the set of models P is far from trivial. This is due to the following
two problems. Firstly, the actual plant Po must lie in the estimated set of models P .
Secondly, the estimation of the set of models requires an optimization that involves
a (worst-case) closed-loop evaluation of the control objective function J(P , C) over
all models P that lie in the set of models. The latter makes the estimation of the
set of models tuned towards the intended control application and can be labelled as
a control relevant identification of a set of models.

According to Definition 2.2-16, the structure of the set of models is determined
by a factorization (N̂ , D̂) of a nominal model P̂ and the weighting functions (V̂ , Ŵ ).
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Consequently, the set of models P can be considered to be parametrized by the
variables (N̂ , D̂, V̂ , Ŵ ) as mentioned in Remark 5.2-7. Omitting the indices i and
i + 1 for notational convenience, estimating a set of models P that takes into account
the minimization of (6.1) or (6.2) can be solved by solving the following minimization

min
N,D,V ,W

sup
P∈P

‖J(P , C)‖∞ (6.3)

that is subjected to both Po ∈ P and internal stability of the feedback connec-
tion T (P̂ , C). At the current state, the minimization of (6.3) using the variables
(N, D, V , W ) simultaneously, cannot be solved directly. Therefore, the minimization
of (6.3) is tackled by estimating the rcf (N̂ , D̂) and the pair (V̂ , Ŵ ) separately.

• Estimation of a nominal model
This involves the estimation of P̂ = N̂D̂−1 such that (6.3) is being minimized
using the rcf (N, D) only, subjected to internal stability of T (P̂ , C). The pair
(V , W ) in (6.3) is unknown and assumed to vary freely, thereby satisfying the
condition Po ∈ P .

• Estimation of uncertainty
This consists of the characterization of an upper bound on ∆R in (5.4) via
(V̂ , Ŵ ) such that (6.3) is being minimized using (V, W ) only, subjected to Po ∈
P . Subsequently, the variables (N, D) are fixed to the rcf (N̂ , D̂) estimated
previously.

Clearly, by the separate estimation of the rcf (N̂ , D̂) and the weighting functions
(V̂ , Ŵ ) only an upper bound on (6.3) can be minimized. However, the introduction
of a separation between the estimation of a nominal model and an uncertainty char-
acterization makes the control relevant estimation of a set of models more tractable.
Currently available tools to estimate a nominal model and to characterize uncertainty
can be applied and will be used throughout this chapter. Furthermore, due to the
separation being made, the attention can be focused on finding models of limited
complexity, to avoid the synthesis of robust controllers on the basis of highly complex
models as much as possible.

6.2 Estimation of a Nominal Factorization

6.2.1 Feedback relevant estimation of a nominal factorization

Following the separate identification of nominal model and uncertainty, first the es-
timation of a nominal model P̂ is discussed. The minimization of (6.3) using the
rcf (N, D) only, will be used to estimate a nominal model P̂ of limited complexity.
Hence, to obtain a nominal model P̂ or nominal rcf (N̂ , D̂), the minimization

min
N,D

sup
P∈P

‖J(P, C)‖∞ (6.4)
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must be tackled, where Po ∈ P and (N, D) is a rcf of limited complexity. The
controller C in (6.4) indicates the controller currently implemented on the plant Po.
It is perhaps superfluous to mention that the controller C may reflect Ci in step 1 or
the controller Ci+1 in step 3 of Procedure 2.5-4. For reasons of clarity, the attention
is focused on step 1, thereby assuming that the controller Ci is implemented on the
plant Po and a factorization (N̂i, D̂i) of a nominal model P̂i must be estimated.

Feedback relevant identification criterion

Clearly, the set P is still unknown and the variables (V , W ) in (6.3) are not used in
the minimization of (6.4). As the knowledge of the set of models is incomplete, the
minimization of (6.4) cannot be solved directly. Instead, an identification problem to
estimate a rcf of a nominal model can be formulated by evaluating ‖J(P, Ci)‖∞ only,
using the following triangular inequality (Schrama 1992b).

‖J(P, Ci)‖∞ ≤ ‖J(Po, Ci)‖∞ + ‖J(P, Ci) − J(Po, Ci)‖∞ (6.5)

As ‖J(Po, Ci)‖∞ in (6.5) does not depend on the nominal model, the rcf (N̂i, D̂i) of
a nominal model P̂i = N̂iD̂

−1
i found by minimizing

min
N,D

‖J(P , Ci) − J(Po, Ci)‖∞ (6.6)

can be used to formulate a control relevant identification of a nominal model P̂i.
Performing the minimization of (6.6) and estimating such a nominal model P̂i via

the estimation of a nominal factorization (N̂i, D̂i) can be done by the tools presented
in chapter 4 and has also been studied extensively in de Callafon and Van den Hof
(1995b) or Van den Hof et al. (1995). To summarize the results of chapter 4, it is
worthwhile to mention that Section 4.3.3 indicates how to access a rcf (No,F , Do,F )
of the plant Po by a simple filtering of the signals present in the feedback connection
T (Po, Ci). The appropriate filtering, as mentioned in (4.24) and Lemma 4.3-5, yields
an auxiliary signal x and a rcf (No,F , Do,F ) of the plant Po is accessible by considering
the map from x to col(y, u). This result has been summarized in Proposition 4.3-11.
Moreover, Proposition 4.3-11 has indicated the fact that the estimation of a factor-
ization is an equivalent open-loop identification problem, since the auxiliary signal x

is uncorrelated with the noise acting on the feedback system T (Po, Ci).
For a model P (θ) parametrized by a factorization (N(θ), D(θ)) with θ ∈ Θ, where

Θ is given by
Θ := {θ ∈ IRn | (N(θ), D(θ)) ∈ RH∞} (6.7)

the following result can be used to minimize (6.6).

Lemma 6.2-1 Let the plant Po and a controller Ci create an internally stable
feedback connection T (Po, Ci) and let (No,F , Do,F ) be the rcf of Po as given in
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Proposition 4.3-11, where F is an appropriate filter according to Lemma 4.3-5 on
the basis of the controller Ci. Consider any model P (θ) = N(θ)D(θ)−1 that satisfies
T (P (θ), Ci) ∈ RH∞ then the minimization of (6.6) with J(P , Ci) as given in (5.9)
equals

min
θ∈Θ

∥∥∥∥∥U2

([
No,F

Do,F

]
−
[

N(θ)

D(θ)

])
F
[

Ci I
]
U1

∥∥∥∥∥
∞

(6.8)

where (N(θ), D(θ)) is any rcf of P (θ) that satisfies

D(θ) + CiN(θ) = F−1. (6.9)

Proof: For the proof of (6.8), consider (No,F , Do,F ) to be a rcf of Po. Subsequently,
J(Po, Ci) can be written as

J(Po, Ci) = U2

[
No,F

Do,F

]
(Do,F + CiNo,F )−1

[
Ci I

]
U1

and using the fact that (Do,F + CiNo,F ) = F−1 from Corollary 4.3-10, this can be
rewritten into

J(Po, Ci) = U2

[
No,F

Do,F

]
F
[

Ci I
]
U1.

In a similar way, with (N(θ), D(θ)) as a rcf of P (θ), J(P (θ), Ci) can be written as

J(P (θ), Ci) = U2

[
N(θ)

D(θ)

]
F
[

Ci I
]
U1

under the condition that (6.9) holds. With this condition, ‖J(Po, Ci) − J(P , Ci)‖∞
can be written as in (6.8).

To prove that indeed there exists a rcf (N(θ), Dθ)) of P (θ) such that (6.9) holds,
consider a rcf (N̄(θ), D̄(θ)) ∈ RH∞ that satisfies

D̄(θ) + CiN̄(θ) = F̄−1 (6.10)

where F̄ �= F . Proving that there exists a rcf (N (θ), D(θ)) ∈ RH∞ that satisfies (6.9)
can be done by proving the existence of a stable and stably transfer function Q that
modifies the rcf (N̄(θ), D̄(θ)) ∈ RH∞ into the rcf (N(θ), D(θ)) ∈ RH∞ via

N(θ) := N̄(θ)Q

D(θ) := D̄(θ)Q
. (6.11)

Under the condition that T (P (θ), Ci) ∈ RH∞, where P (θ) = N̄(θ)D̄(θ)−1 =
N(θ)D(θ)−1, such a Q with Q, Q−1 ∈ RH∞ can always be found and can be seen
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as follows. Postmultiplying (6.10) with Q and posing the requirement F̄−1Q = F−1

yields
(D̄(θ) + CiN̄(θ))Q = F−1 (6.12)

Lemma 4.3-5 indicates that an appropriate filter F must be given by the form F =
WD̃c,i, where W, W−1 ∈ RH∞. Furthermore, (D̄(θ) +CiN̄(θ)) can be rewritten into
D̃−1

c,i Λ̄, where Λ̄(θ) := D̃c,iD̄(θ) + Ñc,iN̄(θ) satisfies Λ̄(θ), Λ̄(θ)−1 ∈ RH∞ according
to Lemma 4.2-6. Using these results, (6.12) can be rewritten into

D̃−1
c,i Λ̄(θ)Q = D̃−1

c,i W−1

yielding Q = Λ̄(θ)−1W−1 and Q, Q−1 ∈ RH∞. �

The result mentioned in Lemma 6.2-1 indicates how to solve the control relevant
identification of a nominal model or nominal factorization. The difference in the
control objective mentioned in (6.6) is simply restated as a weighted additive difference
between coprime factorizations. The weighting is, however, still parametrized in terms
of the coprime factorization (N(θ), D(θ)) to be estimated. As such, a “parametrized
weighting” must be used in the minimization of (6.8).

Remark 6.2-2 It should be noted that the appearance of a “parametrized weighting”
is due to the control or closed-loop relevant criterion (6.6) used to formulate an ap-
propriate closed-loop relevant system identification problem. The appearance of the
parametrized weighting is not caused by the fractional approach being used to handle
the closed-loop identification problem.

A closed-loop relevant criterion that is defined via an unweighted difference between
(input) sensitivity functions

‖ 1
1 + CPo

− 1
1 + CP (θ)

‖ (6.13)

can be mentioned as a simple SISO example. In this case, the closed-loop relevant
criterion (6.13) can be written into a weighted additive difference between Po and P

as follows
1

1 + CPo
(Po − P (θ))

C

1 + CP (θ)
(6.14)

which indicates the need for a “parametrized weighting”.

The fact that the weighting in the additive difference between the coprime
factorization (No,F , Do,F ) and (N(θ), D(θ)) in (6.8) depends on the factorization
(N(θ), D(θ)) to be estimated, is mainly due to the condition of finding a low complex-
ity model, for which the McMillan degree can be prespecified. In case the condition
on the limited complexity of the nominal model becomes superfluous, a parametriza-
tion of the coprime factorization (N(θ), D(θ)) can be proposed, in which the resulting
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additive weighting in (6.8) will not depend on the factorization (N (θ), D(θ)) to be
estimated.

Such a parametrization is found by employing the dual-Youla parametrization,
as discussed in Section 4.2.2. Following Lemma 4.2-7, the coprime factorization
(N(θ), D(θ)) of the nominal model P (θ) can be parametrized via

N(θ) = Nx + Dc,iR(θ)

D(θ) = Dx − Nc,iR(θ)
(6.15)

where R(θ) is now be considered as the unknown transfer function to be estimated.
Similar to Lemma 4.2-7, (Nc,i, Dc,i) is a rcf of the controller Ci and (Nx, Dx) is a rcf

of an auxiliary model Px that satisfies T (Px, Ci) ∈ RH∞. With the parametrization
of (6.15) the following corollary can be formulated.

Corollary 6.2-3 Consider a parametrization of a nominal model P (θ) =
N(θ)D−1(θ) where the rcf (N(θ), D(θ)) is parametrized according to (6.15). Then
the minimization of (6.6) with J(P , Ci) as given in (5.9) equals

min
θ∈Θ

∥∥∥∥∥U2

([
No,F

Do,F

]
−
[

N(θ)

D(θ)

])
F
[

Ci I
]
U1

∥∥∥∥∥
∞

(6.16)

where F = (Dx + CiNx)−1 is a fixed, known and appropriate filter according to
Lemma 4.3-5.

Proof: The condition (6.9) for the parametrization given in (6.15) is satisfied trivially,
as D(θ) + CiN(θ) can be rewritten into

(Dx − Nc,iR(θ)) + Ci(Nx + Dc,iR(θ))

which reduces to Dx + CiNx = F−1 with Ci = Nc,iD
−1
c,i . The fact that F is indeed

an appropriate filter according to Lemma 4.3-5 can be seen by rewriting F = (Dx +
CiNx)−1 into

(Dx + CiNx)−1 = WD̃c,i

where W = (D̃c,iDx + Ñc,iNx)−1. From Lemma 4.2-6 it can be seen that W, W−1 ∈
RH∞ provided that T (Px, Ci) ∈ RH∞. �

Although the weighting of the additive difference between the rcf (No,F , Do,F )
and (N(θ), D(θ)) in Corollary 6.2-3 is known and fixed, the McMillan degree of the
resulting nominal model P (θ) = N(θ)D−1(θ) is influenced by several factors. Clearly,
the McMillan degree is influenced by the McMillan degree of the transfer function R(θ)
being estimated. However, the complexity of the nominal model is also increased by
the McMillan degree of the controller Ci and the auxiliary model Px being used.
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The filter F , which is solely used to access the coprime factorization (No,F , Do,F ) of
the plant Po, now also effects the complexity of the nominal model. This fact has
been recognized by system identification procedures that explicitly use a dual-Youla
parametrization, see e.g. Tay et al. (1989) or Lee et al. (1995). A possible solution
is to pursue a model reduction to lower the order of the model P (θ̂) being estimated
(Lee et al. 1993a). Clearly, directly estimating a limited complexity nominal model
is preferable.

The need for closed-loop experiments

The presence of a weighting filter that is based on a closed-loop transfer function
involving the unknown plant Po, indicates the need for closed-loop experiments. In
case the input sensitivity Sin = (I +CiPo)−1 appears as a weighting or as closed-loop
transfer function that needs to be accessed, closed-loop experiments, with a controller
C applied to the plant Po, can help providing this information on the input sensitivity
function Sin.

As an example it can be mentioned that F in (6.8) satisfies (Do,F +CiNo,F ) = F−1

only if Do,F = SinF−1 and No,F = PoSinF−1. Hence, closed-loop experiments are
needed to access this rcf (No,F , Do,F ), as the closed-loop transfer function PoSin

or Sin is considered to be unknown. Similarly, in (6.14) the weighting filter (1 +
CPo)−1 is unknown and such information can be obtained by performing closed-loop
experiments. This has for example been illustrated in the two-stage identification,
discussed in Section 3.3.4. It was shown in (3.59) or (3.61) that the input sensitivity
Sin enters automatically as a weighting in the identification criterion due to the closed-
loop experiments.

Finally it should be noted that if the controller C applied to the plant Po is updated
from Ci to Ci+1, the input sensitivity Sin changes. Assuming that full knowledge of
the plant Po, or similarly the input sensitivity (I + CiPo)−1 is not available, renewed
information of the input sensitivity (I + Ci+1Po)−1 can be obtained by performing
new closed-loop experiments.

Many systems exhibit a poorly damped or even unstable behaviour and closed-loop
experiments are unavoidable to obtain reliable data of the system in a limited amount
of time. Although in these situations closed-loop experiments are unavoidable, they
also serve an important advantage for the purpose of finding control relevant models.

6.2.2 Estimating a limited complexity factorization

Despite the reasonably simple additive weighted difference between the rcf

(No,F , Do,F ) of the plant Po and the rcf (N (θ), D(θ)) of the nominal model P (θ)
mentioned in Lemma 6.2-1, the minimization of (6.6), for a nominal model of limited
complexity or a prespecified McMillan degree (smaller than the McMillan degree of
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the plant Po), remains a complicated optimization problem. The complication of the
optimization is mainly due to the following two items.

Firstly, an H∞ norm-based optimization must be used to find a control relevant
nominal model. Although such a optimization can be solved by an optimization that
uses sub-gradients (Luenberger 1969), the H∞ norm-based optimization criterion (6.8)
on the basis of experimental (time domain) data can be quite involved. An alternative
approach to circumvent the H∞ norm-based optimization would be the approxima-
tion of the H∞ norm in (6.8) by the minimization of an H2 norm criterion. This is
motivated by the fact that an L2-norm approximation tends to L∞-norm approxima-
tion, provided that smoothness conditions1 on the plant Po are satisfied (Caines and
Baykal-Gürsoy 1989).

Similar arguments are used also in Bitmead et al. (1990a) or Schrama (1992b) to
approximate an H∞ norm-based identification criterion. However, in this thesis an
H∞ norm-based optimization criterion will be used, where the optimization criterion
(6.8) will be evaluated on the basis of experimentally obtained frequency domain data.
A more thorough discussion on this topic can be found in Section 6.2.4.

The second item that influences the complexity of the optimization problem is the
fact that the weighting, or the filter F , in (6.8) should satisfy the condition mentioned
in (6.9). From an optimization point of view, (6.9) constitutes a parametrization
restriction that should be dealt with while estimating a rcf (N(θ), D(θ)). As men-
tioned before, this restriction is due to the fact that a limited complexity nominal
factorization (N(θ), D(θ)) is required. Without such a requirement, the alternative
parametrization mentioned in Corollary 6.2-3 can be used to eliminate this restriction.

An approach to deal with the restriction (6.9) is to parametrize the filter F such
that it satisfies (6.9). Hence, the filter F needs to be parametrized via

F (θ) = (D(θ) + CiN(θ))−1 (6.17)

according to (6.9). However, a rcf (N(θ), D(θ)) of a model P (θ) is not unique, which
leads to a non-unique parametrization of the filter F (θ) in (6.17). This additional
freedom can be characterized by the freedom in the rcf of the model P (θ)[

N(θ)

D(θ)

]
=

[
N̄(θ)

D̄(θ)

]
Q (6.18)

where Q is any stable and stably invertible transfer function. It can be seen from (6.18)
that the rcf (N(θ), D(θ)) exhibits redundant dynamics Q that eventually cancels out in
the operation P (θ) = N(θ)D(θ)−1 leading to a low order model P (θ) = N̄(θ)D̄(θ)−1.
Furthermore, it can be observed from (6.6) that the control relevant identification cri-
terion does not distinguish between different (non-unique) rcf’s of the nominal model

1To verify the smoothness conditions, knowledge of the actual plant Po is required.
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P (θ). Due to the non-uniqueness of the rcf of P (θ), all stable and stably invertible
Q’s in (6.18) give the same value of the control relevant identification criterion (6.8).

Similar arguments also hold for the rcf (No,F , Do,F ) of the plant Po that is accessi-
ble via closed-loop experiments mentioned in Proposition 4.3-11. However, compared
to the non-uniqueness of the rcf (N(θ), D(θ)), the rcf (No,F , Do,F ) is unique for a
given filter F and given by [

No,F

Do,F

]
=

[
PoSinF−1

SinF−1

]
(6.19)

as mentioned in Remark 4.3-6. It can be observed from (6.19) that, although the rcf

(No,F , Do,F ) is unique for a given filter F , (No,F , Do,F ) may still exhibit redundant
dynamics.

The parametrized rcf (N(θ), D(θ)) of P (θ) is used to estimate or approximate the
rcf (No,F , Do,F ) of the plant Po accessable via closed-loop experiments. In order to
reduce the additional freedom in the rcf’s of plant Po and model P (θ), and to avoid
the estimation of a high order nominal rcf (N(θ)Q, D(θ)Q), the rcf (No,F , Do,F ) of
the plant Po can be required to be normalized. As mentioned in Section 4.2.1, for
such a nrcf (No,F , Do,F ) the freedom in (No,F Q̄, Do,F Q̄) is limited to a unimodular
matrix Q̄. In this way, any redundant dynamics the rcf (No,F , Do,F ) in (6.19) may
exhibit, can be eliminated.

The filter F , used to access the rcf (No,F , Do,F ) of the plant Po, can be used to
normalize (No,F , Do,F ). In Van den Hof et al. (1995) such an approach to access and
estimate a nrcf (No,F , Do,F ) of the plant Po has been proposed. This approach uses
the estimate of a (high order) auxiliary model Px to construct a nrcf (Nx, Dx) for
the filter F mentioned in Corollary 4.3-9. In this way, the rcf (No,F , Do,F ) in (6.19)
modifies into[

No,F

Do,F

]
=

[
Po

I

]
Sin(Dx + CNx) =

[
Po

I

]
(I + CPo)−1(I + CPx)Dx

and will approach the nrcf (Nx, Dx) in case Px is a (high order) accurate estimate of
the plant Po (Van den Hof et al. 1995).

Instead of estimating or approximating a nrcf (No,F , Do,F ), here the attention is
focused on finding a limited complexity factorization by addressing the minimization
stated in Lemma 6.2-1 and taking into account the restriction mentioned in (6.9).
Clearly, with a parametrized filter F as mentioned in (6.17), the optimization prob-
lem can not be handled by a “standard” identification procedure. This is caused
by the fact that the signal x in (4.24) and used to access the rcf (No,F , Do,F ) of
the plant Po, cannot be constructed prior to the identification. To deal with these
parametrization problems, an iterative approach of subsequent minimization with-
out the parametrization restriction (6.9) and updating the filter F can be proposed
(de Callafon et al. 1994, de Callafon and Van den Hof 1995b).
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Starting off from an initial model estimate P (θ̂) with a rcf (N(θ̂), D(θ̂)) and setting
θ̂k = θ̂, the iterative scheme reads as follows.

1. In step k, compute Qk such that[
Nn(θ̂)

Dn(θ̂)

]
:=

[
N(θ̂)

D(θ̂)

]
Qk

is a nrcf (Nn(θ̂), Dn(θ̂)) and create Fk = (Dn(θ̂k) + CiNn(θ̂k))−1 to simulate
the input x to access the rcf of the plant Po.

2. Estimate (N(θ̂(k+1)), D(θ̂(k+1))) by the minimization given in (6.8) and discard-
ing the parameter restriction (6.9).

3. Set k = k + 1 and go back to step 1.

The updating of the filter Fk in the aforementioned iterative approach simply means
that the signal x in (4.24) is refiltered by the updated filter Fk to access a different
(and unique) rcf (No,F , Do,F ) of the plant Po given by[

No,F

Do,F

]
=

[
PoSinF−1

k

SinF−1
k

]

The normalization and the computation of Qk in the first step is to restrict the addi-
tional freedom in the rcf of the model P (θ) and the resulting filter Fk. If the iteration
converges then the restriction (6.9) has been satisfied, thus a feedback relevant nom-
inal model P̂ of the plant Po has been obtained. A rigorous proof of the convergence
of the iteration is not available but extensive simulations reveal promising results.

6.2.3 Parametrization of stable factorizations

To control the McMillan degree of the nominal model P (θ) = N(θ)D−1(θ) being
estimated, the factorization (N(θ), D(θ)) has to be parametrized in a such a way that
N(θ) and D(θ) should have common stable modes. In the case of a SISO model
P (q, θ) such a parametrization can be given in the following transfer function form

[
N(q, θ)

D(q, θ)

]
=

⎡
⎢⎢⎣

n(q, θ)
f(q, θ)
d(q, θ)
f(q, θ)

⎤
⎥⎥⎦

where n(q, θ) and d(q, θ) denote the numerator polynomial of respectively N(q, θ) and
D(q, θ), while f(q, θ) denotes the common (monic and stable) denominator polynomial
of N(q, θ) and D(q, θ). To parametrize such a (polynomial) factorization in state space
form, the following result can be used.
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Theorem 6.2-4 Let [
N̂

D̂

]
∈ RH∞

be given by a stable and minimal state space representation(
Ā, B̄,

[
C̄N

C̄D

]
,

[
D̄N

D̄D

])

with det{D̄D} �= 0. Then the following items hold.

(i) det{D̂} �≡ 0

(ii) P̂ = N̂D̂−1 is given by the state space representation (A, B, C, D) with⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A = Ā − B̄D̄
−1
D C̄D

B = B̄D̄
−1
D

C = C̄N − D̄N D̄
−1
D C̄D

D = D̄N D̄
−1
D

(6.20)

and (N̂ , D̂) is a rcf of P̂ .

Proof: Due to the non-singular matrix D̄D, D̂−1 allows a state space representation
(AD, BD, CD, DD) that is given by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

AD = Ā − B̄D̄
−1
D C̄D

BD = B̄D̄
−1
D

CD = −D̄
−1
D C̄D

DD = D̄
−1
D

which proves (i).
Due to the common Ā and B̄ matrix of (N̂ , D̂), it can be verified that from the

state space representation of the series connection of N̂ and D̂−1, n = dim(Ā) uncon-
trollable states can be omitted. This leads to the state space realization [A, B, C, D]
of P̂ given in (6.20). With (6.20), the matrices Ā, B̄, C̄N , C̄D and D̄N can be rewrit-
ten as Ā = A − BK, B̄ = BD̄D, C̄N = C − DK, C̄D = −K D̄N = DD̄D, In this way
N̂(z) = ([C−DK][zI−A+BK]−1B+D)D̄D and D̂(z) = (−K[zI−A+BK]−1B+I)D̄D,
which is proven to be a rcf in Nett et al. (1984). �

The result of Theorem 6.2-4 only indicates the ordering and restrictions on the
state space realization of the rcf (N(θ), D(θ)) and does not specify the way in which
the parameter θ enters in the state space parametrization. As such, Theorem 6.2-4
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include various ways to parametrize the state space realization of the rcf (N(θ), D(θ).
If the parametrization guarantees that the state space realization is stable, minimal
and satisfies

det{D̄D(θ)} �= 0 ∀θ ∈ Θ (6.21)

the result in Theorem 6.2-4 is applicable.
Clearly, restricting the parametrization to yield a stable and minimal state space

realization that also satisfies (6.21) requires a non-trivial parametrization of the state
space matrices. However, a stable (and minimal) state space estimate with non-
singular feedthrough matrix D̄D will be found in the generic case. This due to the
fact that the map from x onto col(y, u) is stable according to Proposition 4.3-11.
Furthermore, the map from x onto u is given by Do,F = (I + CPo)−1F−1 = (I +
CPo)D̃cW

−1, which is non-singular by definition.
Relying on the generic case, in general no special purpose parametrization has

to be used in order to parametrize the state space matrices of the rcf (N(θ), D(θ)).
In this perspective, classical (global) identifiable parametrizations such as canonical
(overlapping) parametrizations of state space matrices (Glover and Willems 1974, van
Overbeek and Ljung 1982, Corrêa and Glover 1984, Corrêa and Glover 1986, Janssen
1988) can be employed.

Polynomial based parametrizations

It should be noted that a parametrization with a common Ā and B̄ matrix can also
be realized by parametrizing the rcf (N(θ), D(θ)) via a polynomial Matrix Fraction
Description (MFD) (Gevers and Wertz 1984, Van den Hof 1989). In such a polynomial
MFD, the rcf (N(θ), D(θ)) can be parametrized in a so-called right MFD[

N(q, θ)

D(q, θ)

]
=

[
BN (q−1, θ)

BD(q−1, θ)

]
A−1(q−1, θ) = B(q−1, θ)A−1(q−1, θ) (6.22)

where B(q−1, θ) and A(q−1, θ) are matrix polynomials that should satisfy certain
conditions to impose identifiability of the model structure.

Typically, for a model P (q, θ) having m inputs and p outputs, the polynomial
matrix B(q−1, θ) for the right MFD in (6.22) can be parametrized by

B(q−1, θ) =
d+b−1∑

k=d

Bk q−k

where Bk ∈ IRp+m×m, d denotes the number of leading zero matrix coefficients and b

the number of non-zero matrix coefficients in B(q−1, θ). For the right MFD in (6.22),
A(q−1, θ) is parametrized by

A(q−1, θ) = Im×m +
a∑

k=1

Ak q−k
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where Ak ∈ IRm×m and a denotes the number of non-zero matrix coefficients in the
monic polynomial A(q−1, θ). Hence, for a SISO model P (q, θ), B(q−1, θ) is a 2 × 1
polynomial matrix, while A(q−1, θ) is a single polynomial.

The parameter θ is determined by the corresponding unknown matrix coefficients
in the polynomials. Hence,

θ =
[

BT
d · · · BT

d+b−1 AT
1 · · · AT

a

]T
(6.23)

and θ ∈ IR((p+m)b+ma)×m for the right MFD given in (6.22).
Additionally to the full polynomial parametrization presented here, so-called

structural parameters dij , bij and aij with d := min{dij}, b := max{bij}, and
a := max{aij} can be used to specify a non-full polynomial parametrization. In
this way, the parameter θ as given in (6.23) may contain prespecified zero entries at
specific locations. This may be required in a discrete-time rcf (N(q, θ), D(q, θ)) where
the value of dij has a direct connection with the number of time delays from the jth
input to the ith output.

Due to the indeterminate q−1, it can be verified that the right MFD given in
(6.22) gives rise to a (strictly) proper transfer function matrix of the rcf (N(θ), D(θ)),
regardless of the value of the integers di,j , bi,j or ai,j . Hence, there are no restrictions
on the size of the structural parameters, other than a limitation on the McMillan
degree of the resulting model (N(θ̂), D(θ̂)). For the connection between the structural
parameters and the McMillan degree of (N(θ̂), D(θ̂)), the following result can be given,
see also de Callafon et al. (1996a).

Lemma 6.2-5 Consider a parameter θ̂ such that Aa �= 0 and Bd+b−1 �= 0. Define

η := max{a, d + b − 1} (6.24)

and Ā(q, θ̂) := qηA(q−1, θ̂), B̄(q, θ̂) := qηB(a−1, θ̂). Let n be used to denote the
McMillan degree of the multivariable transfer function model [N(q, θ̂)T D(q, θ̂)T ]T

obtained by (6.22). Then
n = deg det{Ā(q, θ̂)}

if and only if Ā(q, θ̂) and B̄(q, θ̂) are right coprime over IR[q].

Proof: With the condition Aa �= 0, Bd+b−1 �= 0, it follows that Ā(q, θ̂) := qηA(q−1, θ̂)
and B̄(q, θ̂) := qηB(q−1, θ̂) are polynomial matrices in q. Subsequently, a state
space realization (Ā, B̄, C̄, D̄) for [N(q, θ̂)T D(q, θ̂)T ]T can be obtained, such that
dim Ā = deg det{Ā(q, θ̂)} and (Ā, B̄) controllable, see e.g Chen (1984). Further-
more, (Ā, C̄) is observable if and only if Ā(q, θ̂) and B̄(q, θ̂) are right coprime over
IR[q], see theorem 6.1 in Chen (1984). �
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Hence, the structural parameters give rise to (an upper bound) on the McMil-
lan degree of the rcf (N(θ̂), D(θ̂). Subsequently, Theorem 6.2-4 indicates that the
McMillan degree of the rcf (N(θ̂), D(θ̂)) is directly related to the McMillan degree of
the model P (θ̂) constructed via P (θ̂) = N(θ̂)D−1(θ̂). For a more detailed discussion
on the exact relation between the McMillan degree, the row/column degree of the
polynomial matrices A(q−1, θ), B(q−1, θ) and the related observability/controllability
indices of a model computed by a polynomial MFD, one is also referred to Gevers
(1986) or Van den Hof (1992).

Enforcing stable state space realizations

Alternative canonical parametrizations based on balanced state space realizations
(Ober 1987, Ober 1991, Chou 1994) can also be used to define an identifiable
parametrization. These parametrizations allow the application of simple and affine
constraints on the parameters to enforce a stable, minimal (and balanced) state space
realization. As a result, stability and minimality of the state space realization of a rcf

(N(θ), D(θ)) can be enforced, if needed.

The parametrization results on stable, minimal and balanced state space realiza-
tion in Ober (1991) and further elaborated in Chou (1994) are based on the general
case of continuous-time systems, having (possibly) multiple common Hankel singu-
lar values. For discrete-time systems an indirect state space parametrization can be
based on a Möbius transformation, since this transformation preserves both stability,
minimality and the balanced property of a continuous-time state space realization.
Furthermore, the case of distinct Hankel singular values will be discussed here, which
can be considered to be the generic case (Chou 1994).

Lemma 6.2-6 Let G(s) be defined by

G(s) :=

[
N(s)

D(s)

]

where (N(s), D(s)) is a rcf of the p × m rational transfer function P (s), then the
following statements are equivalent

1. G(s) is a (p+m)×m stable rational transfer function matrix of McMillan degree
n, with n distinct Hankel singular values.
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2. G(s) has a state space representation (Ā, B̄, C̄, D̄) with

B̄ :=

⎡
⎢⎢⎣

b1

...

bn

⎤
⎥⎥⎦with bj = [bij ] ∈ IR1×m

and b1j > 0 for 1 ≤ j ≤ n (6.25)

C̄ :=
[

c1 · · · cn

]
with cj = uj [bjb

T
j ]1/2 ∈ IR(p+m)×1,

uj ∈ IR(p+m)×1 and uT
j uj = 1 for 1 ≤ j ≤ n (6.26)

Ā := [aij ] ∈ IRn×n with aij = −
bjb

T
j

2σj
for i = j,

and aij =
σjbib

T
j − σic

T
i cj

σ2
i − σ2

j

for i �= j, with

σj+1 > σj > 0 for 1 ≤ j ≤ n − 1 (6.27)

D̄ := [dij ] ∈ IR(p+m)×m

which is a balanced state space representation having Hankel singular values σj.

Proof: Direct application of theorem 2.1 in Ober (1991) for a system with distinct
Hankel singular values. �

The parametrization of the state space matrices (Ā, B̄, C̄, D̄) in Lemma 6.2-6 looks
complicated compared to standard pseudo canonical (overlapping) parametrizations
(Ljung 1987) but in fact it contains the same number of parameters and can be
implemented relatively easy. Furthermore, (6.25), (6.26) and (6.27) reflect parameter
constraints that can be dealt with relatively easy, while in a standard pseudo canonical
(overlapping) parametrization more complicated parameter constraints would have
been specified to guarantee stability of the state space realization. Unfortunately,
(6.26) reflects a non-linear equality constraint in order to parametrize the unitary
vectors uj in the columns of C̄.

To remove the non-linear equality constraint (6.26), in Chou (1994) a parametriza-
tion has been proposed, that parametrizes almost all unitary vectors in IRk without
equality constraint and is based on rotating actions in IRk. The parametrization is
valid only for rotating actions in IRk with k > 1, but according to Lemma 6.2-6,
k = p + m > 1 and hence it can be applied without objections. Additionally, it has
been shown in de Callafon and Van den Hof (1995a) how to parametrize all unitary
vectors ∈ IRk and the result is given below.

Lemma 6.2-7 Let U := {ū ∈ IRp+m | ūT ū = 1}, φ := [φ1 φ2 · · ·φi · · · φp+m−1]T ∈
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IRp+m−1 and a map f : IRp+m−1 → IRp+m be given by

u = ui, where ui :=
p+m−1∏

i=1

[
cos(φi)ui−1

sin(φi)

]
, with u0 := 1 (6.28)

then f(φ) = u ∈ U , ∀ φ ∈ IRp+m−1.

Proof: The fact that u ∈ U can be found by induction, see also Chou (1994): for
p + m − 1 = 1 we have u = u1 = [cos(φ1) sin(φ1)]T and hence uT

1 u1 = 1, ∀ φ1 ∈ IR.
For p + m − 1 = k − 1 we assume uT

k−1uk−1 = 1 and for p + m − 1 = k we have
u = uT

k uk = cos(φk)uT
k−1uk−1 cos(φk) + sin2(φk) = 1, ∀ φk ∈ IR. �

Additionally it can be shown that the map (6.28) is surjective and hence
parametrizes all unitary vectors in IRp+m. This is an extension of the results in
Chou (1994) and is given in the following lemma.

Lemma 6.2-8 Let the map f : IRp+m−1 → IRp+m be given by (6.28) and let U be
defined by U := {ū ∈ IRp+m | ūT ū = 1} then ∀ u ∈ U there exists φ ∈ IRp+m−1 such
that f(φ) = u.

Proof: Take any u := [u1 u2 · · · ui · · ·up+m]T ∈ IRp+m and define k to denote the
index of the first non-zero entry uk in u. Using the map (6.28) we can compute the
elements φi of φ as follows:

φi :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π

2
for 1 ≤ i ≤ k − 1

tan−1

⎛
⎝ui+1

uk

i−1∏
j=k

cos(φj)

⎞
⎠ for k ≤ i ≤ p + m − 1

(6.29)

φp+m−1 := φp+m−1 + π if f(φ) = −u (6.30)

where (6.30) is used only to adapt φ to the sign of u, if necessary. Clearly, φ ∈ IRp+m−1

and f(φ) = u, which proves the result. �

With the result mentioned in Lemma 6.2-8 it is proven that the parametrization of
the unitary vectors uj ∈ IRp+m in Lemma 6.2-6 with the non-linear equality constraint
(6.26) can be replaced by the alternative parametrization in terms of φ ∈ IRp+m−1

given in Lemma 6.2-7, without any additional (equality) constraints. However, the
map (6.28) is surjective so no unique parametrization of the unitary vectors is ob-
tained. A unique parametrization, and hence a bijective map (6.28), can be enforced
by putting the constraints

φi ∈
{

[−π/2, π/2] for 1 ≤ i ≤ p + m − 2

[−π/2, 3π/2) for i = p + m − 1
(6.31)
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on the elements φi of φ, similar as in Chou (1994). Although the constraints men-
tioned in (6.31) are needed to obtain a unique parametrization of the unitary vectors
uj, extensive simulations without the constraints (6.31) reveal promising results in
de Callafon and Van den Hof (1995a).

To summarize, the parametrization of a rcf (N(θ), D(θ)) using a balanced state
space realization can be formulated as follows. Let G(θ) be defined as

G(θ) :=

[
N(θ)

D(θ)

]

having m inputs and p + m outputs and parametrized according to the results men-
tioned in Lemma 6.2-6 and Lemma 6.2-7. In this way the parameter θ is defined as
the vector

θ = [σ1 σ2 · · · σn b1 b2 · · · bn φT
1 φT

2 · · · φT
n ] ∈ IR1×n(2m+p)

with the additional constraints given in (6.25) and (6.27), which can be rewritten into

σn − σn−1 > 0, σn−1 − σn−2 > 0, · · · , σ2 − σ1 > 0, σ1 > 0

b11 > 0, b21 > 0, · · · , bn1 > 0

to ensure a minimal, stable and balanced continuous-time state space realization of
the rcf (N(θ), D(θ)).

6.2.4 Frequency domain based identification

As indicated in Proposition 4.3-11, the access to a rcf (No,F , Do,F ) of the plant Po can
be accomplished by considering the map from x to col(y, u), where x is found by the
filter operation given in (4.24). Furthermore, it follows from Proposition 4.3-11 that
the estimation of a rcf (N(θ), D(θ)) of a nominal model P (θ) is an open-loop equivalent
identification problem, despite the fact that the data col(y, u) might be gathered under
closed-loop controlled conditions. As mentioned before, the rcf (No,F , Do,F ) is stable
and the signals x and col(y, u) are bounded. Consequently, time domain identification
methods based on least squares prediction error methods (Ljung 1987) or time domain
based subspace methods (Viberg 1994) can be readily implemented to estimate a
stable rcf of the nominal model. The use of such time domain methods to estimate
stable rcf’s have been reported and applied for example in Zhu and Stoorvogel (1992)
and Van den Hof et al. (1995). Application of this fractional approach to experimental
data coming from a compact disk player mechanism has been reported in de Callafon
et al. (1994) and Dötsch (1998). A similar time domain based system identification,
but then based on the estimation of a lcf of the plant, has also been reported in
Iglesias (1990).
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Alternatively, frequency domain data(Fourier transformed time domain data or
frequency domain measurements) can be used to identify a rcf. With such a frequency
domain based identification, the nominal rcf is estimated on the basis of a finite num-
ber and possibly corrupted frequency response measurements. Frequency response
samples can be obtained from time domain data which is frequently labelled as a
non-parametric system identification, see also Section 3.2.2 and Remark 3.2-5. Such
a non-parametric identification can be performed by spectral analysis (Priestley 1981),
sine wave testing (Ljung 1987) or by the use of other special purposes periodic signals
(Pintelon et al. 1994). Furthermore, special purpose hardware such as high speed
spectral analyzers are available to obtain a finite number of frequency domain sam-
ples. Obviously, a nominal rcf still has to be estimated and the use of frequency
domain data is regarded only as an intermediate step (Ljung 1993b). The frequency
domain data can be used to estimate a parametric low complexity rcf of a nominal
model, by means of curve fitting.

There is a variety of possibilities to motivate the use of frequency domain data
for system identification purposes. For an overview of these motivations one can be
referred to Pintelon et al. (1994), while similarities between the use of time- and
frequency domain data using a least-squares prediction error framework is discussed
in Ljung (1993b). The main reason to use a frequency domain based identification
here, can be motivated by referring to the control relevant identification problem
mentioned in (6.6) and written in terms of an additive difference between coprime
factorizations in Lemma 6.2-1. From this it can be observed that it is preferable to
solve a (weighted) H∞ norm-based identification criterion.

The use of frequency domain data is helpful for the approximation of the H∞ norm
criterion mentioned in (6.8). This approximation is based on the fact that for a stable
(discrete-time) transfer function matrix G, the H∞ norm ‖G‖∞ is given by

‖G‖∞ = max
ω∈[0,π]

σ̄{G(e iω)}

where σ̄{·} denotes the maximum singular value. In case the transfer function matrix
G is unknown, the value of ‖G‖∞ can, at least, be approximated by computing

max
j=1,...,l

σ̄{Ĝ(e iωj )}

where Ĝ(e iω) denote the complex frequency domain samples of G along a prespecified
frequency grid Ω = (ω1, ω2, . . . , ωl). In case G is used to reflect the stable transfer
function mentioned in the H∞ norm of (6.8), the use of frequency domain data is
beneficial in evaluating the H∞ norm-based system identification.

Clearly, a finite number of frequency domain samples Ĝ(e iω), j = 1, . . . , l that
are possibly disturbed, does not uniquely define the underlying system G. Due to the
availability of a finite number of frequency points in the grid Ω, additional information
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on G has to be introduced to explain the behaviour of the frequency response between
two subsequent frequency domain data points (Helmicki et al. 1989, Helmicki et al.
1991, Partington 1991, de Vries and Van den Hof 1995, Mäkilä et al. 1995).

A similar argumentation also holds when using time-domain data for system iden-
tification purposes. If a finite number of time-domain samples is available, additional
information on the system G that covers the behaviour outside the observed time-
domain interval must be introduced (Mäkilä and Partington 1992, Wahlberg and
Ljung 1992). In either way, additional information is, in general, based on the as-
sumption of G being analytic and to exhibit a certain “degree of stability”. The use
and introduction of such additional information will be postponed until Section 6.3,
where these effects will be covered during the estimation of the model uncertainty.
During the estimation of a nominal model, or nominal factorization, such additional
information on the rcf (No,F , Do,F ) will not be used. Instead, it is assumed that the
frequency grid is chosen dense enough.

Assumption 6.2-9 It is assumed that for the discrete-time systems being considered
here, the points ωj in the frequency grid

Ω = (ω1, . . . , ωj , . . . , ωl), with 0 ≤ ω1 < · · · < ωj < · · · < ωl ≤ π (6.32)

are chosen in such a way that the (possibly disturbed) frequency domain samples are
dense enough to represent the (continuous) frequency response of the rcf (No,F , Do,F ).

As mentioned in Schrama (1992b), the property whether or not the frequency
domain samples are dense enough is determined by the order of the rcf (No,F , Do,F )
of the plant Po and the order of the rcf (N(θ), D(θ)) of the nominal model P (θ) to
be estimated. Furthermore, as the value of an H∞ norm is of importance during
the parametric identification of a nominal rcf, the subsequent frequency points must
be close enough to be able to evaluate and approximate max σ̄{·} over the specified
frequency grid Ω.

The frequency domain data of the factorization (No,F , Do,F ) is denoted by
(N̂o,F (ωj), D̂o,F (ωj)), where ωj for j = 1, 2, . . . , l constitutes a (prespecified) fre-
quency grid Ω that is assumed to satisfy the property mentioned in Assumption 6.2-9.
Using this notation, the minimization of the H∞-criterion (6.8) will be approximated
by performing a pointwise evaluation of the maximum singular value over the fre-
quency grid Ω.

Taking into account the restriction (6.9), the actual minimization problem using
frequency domain data (N̂o,F (ωj), D̂o,F (ωj)) can be formalized via

min
θ

max
j=1,2,...,l

σ̄{G(ωj)}, with

G(ωj) := U2(ωj)

([
N̂o,F (ωj)

D̂o,F (ωj)

]
−
[

N(θ, ωj)

D(θ, ωj)

])
F (ωj)

[
Ci(ωj) I

]
U1(ωj)

(6.33)
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For a fixed filter F , in general, (6.33) is non-convex min-max optimization problem
that requires a sophisticated numerical optimization. Such a min-max optimization
routine can be found in commercially available software (MatLab 1994). Furthermore,
to ensure stability of (N(θ), D(θ)) during the optimization, the parametrization dis-
cussed in Section 6.2.3 can be used (de Callafon and Van den Hof 1995a). A similar
min-max optimization problem to perform a curve fitting with a maximum ampli-
tude criterion and a parametrization with guaranteed stability has been proposed in
Hakvoort and Van den Hof (1994a). However, the optimization of (6.33) requires the
minimization of a maximum singular value of a transfer function matrix G, which
coincides with a maximum amplitude only if G in (6.33) is scalar. However, the
procedure described in Hakvoort and Van den Hof (1994a) can be used to find an
initial estimate for the non-linear optimization involved with (6.33). Alternatively,
a straightforward least-squares optimization (de Callafon et al. 1996a) can be used.
Provided that the resulting rcf being found by a least-squares optimization is stable,
it can be represented in the parametrization given in Lemma 6.2-6 and used as an
initial estimate for the optimization of (6.33).

6.3 Estimation of Model Uncertainty

6.3.1 Uncertainty modelling

In accordance with the separate estimation of nominal model and model uncertainty
as discussed in Section 6.1.3, complementary to the nominal factorization (N̂ , D̂) or
corresponding nominal model P̂ = N̂D̂−1 that has been estimated, a characterization
of the model uncertainty is needed to complete the model uncertainty set. Referring
to Definition 5.2-4, the set of models is structured according to

P(N̂ , D̂, Nc, Dc, V̂ , Ŵ ) := {P | P = (N̂ + Dc∆R)(D̂ − Nc∆R)−1

with ∆R ∈ RH∞ and ∆ := V̂ ∆RŴ satisfies ‖∆‖∞ < γ−1}
(6.34)

where the model uncertainty is represented by a stable perturbation ∆R in a dual-
Youla parametrization. As mentioned in Section 5.2.4, an estimated set of models P
or model uncertainty set that is characterized in this way, facilitates the use of the
knowledge of the controller C that is implemented on the plant Po.

Access to dual-Youla perturbation

The dual-Youla perturbation ∆R is unknown and is used to represent the incorrectness
of the nominal factorization (N̂ , D̂) and the uncertainty inevitably present in the finite
amount and possibly disturbed data used for the system identification procedure. In
case ∆R would be known exactly, the plant Po would be known. Therefore, the
aim is not to construct a parametric model for ∆R, as the knowledge of the plant has
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already been represented by a limited complexity model (N̂ , D̂). Although estimating
a (parametric) model R(θ) for ∆R will increase the knowledge of the plant Po, it
will also increase the complexity of the resulting nominal factorization, which is an
immediate consequence of using such a dual-Youla parametrization.

As such, the operator ∆R is considered to be the “uncertainty” and it formulates
an (allowable) model perturbation that yields the model uncertainty set P for which
Po ∈ P must hold. Therefore, both the term uncertainty and (allowable) model
perturbation is used to portray ∆R. Instead of finding a model for ∆R in (6.34),
frequency dependent weighting functions V̂ and Ŵ are used to bound the (allowable)
model perturbation ∆R. The pair (V̂ , Ŵ ) is used to represent and bound the model
perturbation ∆R. Referring to (6.3), the bound on ∆R must be chosen in such a way
that

min
V ,W

sup
P∈P

‖J(P, C)‖∞ (6.35)

is being minimized and Po is an element of the set of models P being constructed.
As already pointed out in Section 5.3.4, the substitution of C = Ci in (5.12) yields

M11 = 0. This results in an affine expression

M22 + M21∆M12 (6.36)

for Fu(M, ∆), as mentioned in (6.36). In this affine expression, the matrices M22,
M21 and M12 are known quantities, while the size of the perturbation or uncertainty
∆ must be chosen such that Po ∈ Pi and ‖M22 + M21∆M12‖∞ is minimized. Using
system identification, the uncertainty ∆ can be reduces and/or modified. As such,
the structure of (6.36) can be exploited to formulate a (control relevant) identification
problem to bound the uncertainty ∆ or ∆R in (6.34), by employing the knowledge of
a controller Ci that is known to stabilize the nominal model P̂ and the (unknown)
plant Po.

To accomplish the minimization of (6.35) and Po ∈ P , an intermediate step will be
used that involves the estimation of a non-parametric (or high order) bound on ∆R

in (6.34). Subsequently, the knowledge of such a bound on the model perturbation
∆R is used to construct the pair of stable and stably frequency dependent weighting
functions (V̂ , Ŵ ) to complete the formulation of the set of models P as mentioned in
Definition 5.2-4. Summarizing, the following two steps are performed to characterize
the model perturbation.

• Given the nominal factorization (N̂ , D̂), first a high order or non-parametric
frequency dependent upper bound ∆̄R for ∆R in (6.34) is estimated. Basically,
such a frequency dependent upper bound ∆̄R provides the following information

|∆R(e iω)| ≤ ∆̄R(ω) for ω ∈ [0, π]

and the upper bound ∆̄R is used to set up the set of models so that the plant
Po is guaranteed to be an element of the set.
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• The pair of frequency dependent stable and stably invertible weighting func-
tions (V̂ , Ŵ ) are used to formulate a low complexity upper bound for the model
perturbation ∆R. The upper bound ∆̄R provides the frequency dependent in-
formation on which a pair (V̂ , Ŵ ) of limited complexity is fitted.

In performing the aforementioned steps, the minimization of (6.35) must be taken
into account. Hence, the estimation of the high order or non-parametric upper bound
∆̄R must yield a tight upper bound for ∆R in (6.34) in order to be able to minimize
(6.35). This step actually constitutes the so-called uncertainty estimation modelling
and is solved here by employing the procedure developed in Hakvoort and Van den
Hof (1997). For the same reasoning, the pair of limited complexity weighting filters
(V̂ , Ŵ ) must be computed such that (6.35) is being minimized. This problem will be
solved by posing a curve fitting problem in which a frequency dependent upper bound
is bounded from above by a stable and stably invertible weighting filter, similar as in
Scheid et al. (1991). The aforementioned steps will be discussed in more detail in the
following sections.

Given an estimate of a nominal factorization (N̂ , D̂) that yield a model P̂ = N̂D̂−1

that satisfies T (P̂ , Ci) ∈ RH∞, the result of Lemma 4.3-2 can be used to access the
signals needed to estimate an upper bound on the model perturbation ∆R. Since
such a factorization (N̂ , D̂) has been obtained from the estimation of the control
relevant identification discussed in Section 6.2.1, Lemma 4.3-2 can be applied readily
to formulate the following result.

Corollary 6.3-1 Consider data coming from a plant Po operating in an internally
stable feedback connection T (Po, C) as described by (3.2). Let the controller C have a
rcf (Nc, Dc) and consider a rcf (N̂ , D̂) of a nominal model P̂ that satisfies T (P̂ , C) ∈
RH∞. Then (3.2) can be rewritten into

z = ∆Rx + Soe = ∆Rx + v (6.37)

and the signals x and z are given by the filter operation

x := (D̂ + CN̂)−1
[

C I
] [ y

u

]

z := (Dc + P̂Nc)−1
[

I −P̂
] [ y

u

] (6.38)

where x is uncorrelated with v. Subsequently ∆R and So are given by

∆R = Dc
−1(I + PoC)−1(Po − P̂ )D̂

So = Dc
−1(I + PoC)−1Ho

(6.39)

where ∆R and So are stable LTI operators.
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Proof: Application of Lemma 4.3-2 for (Nx, Dx) = (N̂ , D̂). �

With the result mentioned in Corollary 6.3-1, it can be seen that the signal x

and the signal z, found by a simple filtering of the signals present in the feedback
connection T (Po, C), can be used to access the model perturbation ∆R. Furthermore,
under the condition that T (P̂ , C) ∈ RH∞, the model perturbation ∆R is a stable LTI
operator.

The need for closed-loop experiments

Similar to the concluding remarks mentioned at the end of Section 6.2.1, it can be
mentioned here that the presence of the (unknown) closed-loop transfer function (I +
PoC)−1 in (6.39) indicates the need for performing closed-loop experiments. As the
plant Po is assumed to be unknown, the output sensitivity function Sout = (I+PoC)−1

that appears in (6.39) cannot be reconstructed and closed-loop experiments are needed
in acquiring information on this closed-loop transfer function.

Hence, for the estimation of the model uncertainty that has been structured in a
set of models that is tuned towards the closed-loop application of the models within
the set, closed-loop experiments are beneficial. Similar to the estimation of a feedback
relevant nominal model, it can be noted that if the controller C applied to the plant
Po is updated from Ci to Ci+1, the output sensitivity Sout changes. Assuming that
full knowledge of the plant Po, or similarly the output sensitivity (I + PoCi)−1 is
not available, renewed information of the output sensitivity (I + PoCi+1)−1 or the
dual-Youla perturbation ∆R in (6.39) can be obtained by performing new closed-loop
experiments.

6.3.2 Estimating an upper bound for the model uncertainty

Stability of ∆R facilitates the use of many newly developed system identification
techniques that are specialized in estimating and characterizing a model uncertainty.
The main reason for the preference to deal with a stable system during an uncertainty
bounding identification is due to the additional information or prior information
needed to formulate a reliable uncertainty bound. Usually, such prior information is
based on the assumption of the system being analytic and to exhibit a certain “degree
of stability” (Helmicki et al. 1989, Helmicki et al. 1991, Partington 1991, de Vries and
Van den Hof 1995, Mäkilä et al. 1995). Clearly, this requires the system to be stable
in order not to violate this prior assumption.

Introduction of prior information

The aim of this thesis is not to develop a new methodology for estimating a model
uncertainty. Instead, the procedure of probabilistic uncertainty bounding identifica-
tion, as described in Hakvoort (1994) or Hakvoort and Van den Hof (1997) is being



6.3 Estimation of Model Uncertainty 177

used. The reason for choosing this procedure is the flexibility with which the model
uncertainty estimation can be estimated and the application of the procedure to mul-
tivariable systems.

Another motivation for choosing the procedure of probabilistic uncertainty bound-
ing identification of Hakvoort and Van den Hof (1997) is related to the assumptions
that need to be made on the noise present on the data. For the uncertainty bound-
ing, assumptions on the noise v(t) = So(q)e(t) in (6.37) must be made. In Hakvoort
(1994) both deterministic assumptions such as

|v(t)| ≤ v̄(t) for t = 1, . . . , N (6.40)

or stochastic assumptions in accordance with the prediction error framework of Ljung
(1987) can be handled. The noise assumption mentioned in (6.40) is frequently used
in so-called unknown, but bounded noise parameter bounding or set membership
identification (Milanese and Vicino 1991). Such deterministic assumptions lead to
deterministic or “hard” error bounds for the uncertainty modelling. The resulting
set of models is definitely guaranteed to contain the unknown plant Po, provided, of
course, that the a priory information of (6.40) is correct.

Unfortunately, assumptions as (6.40) tend to trivialize the properties of the noise.
No averaging properties of the noise are incorporated in (6.40) and the noise v(t) might
be completely correlated with the input signal x(t) (Hjalmarsson 1993). Furthermore,
the noise bounds v̄(t) may have to be chosen highly conservative to account for out-
liers in the data or to comprehend the possible stochastic behaviour of the noise. In
Hakvoort and Van den Hof (1997) these problems are addressed by considering alter-
native deterministic noise assumptions. These alternatives include cross-covariance
constraints, where a deterministic bound on the correlation between the noise v(t)
and the input signal x(t) can be posed as prior information.

The procedure works on the basis of time-domain data and typically, the following
prior assumptions are being made.

• The system ∆R is assumed to be stable and to exhibit a certain degree of
stability. In Hakvoort and Van den Hof (1997) the degree of stability is imposed
by first considering ∆R(q) to exhibit the series expansion

∆R(q) =
∞∑

k=0

RkBk(q) (6.41)

where Bk(q) for k = 0, . . . ,∞ is some user-defined set of (orthonormal) basis
functions. These basis functions can be chosen as a common shift operator
Bk(q) = q−k or based upon a Laguerre functions (Wahlberg 1991), Kautz func-
tions (Wahlberg 1994) or the more generalized concept of orthonormal basis
functions as developed in Heuberger et al. (1995), Ninness and Gómez (1995)
and discussed before in Section 3.2.2.
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Subsequently, the assumption is made that the unknown coefficients Rk in (6.41)
can be bounded by

|Rk| ≤ R̄k, for k = 0, . . . ,∞ (6.42)

where {R̄k}k=0,...,∞ is a (unknown) sequence. The prior information now
consists of a degree of stability, enforced by assuming that the sequence
{R̄k}k=0,...,∞ shows an exponentially decay for k larger than some k�

R̄k ≤ Mρk, ∀k > k� (6.43)

for some given M ≥ 0 and ρ < 1.

• The effect of unknown initial conditions, that has influenced the data gathered
over a finite time interval, must also be bounded. This effect is handled by
assuming that the input signal x in (6.37) is said to satisfy

|x(t)| ≤ x̄, ∀t ≤ 0 (6.44)

where t ≤ 0 is used to indicate the time span before the data was captured.

Finally, an assumption on the noise v(t) = So(q)e(t) in (6.37) must be made. As
mentioned above, stochastic assumptions are used in the uncertainty bounding identi-
fication. Consistent with the framework as presented in Ljung (1987) and mentioned
previously in Assumption 3.2-2, it is assumed that the prior information on the noise
v(t) = So(q)e(t) in (6.37) satisfies the following assumption, see also Hakvoort and
Van den Hof (1997).

Assumption 6.3-2 The noise {v(t)} in (6.37) satisfies v(t) = So(q)e(t) where So(q)
is stable and {e(t)} is a sequence of independent random variable with zero means,
variances λ, bounded fourth moments and uncorrelated with the input signal {x(t)}.

It should be noted that a stochastic assumption on the noise typically will yield
a bound ∆̄R on the uncertainty ∆R that holds with a prespecified probability. In
Hakvoort and Van den Hof (1997) a procedure for such a probabilistic uncertainty
bounding identification is presented and is used in this thesis. As a result, a set of
models P based on the uncertainty bounding identification is said to satisfy

Po ∈ P, w.p. ≥ α < 1

provided that the prior stochastic assumption on the noise is correct. Specifying a
probability α close to 1, will lead to a set of models P for which Po ∈ P is bound
to hold with a high probability. Consequently, a robust controller designed on the
basis of the identified set of models, as mentioned in Procedure 2.5-4, will inherit
robustness properties that also hold with a certain (high) probability.
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With such a probabilistic approach, the property Po ∈ P and the closed-loop vali-
dation tests as mentioned in Procedure 2.5-4 in (2.20) and (2.21) can not be evaluated
with absolute guarantees. Consequently, robustness properties for a controller C such
as mentioned in Definition 2.2-18 and Definition 2.2-19 are said to hold with a certain
probability. However, it is believed that this approach is realistic and consistent with
many practical applications where robustness and failure can not be assured with ab-
solute guarantees, unless a strongly conservative policy is pursued during the design
of the feedback control system.

Computation of probabilistic uncertainty bounds

The objective is to derive a frequency dependent probabilistic uncertainty bound
∆̄R(ω) for the frequency response of ∆R. As mentioned before, the (probabilistic)
uncertainty bound ∆̄R is used as a first step to find a tight, non-parametric (or high
order) upper bound for the model perturbation ∆R in (6.34).

Such an estimation of a non-parametric upper bound ∆̄R gives rise to an interme-
diate set of models, denoted by S in Hakvoort (1994), and is defined as follows.

S :=
{

∆R(z)
∣∣∣∣∆R(e iωj ) ∈ P(ωj), ∀ωj ∈ Ω,

∣∣∣∣∂∆R(e iω)
∂ω

∣∣∣∣ ≤ β, ∀ω ∈ [0, π]
}

(6.45)

The intermediate set of models S in (6.45) is characterized by convex frequency (un-
certainty) response regions, denoted by P(ωj), that are defined in the complex plane
and given for a finite number of frequency points in a prespecified frequency grid Ω.

Remark 6.3-3 Although the formulation of the intermediate set S in (6.45) implies
that ∆R(z) is a scalar function, the (probabilistic) uncertainty bounding identification
routine mentioned in Hakvoort (1994) is applicable to a multivariable perturbation
∆R(z). In that case, convex frequency response regions Pij(ωj) are derived for each
element (i, j) of the multivariable perturbation ∆R(z).

In order not to be overwhelmed by the notational issues involved with keeping track
off each element (i, j) of a multivariable perturbation ∆R(z) and the corresponding
convex frequency response region P ij(ωj) most of the result below are written down
for a scalar ∆R(z). The corresponding convex frequency response regions P(ωj) can
be found by formulating convex polytopes that bound, for example, the real and
imaginary part of ∆R(e iωj ). Along with a bound on the first derivative β of the
frequency response of ∆R that can be obtained by employing the prior assumption
on the degree of stability of ∆R, a uniform bound or frequency dependent bound
∆̄R(ω) on the frequency response of ∆R can be computed. As mentioned before, this
frequency dependent bound ∆̄R(ω) is used to construct a pair of stable and stably
invertible weighting filters (V̂ , Ŵ ) that bound the model perturbation ∆R.

Clearly, the convex frequency response regions P(ωj) and the bound β on the first
derivative need to be computed to construct S. It is beyond the scope of this thesis
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how to derive P(ωj) and β. For a detailed discussion, one is referred to Hakvoort
(1994). In this thesis only the main results are presented and can be find below.

Lemma 6.3-4 Let ∆R(q) be any stable transfer function satisfying (6.41), where the
coefficients Rk are bounded by R̄k as in (6.42). Let β be given by

β :=
∞∑

k=0

R̄k

∥∥∥∥∂Bk(z)
∂z

∥∥∥∥
∞

then ∣∣∣∣∂∆R(e iω)
∂ω

∣∣∣∣ ≤ β, ∀ω ∈ [0, π]

Proof: For a proof, one is referred to Hakvoort (1994, pp. 104). �

The result mentioned in Lemma 6.3-4 links the bound R̄k on the (unknown) gen-
eralized impulse coefficients Rk of ∆R(q) with a bound on the first derivative of the
frequency response of ∆R. With the prior information M and ρ in (6.43) that specify
the exponential decay rate of the sequence {R̄k}k=0,...,∞, the bound β in Lemma 6.3-4
can be computed (Hakvoort 1994).

To characterize the convex frequency uncertainty regions P(ωj) using a proba-
bilistic uncertainty estimation routine, first a parametric model ∆̂R is estimated. The
parametric model ∆̂R is used solely to specify a complex central orientation point of
P(ωj). In this perspective, the model ∆̂R can be considered as the “carrier” of the
convex frequency uncertainty regions P(ωj).

With ∆R expressed in the orthonormal expansion (6.41), it is advantageous to
exploit this linear regression structure. As discussed in Section 3.2.2, a model ∆̂R

parametrized via an ORTFIR (Heuberger et al. 1995) structure yields such a linearly
parametrized model structure. Writing the model ∆̂R in the ORTFIR expansion with
n elements

∆̂R(q, r̂) =
n∑

k=0

r̂kBk(q) (6.46)

the coefficients {r̂k}k=1,...,n are used to denote the generalized pulse coefficients that
have been obtained on the basis of a convex least-squares minimization

r̂ = arg min
r

‖ε(t, r)‖2 (6.47)

where

ε(t, r) = z(t) −
n∑

k=0

rkBk(q)x(t)

denotes the output error and x and z are respectively the input and output data as
given in (6.37).



6.3 Estimation of Model Uncertainty 181

The solution to the convex least-squares optimization of (6.47) can be character-
ized by rewriting ∆̂R(q, r)x(t) into

∆̂R(q, r)x(t) =
n∑

k=0

rkBk(q)x(t) =
n∑

k=0

rkxk(t)

with

xk(t) =
h−1∑
h=0

bk,hq−hx(t)

and where bk,h denotes the h-th Markov parameter of the k-th basis function Bk(q).
Hence, xk(t) denotes the FIR-filtered signal x(t) using the FIR response filter based on
the k-th basis function Bk(q). Stacking the signals xk(t) in the vector representation

X(t) =

⎡
⎢⎢⎣

x1(t)
...

xk(t)

⎤
⎥⎥⎦ (6.48)

the solution r̂ of the optimization (6.47) is found via a standard linear regression
problem (Ljung 1987)⎡

⎢⎢⎣
r̂1

...

r̂k

⎤
⎥⎥⎦ =

[
1
N

N∑
t=1

X(t)XT (t)

]−1

1
N

N∑
t=1

X(t)z(t) (6.49)

where X(t) is defined as in (6.48).
Before presenting the result on the computation of the probabilistic frequency do-

main uncertainty regions P(ωj), for notational convenience the following expressions
are introduced. First of all, using the n basis functions Bk(q)k=1,...,n of the model
∆̂R in (6.46) and the expression for X(t) in (6.48) the following two signal ξre(t) and
ξim(t) are defined.

ξre(t) = [Re{B0(e iωj )} · · · Re{Bn(e iωj )}]
[

1
N

N∑
t=1

X(t)XT (t)

]−1

X(t) (6.50)

ξim(t) = [Im{B0(e iωj )} · · · Im{Bn(e iωj )}]
[

1
N

N∑
t=1

X(t)XT (t)

]−1

X(t) (6.51)

The above mentioned signals are simply filtered version of the signal x(t). How-
ever, they play a crucial role in the notation and characterization of the uncertainty
bounding, as mentioned below.



182 Control Relevant Identification of a Model Uncertainty Set

A computable bound for the effect of unknown initial conditions and the fact that
only n basis functions have been used in the model ∆̂R(q, r̂) of (6.46) can be char-
acterized by means of the signals ξre(t) and ξim(t) (Hakvoort 1994). For notational
convenience, the bounds that includes the effect of initial conditions is written as
follows

fre =
∞∑

k=0

R̄k

∞∑
h=0

∣∣∣∣∣
N∑

t=1

bk,h+tξre(t)

∣∣∣∣∣ x̄
fim =

∞∑
k=0

R̄k

∞∑
h=0

∣∣∣∣∣
N∑

t=1

bk,h+tξre(t)

∣∣∣∣∣ x̄
(6.52)

where x̄ was given in (6.44). The bound that incorporates the tail contribution of the
ORTFIR expansion of the model ∆̂R(q, r̂) is denoted by

dre =
∞∑

k=n+1

R̄k

∣∣∣∣∣
N∑

t=1

ξre(t)
t−1∑
h=0

bk,hq−hx(t)

∣∣∣∣∣
dim =

∞∑
k=n+1

R̄k

∣∣∣∣∣
N∑

t=1

ξim(t)
t−1∑
h=0

bk,hq−hx(t)

∣∣∣∣∣
(6.53)

where bk,h is again used to denote the h-th Markov parameter of the k-th basis
function Bk(q) in (6.41). Similar to the bound given in (6.53), the real and imaginary
part of the frequency response of the tail contribution of the ORTFIR expansion of
∆R(q) needs to be bounded. Following Hakvoort (1994), these bounds are given by

δre(ωj) =
∞∑

k=n+1

R̄k|Re{Bk(e iωj )}|

δim(ωj) =
∞∑

k=n+1

R̄k|Im{Bk(e iωj )}|

(6.54)

It should be noted that the computation of the expressions in (6.52), (6.53) and (6.54)
involves the evaluation of infinite sums. However, the assumption on the exponential
decay rate of the sequence R̄k for k = k�, . . . ,∞, as mentioned in (6.43), make the
bounds computable (Hakvoort 1994).

To conclude the enumeration of notations associated to the signals mentioned in
(6.50) and (6.51), the notation for the cross-correlation between ξre(t), ξim(t) and the
noise v(t) in (6.37) is defined as follows.

ΛN
ξreξim

:=
1
N

N∑
t=1

[
ξre(t)

ξim(t)

]
v(t)

N∑
t=1

[
ξre(t) ξim(t)

]
v(t) (6.55)



6.3 Estimation of Model Uncertainty 183

Furthermore, for notational convenience, ΛN
ξreξim

is split up in

ΛN
ξreξim

=

[
λN

ξreξre
×

× λN
ξimξim

]
(6.56)

where the upper left matrix-element of the matrix ΛN
ξreξim

associated to ξre is de-
noted by λN

ξreξre
and the lower right matrix-element associated to ξim is denoted by

λN
ξreξre

. Having set up the above mentioned notations, the following main result can
be formulated for the frequency response confidence regions.

Lemma 6.3-5 Consider the ORTFIR estimate ∆̂R(q, r̂) given in (6.46) and (6.49)
and suppose {v(t)} and {x(t)} in (6.37) satisfy Assumption 6.3-2. Let the computable
bounds fre and fim be given by (6.52), dre and dim be given by (6.53), δre(ωj) and
δim(ωj) be given by (6.54). Furthermore, let the covariance information λN

ξreξre
and

λN
ξimξim

be given by (6.55) and (6.56). Consider a positive real number α < 1, then
for N → ∞ the following expressions hold∣∣∣Re{∆̂R(e iωj , r̂) − ∆R(e iωj )}

∣∣∣ ≤ Rα(ωj), w.p. ≥ α∣∣∣Im{∆̂R(e iωj , r̂) − ∆R(e iωj )}
∣∣∣ ≤ Iα(ωj), w.p. ≥ α

(6.57)

where Rα(ωj) and Iα(ωj) are given by

Rα(ωj) = cN ,α

√
λN

ξreξre

N
+

dre

N
+

fre

N
+ δre(ωj)

Iα(ωj) = cN ,α

√
λN

ξimξim

N
+

dim

N
+

fim

N
+ δim(ωj)

(6.58)

and cN ,α denotes a real number that corresponds to the probability α in the standard
Normal distribution.

Proof: For a proof one is referred to the work by Hakvoort (1994) �

The result in Lemma 6.3-5 provides the possibility to formulate a probabilistic con-
vex frequency response regions P(ωj) formed by the bounds for the real and imaginary
parts mentioned in (6.57) and (6.58). A typical shape of a (probabilistic) box-shaped
frequency response region P(ωj) for one frequency ωj out of the frequency grid Ω is
depicted in Figure 6.1. As can be seen from this figure, a rectangular shaped confi-
dence region in the complex plane is obtained around the complex frequency response
value ∆̂R(e iωj , r̂). As can be seen from (6.57), the different sources that contribute to
the size of probabilistic convex frequency response regions can be distinguished and
possibly individually influenced.
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real axis
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Fig. 6.1: Rectangular (probabilistic) frequency response region for one frequency ωj

out of the frequency grid Ω.

The result of Lemma 6.3-4 and Lemma 6.3-5 conclude the characterisation of the
intermediate set of models S. Consequently, a set of model S is obtained for which
Po ∈ S is known to hold with a certain (high) probability, provided that the prior
information is correct. Once the bound β on the first derivative of the frequency
response and the convex frequency response regions P(ωj) are available, a frequency
dependent upper bound ∆̄R(ω) for the model perturbation ∆R can be computed
(Hakvoort 1994).

6.3.3 Parametric approximation of upper bound

The availability of a (non-parametric) frequency dependent upper bound ∆̄R(ω) of
∆R(e iω) can be used to find stable and stable invertible weighting filter (V̂ , Ŵ ) of
limited complexity that form a tight overbound

‖V̂ ∆̄RŴ‖∞ ≤ γ−1 (6.59)

for ∆̄R(ω). It should be noted that in case of a multivariable perturbation ∆R,
the (probabilistic) uncertainty bounding identification summarized above yields a
frequency dependent upper bound ∆̄Rij(ω) for each element (i, j) of the perturbation
∆R. It was already observed in Section 5.2.5 that such detailed information can be
used to find scalar stable and stably invertible weighting filters V̂ ij that bound each
element (i, j) of ∆̄R

‖V̂ ij∆̄Rij‖∞ ≤ γ−1 (6.60)

as previously mentioned in (5.8).
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While estimating limited complexity weighting filters (V̂ , Ŵ ) or V̂ ij respectively
in (6.59) or (6.60), the objective mentioned in (6.35) must still be taken into account.
Clearly, the possibility to construct high order weighting filters will allow a tight
overbound of ∆̄R. However, the weighting filters reappear in the lower LFT Fl(G, C)
given in Corollary 5.4-1. Since Fl(G, C) is used in the design of a robust controller, it
is beneficial to limit the complexity of the weighting filters, similar to the motivation
to limit the complexity of the nominal model or nominal factorization (N̂ , D̂).

Estimating a scalar weighting function that will form a tight (weighted) upper
bound of ∆̄Rij in (6.60) has for example been studied in Scheid et al. (1991). The
linear programming spectral overbounding and factorization (LPSOF) algorithm pre-
sented in Scheid et al. (1991) can be used to find low complexity stable and stably
invertible weighting filters that overbound the frequency dependent information ∆̄R.
For reasons of completeness, the LPSOF is summarized below.

The concept that V̂ ij must be a weighted tight upper bound can be formalized by
posing the optimization

min
θ

κ(θ)

with
κ(θ) := max

ωj∈Ω
{(V ij(e iωj , θ) − ∆̄R(ωj))Q(ωj)} (6.61)

where Ω is a frequency grid as given in (6.32) and Q(ω) defines some user specified
weighting.

In case the stable and stably invertible weighting filter V ij(e iω , θ) has a McMillan
degree n, evaluating V ij(e iω , θ)�V ij(e iω, θ) will lead to an expression of the form

V ij(e iω , θ)�V ij(e iω, θ) =
b(ωj , θ)
a(ωj , θ)

(6.62)

where
b(ωj, θ) = b0 + b1 cos(ωj) + · · · + bn cos(nωj)

a(ωj, θ) = 1 + a1 cos(ωj) + · · · + an cos(nωj)

and [b0 · · · bn a1 · · · an] corresponds to the unknown parameter θ in the weight-
ing filter V ij(e iω , θ) to be estimated. Hence, the condition that V ij(e iω , θ) should
overbound ∆̄R(ωj) can be restated as

b(ωj , θ)
a(ωj , θ)

≥ ∆̄R(ωj)2, ∀ωj ∈ Ω. (6.63)

The condition that the overbound b(ωj , θ)/a(ωj , θ) admits a spectral factorization
and can be represented by a stable and stably invertible weighting filter V ij(e iω, θ)
can be guaranteed by the additional condition

a(ωj , θ) > 0 ∀ωj ∈ Ω. (6.64)



186 Control Relevant Identification of a Model Uncertainty Set

Using (6.62) and employing an equation error form

δ(θ) := max
ωj∈Ω

{(b(ωj , θ) − ∆̄R(ωj)2a(ωj, θ))Q(ωj)} (6.65)

it has been recognized in Scheid et al. (1991) that the optimization

min
δ,θ

δ(θ)

subjected to the constraints mentioned in (6.63) and (6.64) is a linear programming
problem for a fixed δ. In this linear programming problem, a feasible solution θ must
be found. By systematically lowering the value of δ, a (weighted) tight overbound of
∆̄R(ωj) can be found. This LPSOF algorithm is also used in this thesis to find the
low complexity parametric stable and stably invertible weighting filters, that bound
the perturbation ∆R element wise.

6.4 Summary on the Model Uncertainty Set Estimation

With the tools described in this chapter, the issue of estimating a set of models
or model uncertainty set has been addressed. It has been made clear that the set
of models, as given in (6.34) depends on the nominal factorization (N̂ , D̂) and the
weighting functions (V̂ , Ŵ ) that bound the model uncertainty. During the estimation
and construction of the set of models, the closed-loop criterion

min
N,D,V ,W

sup
P∈P

‖J(P , C)‖∞ (6.66)

has been taken into account to find a model uncertainty set, suitable for enhanced
robust control design.

As a minimization, using the variables (N, D, V , W ) simultaneously is intractable,
a separate control relevant identification of a nominal factorization and a model un-
certainty is proposed for the estimation of the set of models. The separate estimation
estimation involves the following two steps.

• The estimation of a nominal factorization (N̂ , D̂) such that (6.66) is being mini-
mized using the rcf (N, D) only, subjected to internal stability of T (P̂ , C). The
estimation of (N̂ , D̂) is done with the optimization posed in (6.33) and involves
a non-linear optimization for which frequency domain measurements of the rcf

(No,F , Do,F ) of the plant Po is being used.

• The estimation of the model uncertainty consists of the characterization of a
frequency dependent upper bound ∆̄R(ω) on ∆R in (6.34) via (V̂ , Ŵ ) such that
(6.66) is being minimized using (V, W ) only, subjected to Po ∈ P. This fre-
quency dependent upper bound ∆̄R(ω) is found by the probabilistic uncertainty
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bounding identification of Hakvoort and Van den Hof (1997) that is applied to
the set of models as described in (6.34) on the basis of closed-loop time domain
observations. Subsequently, stable and stably invertible weighting filters that
bound ∆̄R(ω) are found with the LPSOF algorithm of Scheid et al. (1991).

The model uncertainty set estimation forms an integral part of the identification
steps in Procedure 2.5-4. In the next chapter, the main ingredients of Procedure 2.5-4,
as presented in this thesis, will be outlined to indicate the applicability of the proce-
dure.
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7
Application of the Model-Based Procedure

7.1 Introduction

With the contents of the previous chapters, the ingredients and results to perform
the model-based procedure mentioned in Section 2.5.2 have been presented. Most of
these results have been outlined in chapter 5 and chapter 6 and merge the results
available in the fields of system identification and robust controller design to consti-
tute a framework for a model-based approach to the design of robust and enhanced
performing controllers for a unknown plant, on the basis of observations coming from
the plant. For reasons of clarity, a short summary of these results is outlined in
this chapter. The different results and ingredients have to be merged to complete
the model-based procedure so as to address the problem of designing an improved
controller for an unknown, possibly unstable, system.

Firstly in Section 7.2, the main ingredients, as mentioned in Section 2.5.3, are
summarized. These ingredients include the control objective function being chosen,
the way in which the set of models is being structured, the procedure for estimat-
ing the model uncertainty set and the robust control design methodology used to
develop enhanced performing robust controllers on the basis of the estimated model
uncertainty set.

Subsequently, in Section 7.3 the flow chart of the model-based procedure men-
tioned in Figure 2.7 is repeated. This flow chart is used to refer to the different
contributions developed and merged in this thesis. In this way, the path is outlined
in which the estimation of the model uncertainty set, the robust controller design
and the closed-loop validation test are organized to progressively find an improved
performing robust controller.

The next chapter is devoted to the practical application of the scheme. This appli-
cation involves the identification of a set of models and the design and implementation
of a feedback controller for a positioning mechanism present in a wafer stepper.
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7.2 Main Ingredients

Following the enumeration mentioned in Section 2.5.3, the following summary of the
main ingredients in the model-based procedure can be given.

The control objective function

As indicated in Definition 2.2-13 and Remark 2.2-15, the control objective function
J(P , C) is used to characterize the performance of the feedback connection T (P , C).
Furthermore, J(P , C) is crucial in the closed-loop validation tests as mentioned in
(2.20) and (2.21) and the way the feedback controller C is being designed.

For reasons of generality, in chapter 5 of this thesis, the control objective function
J(P , C) is chosen to be some input/output weighted form of the transfer function
matrix T (P, C) and given in (5.9). The transfer function matrix T (P, C) in (2.5)
represents the various maps between the signals in a feedback connection T (P , C),
while the weightings are introduced to impose an additional shaping of the T (P, C)
matrix. Although it is impossible to transform any desirable control design objective
into the single norm function ‖J(P, C)‖∞, the performance characterization (5.9)
has wide applicability. It may include a weighted sensitivity or mixed sensitivity
characterization by proper modification of the weighting functions.

The structure of the set of models

The set of models is used to represent the incomplete knowledge of the plant Po,
caused mainly by the availability of only finite time, possibly disturbed observations
of the plant. The set of models P should allow the evaluation of the closed-loop
performance assessment test (2.19) and the closed-loop validation test of (2.20) and
(2.21) in a non-conservative way.

The knowledge that the plant Po is stabilized by a controller C, is used to capture
the limited knowledge available on the plant Po. This knowledge is used to structure
the set of models P in chapter 5 yielding a set of models as given in Definition 5.2-4.
The favourable properties of such a set of models have been summarized and the
various tests mentioned in Remark 2.5-6 have been analyzed.

Due to the close connection with the dual-Youla parametrization, the set of models
(or uncertainty set) P in (5.4) contains only models that are stabilized by the currently
implemented and known controller C. The set of models is characterized by the
transfer functions mentioned in Remark 5.2-7; a nominal factorization (N̂ , D̂) and
weighting functions (V̂ , Ŵ ).

For the evaluation of the closed-loop validation tests (2.20), (2.21) and the closed-
loop performance assessment test (2.19), the results mentioned in Section 5.3.4 can
be used. Rewriting the structure of the set of models P in (5.4) using an LFT frame-
work, the concept of the structured singular value µ(·) and the result mentioned in
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Lemma 5.3-8 opens the possibility to evaluate the performance robustness of a con-
troller C applied to a set of models P in a non-conservative way. This has been
indicated in the analysis result presented in Corollary 5.3-9 and can be used in the
various steps mentioned in Procedure 2.5-4. Structuring the set of models P of (5.4)
as in (5.5), the performance assessment test and the controller and modelling valida-
tion tests mentioned in Remark 2.5-6 can be performed with the result mentioned in
Corollary 5.3-9.

Identification of a set of models

With a set of models P being structured as in Definition 5.2-4, a procedure to estimate
a set of models has been presented in chapter 6. The problems associated to an
identification based on closed-loop data have been reviewed in chapter 3, whereas the
fractional approach outlined in chapter 4 was shown to be beneficial to address the
closed-loop identification problem.

Referring to Procedure 2.5-4, the estimation of a set of model P appears both in
step 1 and step 3. In this respect, both steps are similar and require the estimation of
a sets of models Pi and Pi+1 that should satisfy Po ∈ Pi and Po ∈ Pi+1 respectively for
step 1 and step 3. The optimization involved in both the identification of Pi and Pi+1

to satisfy the “quality test” or “validation test”, mentioned respectively in (2.19) and
(2.21), is similar. The only difference between step 1 and step 3 of Procedure 2.5-4 is
the controller C being used in the optimization. Due to the closed-loop evaluation of
the validation tests, a so-called control relevant identification is inevitable.

For the actual estimation of a set of models P , the identification of the trans-
fer functions (N̂ , D̂, V̂ , Ŵ ) that characterize the set P , a separate estimation of a
nominal factorization (N̂ , D̂) and uncertainty bounding weighting functions (V̂ , Ŵ )
is proposed. The separation between the estimation of a nominal model P̂ = N̂D̂−1

and an parametric upper bound (V̂ , Ŵ ) for the allowable model perturbation makes
the control relevant estimation of a set of models more tractable. Currently available
tools to estimate a nominal model and to characterize uncertainty are applied and
used throughout chapter 6. As such, the control relevant estimation of a nominal
factorization is discussed in Section 6.2 and uses the fractional approach discussed in
chapter 4. With the fractional approach and a set of models structured via a per-
turbation in a dual-Youla parametrization, the estimation of a (parametric) upper
bound on the model perturbation ∆R is discussed in Section 6.3. Both identification
techniques yield the transfer functions (N̂ , D̂, V̂ , Ŵ ) that characterize a set of models.

Robust control design methodology

Once a set of models has been characterized by the transfer functions mentioned in
Remark 5.2-7, the possibility can be exploited to (re)design a robust controller on
the basis of the set. Basically, this constitutes step 2 in Procedure 2.5-4, where a
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controller Ci+1 must be designed on the basis of Pi that should satisfy performance
robustness test in (2.20) to outperform the previously designed or existing feedback
controller Ci.

The problem to design such a controller Ci+1 can be labelled as a robust control
design problem, wherein the newly controller Ci+1 is being designed such that the
worst-case performance J(P , Ci+1) ∀P ∈ Pi is being optimized. Computation of such
a robust controller can be done by existing techniques based on µ-synthesis and have
been summarized in Section 5.4 of chapter 5. This controller synthesis technique
can be used to find a robust and enhanced performing controller Ci+1 in step 2 of
Procedure 2.5-4.

7.3 Flow Chart of the Model-Based Procedure

The main ingredients mentioned above complete the model-based procedure. The
possibilities to deal with an unstable system and data coming from a closed-loop
system have been outlined in chapter 4. These possibility use a fractional model
approach for both the estimation of a nominal model and the structure of the model
set to be estimated. The identification of a set of models presented in chapter 6 is
used to represent the limited knowledge available on the plant Po, while the robust
control design methodology outlined in chapter 5 is used to deal with this model
uncertainty. However, to ensure that the feedback controller designed is improving
the performance of the controlled plant, specific conditions have to be met during the
modelling and control design phase.

Referring to Procedure 2.5-4, the conditions (2.20) and (2.21) reflect respectively
a controller and a modelling (closed-loop) validation test in order to enforce (2.17). A
controller must be designed that should satisfy the closed-loop validation test (2.20)
before implementing it on the plant. After that, a set of models should be estimated
that should satisfy the validation test (2.21).

A schematic overview of these validation tests in Procedure 2.5-4 has been de-
picted in Figure 2.7 and redrawn in Figure 7.1 for reference purposes. Figure 7.1 also
indicates how the system identification and the control design are linked in order to
improve the performance of the feedback controlled plant progressively.

Following the flow chart, starting with an initial controller Ci, closed-loop exper-
iments of the feedback connection T (Po, Ci) are obtained. The closed-loop data is
used to estimate a set of models Pi with the model uncertainty set estimation results
presented in chapter 6. That is, a nominal model and an upper bound of the model
uncertainty is estimated to construct a set of models as given in (6.34). Subsequently,
with the controller Ci and the estimated set of models, the performance level γi can
be determined a posteriori with the result mentioned in Corollary 5.3-9.

With the given set of models Pi, the controller Ci and the a posteriori determined
performance level γi, an iteration of subsequent robust controller design and model
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uncertainty set estimation can be initiated. As indicated in Figure 7.1, first the set
Pi is used to redesign the feedback controller with the µ-synthesis summarized in
chapter 5. The newly designed controller Ci+1 must satisfy the closed-loop controller
validation test, as mentioned in (2.20). As the current controller Ci is not designed
for the set of models Pi, an (optimal) redesign of the controller Ci+1 on the basis of
the set Pi via a µ-synthesis is most likely to perform better than the controller Ci.
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Fig. 7.1: Schematic flow chart of the model uncertainty set estimation, feedback con-
troller design and the controller (2.20) and modelling (2.21) validation test
in Procedure 2.5-4.

In case Ci+1 passes the test (2.20), it can be implemented on the plant Po to create
a new feedback connection T (Po, Ci+1). In case the performance is satisfactory, the
iteration can be stopped, otherwise the new feedback connection delivers new closed-
loop data that can be used to update the knowledge on the plant Po. As the controller
Ci is changed to Ci+1, a new (optimal) set of models Pi+1 can be estimated that is
based on a control objective function which involves Ci+1.

The newly gathered closed-loop data and the knowledge of the new feedback con-
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troller can be used to (re)estimate a set of models Pi+1, as indicated in Figure 7.1. In
case the updated information on the plant Po, represented in the set of models Pi+1,
passes the closed-loop model validation test (2.21), the newly identified set of models
Pi+1 can be reused for robust controller design, from which the iteration repeats.

Obviously, the iteration is terminated as either the obtained performance level is
satisfactory or the controller design or modelling phase is not able to come up with
respectively a controller or set of models P that passes the test (2.20) or (2.21). In
the next chapter, the application of this iteration is illustrated for a multivariable
positioning mechanism present in a wafer stepper.
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8
Identification and Control of a Wafer Stage

8.1 Summary of Application

This chapter discusses the application of the model-based procedure summarized in
the previous chapter to an commercially available three degree of freedom positioning
mechanism present in a wafer stepper. The positioning mechanism is labelled as the
wafer stage and in Section 8.2 a description of this mechanism is given. Subsequently,
in Section 8.3, the control specifications and the experiments for identification and
feedback controller implementation and evaluation are outlined. In Section 8.4 the
results on the identification of the set of models is presented in more detail and
basically describes the application of step 1 of Procedure 2.5-4. In Section 8.5, step 2
of Procedure 2.5-4 is applied by designing and implementing an enhanced performing
feedback controller. Finally, in Section 8.6 results are presented when performing a
subsequent iteration on the steps step 1 and step 2 of Procedure 2.5-4. As mentioned
in Section 2.5.2, such an iteration of renewed estimation of a set of models and an
updated design of a feedback controller is able to yield a feedback controlled system
in which the performance can be enhanced progressively. Finally, the chapter is ended
by concluding remarks in Section 8.7.

8.2 Description of a Wafer Stepper

8.2.1 Application of wafer steppers

For the mass production of a high quality Integrated Circuit (IC), so-called wafer
steppers are being used. Wafer steppers combine a high accuracy positioning and
a sophisticated photolithographic process to manufacture IC’s via a fully automated
process.

The architecture of the IC is captured in a mask or recticle that bears the image
of the circuit. Ultraviolet light passes through the mask and is reduced and projected
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via a cascade of lenses on a silicon disk, called the wafer. By means of the photolitho-
graphic process, the architecture is exposed via a photo resist on the surface of the
wafer.

In most of the applications, the wafer is used to manufacture multiple IC’s and the
number of circuits on the wafer may vary from 80 till 200. Due to economical reasons,
such as the size of the mask and the dimension of the lenses in the wafer stepper, only
a limited amount of IC can be processed on the wafer during the illumination phase
of the photolithographic process.

In order to expose the complete surface of the wafer with multiple circuits, the
mask must be projected sequentially onto the wafer. For that purpose, the wafer is
placed on a moving table that needs to be moved or stepped accurately in at least 3
Degrees Of Freedom (3DOF) for the sequential illumination of the IC’s on the wafer.
The phrase “wafer stepper” originates from the subsequential moving and exposure
of the wafer during the IC manufacturing on the wafer.

The performance of a wafer stepper is characterized by the number of processed
wafers per hour (throughput) and the number of acceptable IC’s per wafer (yield).
Clearly, the movements and positioning of the wafer during the IC manufacturing
will highly influence the throughput and the yield of a wafer stepper. Each step
movement must be performed as fast as possible, while the wafer must be positioned
accurately with small residual vibrations before illuminating another IC on the wafer.
A fast and accurate servo positioning mechanism is able to decrease the time needed
to make a step with the wafer during the sequential illumination of the IC’s on the
wafer. As such, the positioning mechanism will play an important role in influencing
the performance of a wafer stepper.

Inevitably, there is an economical need to move and expose the IC’s as fast as
possible to increase the throughput of the wafers. The exponential growth of the
transistor density on IC’s (Stix 1995) puts additional high requirements on the accu-
racy of the positioning mechanism. Similar as in (de Roover 1997), the requirements
on fast and precise positioning of the wafer are important motivations in the appli-
cation discussed in this thesis. The modelling and servo control of the positioning
mechanism will serve as an illustrative example for the framework introduced in this
thesis.

8.2.2 Description of the wafer stage

The servo positioning mechanism used to move the wafer during the IC manufacturing
is called the wafer stage. The wafer stage discussed in this thesis is an integral part
of a linear direct drive type wafer stepper and is denoted by the Silicon Repeater
3rd generation (SIRE3). In the wafer stage of the SIRE3, the wafer is positioned
in three degrees of freedom (3DOF) on the horizontal plane of the granite block.
Three laser measurements are used to determine the horizontal position of the wafer
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chuck, whereas three linear motors are used to position the wafer chuck in 3DOF. A
schematic overview of the mechanical servo positioning mechanism of the SIRE3 is
depicted in Figure 8.1.
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Fig. 8.1: Schematic view of a wafer stage; 1: mirror block, 2: wafer chuck, 3: laser
interferometers, 4: linear motors, 5: granite block, 6: laser.

In the wafer stage depicted in Figure 8.1, the table used to store and move the
wafer, is called the wafer chuck. The wafer chuck is equipped with an air bearing and
placed on a large suspended granite block to reduce the effect of external vibrations.
The position of the wafer chuck on the horizontal surface of the granite block is
measured by means of laser interferometry.

This makes the servo positioning mechanism of the wafer stepper a multivariable
system, having three inputs and three outputs. The inputs reflect the currents to the
three linear motors, whereas the outputs are constructed by measuring the position
of the wafer chuck both in x-, y-direction (translation) and the φ-direction (rotation),
as indicated in Figure 8.1.

8.2.3 Experimental set up

An experimental set up of a SIRE3 wafer stage has been provided by Philips Re-
search Laboratories in Eindhoven, the Netherlands. The experimental set up is avail-
able in the laboratory of the Mechanical Engineering Systems and Control Group at
Delft University of Technology, the Netherlands. A picture of the set up is given in
Figure 8.2 and includes a wafer stage, an interface for both the laser interferometers
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and the linear motors and a host computer equipped with a digital signal processor
(DSP).

Fig. 8.2: Experimental set up with (from left to right) the wafer stage, interface and
host computer with digital signal processor.

In the wafer stage, laser interferometry is used to determine the horizontal position
of the wafer chuck, whereas three linear motors are used to position the wafer chuck
in 3DOF. Below, a short description is given of the components in the experimental
set up that are important for changing, measuring and controlling the position of the
wafer chuck. A more detailed discussion of the experimental set up can also be found
in de Roover (1997).

Actuation

As indicated in Figure 8.1, three linear motors are used to position the wafer chuck
in 3DOF over the surface of the granite block. The linear motors are placed in an
H-shape to accomplish motion in 3DOF over the surface of the granite block.

The three linear motors are electromagnetic (voice-coil) motors and are built up
from a stator and a slider. The stator consist of an iron core surrounded by alternately
segmented copper coils with opposite polarity. The slider embraces the stator with
eight permanent magnets connected by an iron yoke and moves along the stators by
means of a ball bearing.

A close-up picture of the wafer stage is given in Figure 8.3, where the layout and
position of the three linear motors can be seen in more detail.
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Fig. 8.3: Close-up of wafer stage displaying the three linear motors (1: y1-motor,
2: x-motor, 3: y2-motor) and 4: the wafer chuck with air bearing.

As indicated in Figure 8.1, in the H-stage two linear motors are placed in line
with the y-direction. In Figure 8.3 these motors are indicated by the y1- and the
y2-motor. One linear motor is placed in line with the x-direction and is indicated by
the x-motor. Evidently, the x-motor is used to move the chuck in the x-direction. A
simultaneous and equivalent activation of the y1- and y2-motor will yield an activation
in y-direction. A difference in the current to the y1- and y2 motor may be used to
obtain a (small) rotation of the wafer chuck to move in the φ-direction.

Sensing

To measure the position of the wafer stage moving over the surface of the granite
block, laser interferometry is being used. The three degrees of freedom in the posi-
tioning of the wafer stage (x- and y-translation and φ-rotation) are measured by three
position sensors. A position measurement in x-direction is taken, while two parallel
measurements y1 and y2 in y-direction are used to measure the y-translation and the
φ-rotation.

The three position measurements are performed by a Hewlett-Packard Helium-
Neon Laser Transducer System (Hewlett-Packard 1985). The light coming from the
Helium-Neon laser is split into three beams and projected onto an ultra flat mirror
block that is an integral part of the wafer chuck. A photo of the stage with mirror
block and parts of the Laser Transducer System can be seen from the top view of the
wafer stage in Figure 8.4.

The mirror block with the three interferometers (one in x-direction, two in y-
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Fig. 8.4: Top view of wafer stage with 1: interferometers, 2: mirror block and 3: H-
shape of the three linear motors.

direction) can be seen from the top view and is also redrawn in Figure 8.5.
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Fig. 8.5: The three position measurements on the mirror block

The three position measurements can be used to reconstruct the position of the
stage in x-, y- and φ-direction. This idea has been illustrated in Figure 8.5, where
the three position measurements of mirror block are depicted schematically. From
the three (relative) position measurements given in Figure 8.5, the three degrees of
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freedom of the stage in x-, y- en φ- direction can be obtained via⎡
⎢⎢⎣

x

y

φ

⎤
⎥⎥⎦ = T

⎡
⎢⎢⎣

x

y1

y2

⎤
⎥⎥⎦

where T is a transformation matrix defined by

T :=

⎡
⎢⎢⎣

1 0 0

0 1/2 1/2

0 1/2 −1/2

⎤
⎥⎥⎦ (8.1)

that tries to statically decouple the two measurements y1 and y2 in the y-direction.
It should be noted that

φ =
y1 − y2

2
is not the actual rotation of the stage, as this would require the computation involving
a sinusoidal term. However, the rotation of the stage is limited and for small difference
between y1 and y2, e.g. small rotations, the value of φ is proportional to the angular
rotation of the stage.

Each beam in the Laser Transducer System is reflected from the mirror block and
interferes with the light coming from the laser. The interference of the laser light is
used to measure the velocity of the stage by sampling the Doppler shift in frequency
of the interference signal. Subsequently, a relative position signal is obtained by
integration and is done summing up the samples obtained. The sampling of the
Doppler shift can be done at various resolutions and depends on the maximum velocity
of the stage (Hewlett-Packard 1985). In the application discussed throughout this
thesis, a fixed resolution of 1/48 of the 633 nm wavelength of the Helium-Neon laser
is being used. As such, the three position measurements x, y1 and y2 in Figure 8.5 are
in increments of 13.1875 nm, whereas the velocity of the stage is limited to 0.12 m/s
at this resolution.

Signal processing

The signals coming from the laser interferometers and the signals to the linear motors
are digested by a digital signal processor (DSP). The DSP is based on the TMS320C30
Texas Instruments processor and is a floating-point processor running at 33MHz. The
DSP is used to generate and gather signals for identification purposes and is able to
implement digital controllers for controlling the position of the wafer stage. The DSP
is installed in a host computer to provide an interface to the data acquisition and
controller implementation.

For the implementation of digital controllers, the DSP reads the data coming
from the interferometers using a special digital I/O card, while a 16 bit DAC is
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used to generate an analogue signal for the linear motors. External reference signals
on the input and the output signal of the controller can be used for closed-loop
excitation purposes. Summarizing, the closed-loop configuration of the wafer stage
servo positioning mechanism with the DSP can be depicted by the block diagram
given in Figure 8.6.

wafer
stage I/O T �� �y

DACT−1 ��u��

C
��		




r1

r2

v

� ���

Po

uc

+
+

+ +

+−

Fig. 8.6: Closed-loop block diagram of wafer stage with digital controller implemen-
tation.

The transformation matrix T and the inverse T−1 in Figure 8.6 has been defined
in (8.1). As mentioned before, the transformation T is used to statically decouple
the two measurements y1 and y2 in the y-direction. Additionally, the transformation
matrix T and T−1 enables to process the reference signals and the measured signals
in terms of position signals in x-, y- and φ-direction.

As such, the input u is used to indicate the (transformed) actuator input. The
input signal u consists of three input signals ux, uy and uφ reflecting respectively
actuation signals in x-, y- and φ-direction. In a similar way, the (transformed) laser
interferometer output signal y can be considered to consists of the three position
signals yx, yy and yφ.

From the block diagram of Figure 8.6, the (unknown) plant Po and the (known
digital) controller C can be distinguished. The configuration is similar to the feedback
connection T (P , C) of a system P and a controller C as previously displayed in
Figure 2.2. With the three actuation input signals and the three laser interferometer
output signals, the unknown plant Po is a multivariable (3×3) dynamical process.

The ability to add (digital) reference signals into the feedback loop of Figure 8.6
is directly implemented in the DSP. As such, the reference signals r1 and r2 serve two
important purposes.

• The reference signals r1 and r2 in Figure 8.6 can be used to command a move-
ment or step of the wafer chuck in a desired direction. In this way the reference
signals can be used to evaluate the performance of the feedback controlled posi-
tioning mechanism system by applying a reference signal r2 and a feedforward
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signal r1 to move the wafer chuck.

• To avoid problems associated to loss of (closed-loop) identifiability, see also
Assumption 3.2-2, the reference signals r1 and r2 are also used to excite the
feedback connection. During the gathering of time domain data for identification
purposes, both the reference signals r1 and r2 will be used.

Basically, the aforementioned feedback connection is used as an experimental
configuration for respectively the identification, control design and analysis of the
servo positioning mechanism. During identification, the reference signals are used
for (closed-loop) excitation purposes. To evaluate the performance of the servo
mechanism in terms of speed (throughput) and accuracy (yield), the reference sig-
nals are specified as a command reference signal r2 and a feedforward signal r1

(de Roover 1997). A more detailed discussion of the reference signals being used
during the experiments is postponed until Section 8.3.

8.2.4 Dynamics and modelling of the wafer stage

To increase the throughput and yield of the wafer stepper, the subsequent positioning
steps of the wafer stage during wafer illumination and exposure must be performed as
fast as possible. However, fast and aggressive movements of the wafer stage will excite
many of the resonance modes the mechanical positioning mechanism may exhibit. To
accurately control these residual vibrations, it is important to know the dynamical
behaviour of the servo positioning mechanism.

As such, modelling of the positioning mechanism is concerned with finding a model
that describes the dynamical behaviour of the wafer stage. The model is used to
predict the dynamical or time domain based relation between the input signal u and
the possibly disturbed output signal y as given in Figure 8.6. Basically, the plant Po

in Figure 8.6 is used to denote the unknown dynamical system to be modelled. Once
a model of Po is available, a feedback controller C can be (re)designed to control
the positioning mechanism and to reduce any residual vibrations that the mechanical
system may exhibit.

Dynamics of wafer stage

To give an indication of the dynamical behaviour and the resonance modes of the
positioning mechanism, an estimate of the frequency response of Po has been depicted
in the Bode amplitude plot of Figure 8.7. The experimentally obtained frequency
response of Po is denoted by Ĝ(ωj), where ωj denotes the frequencies along a pre-
specified frequency grid Ω = (ω1, ω2, . . . , ωl).

To anticipate on the experiment design discussed in Section 8.3.2, it can be men-
tioned here that the estimated frequency response Ĝ(ωj) is estimated by conducting
closed-loop experiments with periodic reference signals r1 and r2 around the center
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position of the wafer stage. By means of a closed-loop spectral analysis, a frequency
response estimate Ĝ(ωj) of the unknown plant Po is obtained in 300 points within
the frequency range between 10 and 1000 Hz. In closed-loop spectral analysis, a cross
spectrum between the reference signals and the input signal u and a cross spectrum
between the reference signals and the output signal y is estimated to come up with
an estimate of the frequency response between u and y. An amplitude Bode plot of
the data Ĝ(ωj) is depicted in Figure 8.7 by a dotted line.
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Fig. 8.7: Magnitude Bode plot of experimentally obtained frequency response Ĝ(ωj)
of the nine transfer functions of Po from actuator input u to laser interfer-
ometer output y in Figure 8.6.

Although only an amplitude Bode plot of Ĝ(ωj) has been given in Figure 8.7, the
data does give an indication of the dynamical behaviour of the nine transfer functions
between actuator input signal u = [ux uy uφ]T and the laser interferometer output
signal y = [yx yy yφ]T . The nine amplitude Bode plots are labelled in correspondence
with the ordering within the multivariable transfer function Po, when considering the
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map from the actuator input u to the laser interferometer output y.
It can be observed from Figure 8.7 that the low frequent behaviour (below 100 Hz)

of Po is dominated by a doubly integrating action. This is due to the fundamental
proportional relation between a force applied to a free rigid body in motion and its
acceleration. Due to the presence of a double integrator in the relation between force
(actuator input) and position (laser interferometer output), the positioning mecha-
nism is marginally stable and can not be operated in an open-loop configuration.
Closed-loop experiments with a controller C that yields a stabilizing feedback con-
nection T (Po, C) is inevitable.

Above the 200 Hz, several peaks in the frequency response estimate indicate the
resonance modes present in the mechanical system. The cross-talk or interaction (the
non-diagonal elements) are reasonable small compared to the diagonal elements in the
frequency response estimate. However, still dominantly present, the interaction terms
may influence the multivariable behaviour of the wafer stage considerably. Modelling
the (dominant) resonance modes and the interaction effects so as to design a (multi-
variable) feedback controller for attaining an improved servo positioning performance
is preferable and the aim of the application discussed in this thesis.

Some existing models of wafer stage

An approach to model the dynamical behaviour of the servo positioning mechanism
using an analytical procedure based on first principles has been presented in de Roover
and van Marrewijk (1995). In this approach, the interconnection of multiple rigid
bodies is used to derive a (non-linear, 18th order) dynamical model of the mechanical
servo system. A more elaborate discussion on the modelling of the wafer stage as a
multi body mechanical system can also be found in de Roover (1997).

First principles modelling provides physical insight in the behaviour of the wafer
stage and has explained the nature and cause of some of the resonance modes of the
mechanical system. Unfortunately, only a qualitative description of the dynamical
behaviour has been obtained (de Roover 1997). A more accurate qualitative descrip-
tion of the (linear) input/output behaviour of the mechanical system is preferable,
especially in the case when the model is to be used for the design of a feedback
compensator.

An alternative to first principles modelling of a mechanical system, as advocated in
this thesis, is the use of a system identification technique to find a linear model suitable
for control design. Especially for (fast) electromechanical system where the gathering
of data can be performed within a reasonable time, the use of a system identification
technique may be beneficial. Because high speed mechanical servo systems allow a
relatively fast and easy data acquisition, frequency domain identification techniques
are well suited for determining its dynamics. In that case, an estimated frequency
response can be used for curve fitting purposes to estimate a linear parametric model
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(Ljung 1993b, Bayard 1994, Pintelon et al. 1994, Kollár 1994). Due to the nature of
the high speed mechanical servo system, frequency domain based system identification
techniques will also be used throughout this chapter.
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Fig. 8.8: Magnitude Bode plot of experimentally obtained frequency response Ĝ(ωj)
(· · · ) and 18th order linear model P̂ (—) found by curve fitting from
(de Callafon et al. 1996a).

In de Callafon et al. (1996a), such a curve fit technique has been presented and
applied to the frequency response data depicted in Figure 8.7. By means of a weighted
two-norm minimization, a (linear, 18th order) model P̂ has been derived directly on
the basis of the frequency response data. For details one is referred to Appendix B
of this thesis where the computational aspects of the curve fitting procedure are
summarized. For illustrative purposes, the result obtained in de Callafon et al. (1996a)
has been depicted in the amplitude Bode diagram of Figure 8.8. As can be seen
from Figure 8.8, mostly the low frequent and dominant resonance modes have been
captured by the 18th order model.
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Although the above mentioned procedures of analytical and experimental mod-
elling have produced models for the wafer stage, the question wether or not the models
are suitable for control design has not been addressed. Furthermore, a quantification
of the error made during modelling or, alternatively, a characterization of an allowable
model perturbation so as to design a robust performing feedback controller has not
been presented yet.

As mentioned in this thesis, both items must be addressed to be able to design and
guarantee a robust and enhanced performing feedback controller for the wafer stage.
Both items are addressed in the model-based procedure of Procedure 2.5-4 where a
set of models P is estimated in view of the intended control design application. The
set of models has to be estimated such that it is suitable for subsequently designing
enhanced performing controllers.

8.3 Design Objectives and Experiments

8.3.1 Control Implementation and Specifications

Controlling the positioning mechanism of the wafer stage aims at minimizing the servo
error, while moving the wafer chuck as fast as possible. The servo error is indicated
in Figure 8.6 by the signal uc. The signal uc serves as an input signal for the feedback
controller C.

To be able to estimate a set of models that captures the dynamics of the wafer
stage and that is suitable to design an (improved) robust controller, first the specifica-
tions for the intended control application must be characterized. The specifications for
designing a controller, assumed to be reflected by a single control objective function
J(P , C) in Definition 2.2-13, will effect the way in which the control-relevant estima-
tion of a set of models P has to be performed. Before going into the details associated
with the identification of the set of models, first the control design specifications for
the design of an improved controller are outlined.

Reference step trajectory specification

The position steps that have to be performed with the wafer stage typically require
a displacement of 10−2 m, which is the approximate size of a single IC. The design
specification for the SIRE3 wafer stepper is to bring the servo error within a bound of
approximately 52·10−9 m (4 times the measurement resolution of 13.1875 nm) as soon
as possible after a positioning step has been carried out. This is due to the fact that
the wafer mounted on the wafer chuck must be kept in a constant position before a chip
can be illuminated and exposed on the surface of the wafer. Henceforth, controlling
the positioning of the wafer chuck requires the combined design of both a feedback
controller and the appropriate reference r2 and feedforward signal r1 (de Roover et
al. 1996, de Roover 1997). In this thesis however, the attention is focused on the
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identification of a set of models, denoted by P, to improve the design of the feedback
controller only.
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Fig. 8.9: Shape of reference signal r2 and feedforward signal r1 for a positioning step
in either x- or y-direction.

In order to compare feedback controllers designed on the basis of a set of models
P being estimated, for analysis purposes the signals r2 and r1 in Figure 8.6 are fixed
to some pre-specified desired trajectory. This pre-specified trajectory is based on the
dominating open loop dynamical behaviour of the wafer stage. As already indicated
in Figure 8.7 and Figure 8.8, the dominant open-loop behaviour is given by a double
integrator, relating the force generated by the linear motors to the position of the
wafer chuck. Based on this relatively simple model, r2 will denote a desired position
profile, whereas r1 denotes (a scaled) acceleration profile obtained by computing the
second derivative of r2. A typical shape of the reference signal r2 and the feedforward
signal r1 to position the wafer chuck in either the x- or y- direction over approximately
1cm is depicted in Figure 8.9.

In Figure 8.9, the position profile r2 is obtained by taking into account a maximum
jerk (derivative of acceleration) and a maximum speed of the wafer chuck. As a
result, the ramp of the position profile r2 consists of three parts. Firstly, a third order
polynomial for optimal acceleration at maximum jerk. Secondly, a linear interpolation
at maximum speed. Finally again a third order polynomial for optimal de-acceleration
at maximum jerk of the wafer chuck. The resulting acceleration profile r1 is the second
derivative of r2.
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Fig. 8.10: Servo error uc response to a step in x-direction (—) and required accuracy
interval (· · · ).

Application of both reference signals in either an x- or y-direction is labelled as a
(wafer) step respectively in x- or y-direction. Using these specified reference signals r1

and r2, a servo error pattern can be measured. Anticipating on the results mentioned
in Section 8.4.1, it can be mentioned here that in the initial experimental set up,
the feedback controller consists of three parallel PID controllers. The three PID
controllers are used to control the positioning in x- y- and φ-direction individually.
For this initial experimental set up, the servo error uc,x depicted in Figure 8.10 for a
step in the x-direction is obtained.

It can be observed from Figure 8.10 that the servo error uc,x is hardly within the
bounds of 52nm indicated by the dotted lines. According to Figure 8.9 the reference
step trajectory, specified by the signals r1 and r2, ends at approximately 0.12 s.
However, the servo error is still not settled at 0.25 s. Furthermore, the servo error
uc,x exhibits a low frequent vibration after the reference step trajectory has ended.
As a result, the settling time of the servo error needs to be improved. Both an
enhancement of the speed of decay and a reduction of the low frequent vibration of
the servo error is desired to improve the behaviour of the servo mechanism.

Weighting functions in control design

To accomplish a faster settling and an improved low frequent vibration suppression
of the servo error, the feedback controller Ci currently implemented in the initial
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experimental set up of the wafer stage needs to be improved. For that purpose, the
control design procedure mentioned in Section 5.4 will be used.

In the control design procedure, the control design specifications are captured by
a (single) control objective function J(P , C). As mentioned in Definition 2.2-13, the
(nominal) performance of the controller is measured by a weighted H∞ norm of the
T (P, C) matrix. The weighting functions U2 and U1 in (5.9) can be used to translate
the control design specifications into frequency dependent weightings and scalings
used during the controller design.

It can be observed from the results presented in chapter 6 that the weighting
functions U1 and U2 in the control objective function

J(P , C) = U2T (P, C)U1

are not only crucial during the design of a controller, but also for the identification of
a set of models P on which the controller needs to be designed. The control relevancy
of an estimated set of models P (or a nominal model P̂ only) is influenced by the
criterion on which the controller needs to be designed, see e.g. (6.8). As such, it
is important to make a statement on the weighting functions U2 and U1 to be used
during both the identification and the control design.

Remark 8.3-1 To accomplish an attenuation of the low frequent disturbances in the
servo error in Figure 8.10, it is desired to equip the controller with additional low
frequent gain, such as an integrator. For a fast settling of the servo error, it is
advisable to increase the bandwidth of the feedback loop. These design specifications
should be captured by the weighting functions U2 and U1.

As the orders of the weighting functions U2 and U1 directly influence the order of
the controller derived via the existing H∞ norm-based controller computation soft-
ware, it is advisable to keep the order of the weighting functions as low as possible.
Choosing such low order, multivariable, weighting filters U2 and U1 is a non trivial
task. To simplify the procedure of finding the filters the following simplifications have
been made.

• Firstly, the multivariable weighting functions U2 and U1 are chosen as simple
(block) diagonal weighting filters.

Although non-diagonal weighting filters allow more freedom in specifying con-
trol design specifications, diagonal weighting filters simplify the selection of U2

and U1 considerably. Furthermore, it will be shown here that the relatively
simple diagonal weighting filters allow enough freedom to design and improve
the performance of the feedback control system of the wafer stage.

• Secondly, the weighting filters U2 and U1 are related via

U1 = U−1
2 (8.2)
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and U2 is chosen according to the block diagonal structure

U2 =

[
Ul 0

0 U−1
r

]
(8.3)

where Ul and Ur are weighting filters to be specified.

The reason to choose U2 and U1 according to the above mentioned relation is to
link the choice of the weighting filters with a loop shaping control design procedure.
This is due to the following argument, see also Bongers (1994). It can be verified that
the minimizing value of the norm ‖U2T (P, C)U1‖∞ obtained by the minimization

min
C

‖U2T (P, C)U1‖∞ (8.4)

with U2 and U1 satisfying (8.2) and (8.3) is equivalent to the value obtained by a
so-called loop shaped minimization. For this to hold, the loop shaped minimization
is given by

min
Cl

‖T (Pl, Cl)‖∞ (8.5)

where Pl is given by a loop shaped weighted version of P

Pl = UlPUr (8.6)

and the controller Cl in (8.5) is related to the controller C in (8.4) via

C = UrClUl (8.7)

Modifying the system P via the loop shaping of (8.6), computing a controller Cl via
(8.5) and bringing the loop shape weighting filters back into the controller in (8.7) is
a loop shape control design procedure (Bongers 1994).

Unfortunately, the loop shape procedure increases the order of the controller C

being computed, since the loop shape weighting filters are used twice. Firstly, to loop
shape the system P , thereby increasing the order of the system Pl and the resulting
optimal controller Cl being computed. Secondly, to recompute the controller C from
Cl, thereby increasing the order of C again.

Instead of a loop shape design procedure, as mentioned in Section 5.4, a (direct)
minimization of the weighted T (P, C) matrix in (8.4) is used. Furthermore, a worst-
case optimization is performed by considering ‖U2T (P, C)U1‖∞ for all systems P

that lie in a certain set of models P . Although a loop shape control design procedure
will not be used here, the interpretation of Ul and Ur in (8.3) being loop shape
weighting function, simplifies the design and choice of the weighting filters U2 and U1

considerably.
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Taking into account the above mentioned simplifications of the weighting func-
tions U2 and U1, the control design specifications mentioned in Remark 8.3-1 are
implemented by the choice of the following (discrete-time) weighting filters.

Ul(q) =

⎡
⎢⎢⎣

3.5 · 10−4 −7.8 · 10−6 −2.5 · 10−5

−4.6 · 10−5 2.8 · 10−4 −8.4 · 10−5

−1.1 · 10−5 5.8 · 10−6 1.0 · 10−3

⎤
⎥⎥⎦

Ur(q) = 0.6

⎡
⎢⎢⎣

(q−0.9)(q−0.9)
(q−0.99999)(q−0.99) 0 0

0 (q−0.91)(q−0.91)
(q−0.99999)(q−0.99) 0

0 0 0.75 (q−0.95)
(q−0.9999)

⎤
⎥⎥⎦

(8.8)

Clearly, the shape of the weighting filters cannot be chosen without some prior knowl-
edge about the actual plant Po. For that purpose, the data and the relatively simple
18th order model depicted in Figure 8.8 were used to make a statement about the
weighting filters. The filters Ul and Ur have to be substituted in (8.2) and (8.3) to
get the closed loop weighting filters U2 and U1.

As mentioned above. the choice of Ul and Ur are based on the interpretation
of being loop shaping filters. With this interpretation, the filter Ul is chosen as a
constant matrix to (approximately) decouple the plant Po around the frequency of
90 Hz. The 90 Hz is chosen as the desired closed-loop bandwidth of the servo system
and Ul is found by computing the real-valued pseudo inverse of the frequency response
of the plant Po at 90 Hz, see also Maciejowski (1989). The diagonal filter Ur is chosen
to incorporate the control design specifications mentioned in Remark 8.3-1. As such,
discrete-time poles around 1 are introduced to improve the attenuation of low frequent
disturbances present in the servo error depicted in Figure 8.10. The scaling of the
transfer functions in Ur is used to attain a bandwidth of approximately 90 Hz.

8.3.2 Experiment Design

Experiments on the wafer stage have to be done in the closed-loop setting depicted
in Figure 8.6. Thereby, the role of the reference signals in Figure 8.6 is twofold.
As mentioned in Section 8.3.1, the reference signals r1 and r2 are used to specify
respectively an acceleration reference and a position reference profile to perform a
position step with the wafer stage. From an identification point of view, the reference
signals are used to excite the closed-loop system to avoid problems associated with
closed-loop identifiability issues.

Although the signals r1 and r2 can be used to conduct identification experiments,
mostly low frequent information is contained in the signals depicted in Figure 8.9.
To get enough information on the system in the frequency range from approximately
10 Hz till 1 kHz, different reference signals have to be used. Furthermore, the flexibility
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of the experimental set up and the speed of the mechanical system allow the use of
different reference signals that can be used to obtain a frequency response estimate
of the positioning mechanism.

To use the flexibility in specifying the experiment design in the experimental set
up, the reference signals are specified periodic signals that consist of a sum of sinusoids

r(t) :=
l∑

i=1

sin(ωit + φi) (8.9)

specified at predefined frequency grid Ω = {ω | ω = ωi, i = 1, 2, . . . , n}. The phase
shift φi of the sinusoids has to be chosen properly to avoid high signal amplitudes due
to the cumulative effect of adding multiple sinusoids.

A derivation of a sequence of phase shifts {φi}, i = 1, 2, . . . l that minimizes
supt |r(t)| is known as a so-called Schroeder-phased sum of sinusoids. Unfortunately,
six different reference signals1 have to be specified. In case all six reference signals are
based on the same frequency grid Ω, a Shroeder-phased sum of sinusoids will yield
six reference signals that are all the same.

To avoid complications associated to having six reference signals that are identical,
the phase shifts φi in the sequence {φi}, i = 1, 2, . . . l of (8.9) are chosen independently
from a uniform distribution over the interval (−π, π]. In this way, the six reference
signals are generated independently and uncorrelated and a random phased sequence
of sinusoids is generated with favourable properties (Pintelon et al. 1994).

For the identification experiments of the wafer stage, the following technical details
can be mentioned. The sampling of the continuous-time signals is set at a sampling
time ∆T = 3.0 · 10−4 s. The reference signals are specified as a periodic signal having
a period of 2048 data points or T ≈ 0.614 s. As a result, the frequency resolution
∆f of the frequencies that can be distinguished in the periodic signal is fixed at
∆F = 1/T ≈ 1.628 Hz. The periodic signal is a random phased sequence of 200
sinusoids. The frequency grid Ω of the 200 sinusoids is distributed (approximately
logarithmically) between 9∆f ≈ 14.65 Hz and 714∆f ≈ 1162.11 Hz.

To give an indication of the reference signals being used, a time domain plot and
the spectrum in the frequency range between 100 Hz and 1 kHz of one of the six
references signals is given in Figure 8.11. It can be seen from the time domain plot
that the random phased sequence of 200 sinusoids does not exhibit a high signal
level due to the cumulative effect of adding multiple sinusoids. Although the signal
looks “noisy”, the spectrum is very well defined for the 200 frequency points in the
frequency grid Ω.

With the reference signals described above, three different experiments are per-
formed with independently generated random phased sequence of 200 sinusoids having
the same frequency grid Ω. The experiments are all performed in a closed-loop and

1Both r1 and r2 consist of three reference signals, respectively in x-, y- and φ-direction.
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Fig. 8.11: Time domain plot (left) and spectrum (right) of the reference signal r1 in
x-direction configured as a sum of 200 sinusoids with random phase.

for averaging purposes, a time span of 50 periods of the periodic signal is used to
capture the signals u and y depicted in Figure 8.6 for each experiment. With the
knowledge of the controller used during the closed-loop experiments, the data {u, y}
being measured and the weighting functions U2 and U1 mentioned in (8.2), (8.3) and
(8.8) the control relevant identification of a set of models Pi commences.

8.4 Initiating the Suboptimal Design

8.4.1 The initial controller

In the initial experimental set up, the feedback controller depicted in Figure 8.6 is real-
ized by three parallel PID controllers to control the positioning in x- y- and φ-direction
individually. Following the notation as introduced in Procedure 2.5-4, this controller
is denoted by Ci and is the initial controller to be used in the subsequent procedure of
closed-loop identification and model-based controller design. For reference purposes,
an amplitude Bode plot of the initial controller Ci is given in Figure 8.12.

Although the feedback controller can be designed as a multivariable controller,
it can be seen from Figure 8.12 that the initial controller Ci only contains diagonal
elements. Evidently, the aim is to redesign the controller Ci to attain an improved
feedback controller Ci+1. The design of the feedback controller is done on the basis
of a set of models Pi being estimated.

8.4.2 Identification of a nominal model

To start the estimation of a set of models Pi, first a nominal model P̂i is estimated. As
mentioned in Section 6.1.3, the control relevant estimation of a set of models is split
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Fig. 8.12: Magnitude Bode plot of initial controller Ci used for closed loop experi-
ments.

up in two parts. Using the fractional approach presented in chapter 4 to deal with
data obtained under closed-loop conditions, first a nominal model P̂i is estimated that
should satisfy T (P̂i, Ci) ∈ RH∞. Subsequently, using the same fractional approach,
a model uncertainty is estimated to complete the set of models.

Access to a right coprime factorization

The fractional approach to closed-loop identification presented in chapter 4 of this
thesis begins with the construction of a filter F to access a rcf of the plant Po. For
that purpose, the data {u, y} needs to be filtered by a filter F that should satisfy
the conditions mentioned in Lemma 4.3-5. With the knowledge of the controller Ci

used during the experiments, the filtered signal x given in (4.24) can be generated.
Subsequently, a rcf (No,F , Do,F ) of the plant Po can be accessed, as mentioned in
Corollary 4.3-10.
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According to Corollary 4.3-9, an auxiliary model Px can be used to construct such
a filter F to access a rcf of the plant Po. With the knowledge of the existing 18th
order model depicted in Figure 8.8, such an auxiliary model Px is readily available.
The 18th order model Px satisfies T (Px, Ci) ∈ RH∞ and can be used to construct
the filter F . Computing a nrcf (Nx, Dx) of the model Px and using the knowledge of
the controller Ci, a filter F and the signal x can be constructed. It should be noted
that the signal x satisfies

x = F
[

C I
] [ r2

r1

]
.

With the signals r1 and r2 specified as periodic reference signals, the signal x is again
a periodic input signal.

As mentioned in Proposition 4.3-11, the fractional approach enables one to con-
sider the map from the closed-loop data x to col(y, u) as an open-loop map. This
open-loop map enables the access to a rcf (No,F , Do,F ) of the plant Po. Due to the
periodic nature of the signals and the amount of data obtained from the high speed
mechanical positioning mechanism, it is obvious and convenient to represent the data
in an estimated frequency response.

Due to the open-loop nature of the map from x to col(y, u), a spectral estimate
can be obtained straightforwardly. An amplitude Bode plot of the spectral estimate
(N̂o,F (ωj), D̂o,F (ωj)) of the rcf (No,F , Do,F ) of the plant Po that is accessible on the
basis of the filter F being constructed is depicted in Figure 8.13. The ordering of the
frequency responses is in accordance with the following remark.

Remark 8.4-1 The map from x to col(y, u) is given by the rcf (No,F , Do,F ) where
No,F and Do,F are stacked row wise, see Corollary 4.3-10. Since the plant Po repre-
senting the wafer stage has three inputs and three outputs, the stacked configuration
of the rcf (No,F , Do,F ) has three inputs and six outputs. As a result, the top nine
amplitude Bode plots in Figure 8.13 indicate a spectral estimate of N̂o,F (ωj) of the rcf

No,F , while the bottom nine transfer functions denote a spectral estimate D̂o,F (ωj) of
Do,F .

For illustration purposes, only the amplitude Bode plot of the frequency domain
data (N̂o,F (ωj), D̂o,F (ωj)) is given in Figure 8.13. The complex frequency response
data (N̂o,F (ωj), D̂o,F (ωj)) can be used to estimate a factorization of the nominal
model P̂i.

Estimating a nominal factorization

For the control relevant estimation of a factorization (N̂i, D̂i) of the nominal model
P̂i, the optimization stated in (6.8) must be performed. As motivated in Section 6.2.4,
frequency domain data is helpful for the approximation of the H∞ norm criterion by
a point wise evaluation of (6.8).
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Fig. 8.13: Magnitude Bode plot of experimentally obtained frequency response
(N̂o,F (ωj), D̂o,F (ωj)) of the rcf (No,F , Do,F ) of the plant Po.
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However, Assumption 6.2-9 states that the (possibly disturbed) frequency domain
samples (N̂o,F (ωj), D̂o,F (ωj)) must be chosen over a frequency grid Ω which is dense
enough to represent the frequency response of the rcf (No,F , Do,F ). With the fre-
quency grid of 200 data points in the range from approximately 14 Hz till 1.2 kHz
this condition is assumed to be satisfied for the wafer stage. Using the point wise
evaluation of the maximum singular value along the frequency grid Ω, the optimiza-
tion stated in (6.8) is replaced by the optimization problem given in (6.33). For the
optimization, use is made of the frequency response estimate (N̂o,F (ωj), D̂o,F (ωj))
given in Figure 8.13, the knowledge of controller Ci used during the experiments and
the weighting functions U2, U1 given in (8.2), (8.3) and (8.8).

Even for a fixed filter F , (6.33) is non-convex min-max optimization problem that
requires a sophisticated numerical optimization. A min-max optimization routine
found in commercially available software (MatLab 1994) is used for that purpose. To
ensure stability of the nominal rcf being estimated during the optimization, the factor-
ization (N(θ), D(θ)) to be estimated is parametrized accordingly to the parametriza-
tion discussed in Section 6.2.3.

To find an initial estimate of a rcf to start up the non-linear min-max optimiza-
tion, first a straightforward least-squares curve fit routine is applied to the frequency
domain data (N̂o,F (ωj), D̂o,F (ωj)). During the least-squares curve fitting, a polyno-
mial based parametrization is used to parametrize the rcf (N(θ), D(θ)). As already
indicated in (6.22), the rcf (N(θ), D(θ)) is parametrized according to[

N(q, θ)

D(q, θ)

]
= B(q−1, θ)A−1(q−1, θ)

and the iterative procedure of least-squares optimization presented in de Callafon et
al. (1996a) is used to solve the least-squares curve fitting problem. Computational
details can also be found in Appendix B of this thesis. Subsequently, the stable
estimate (N (θ̂), D(θ̂)) of the least squares optimization is reparametrized in the state
space parametrization mentioned in Section 6.2.3 and used as an initial estimate for
the non-linear min-max optimization.

The final result of the optimization has been depicted in the amplitude Bode plots
of Figure 8.14. For reasons of completeness, the phase bode plot are also given in
Figure 8.15. For comparison with the data being measured, the plots of the frequency
response data (N̂o,F (ωj), D̂o,F (ωj)) have also been given in these figures.

The resulting nominal rcf (N̂i, D̂i) being estimated is a 27th order factorization
and the nominal model P̂i = N̂iD̂

−1
i satisfies T (P̂i, Ci) ∈ RH∞. The order of the

nominal rcf is determined by estimating several rcf’s of different order. The 27th
order rcf was able to find a low value of the criterion (6.33) at the price of finding a
reasonably low complexity model.

The Bode plots depicted in Figure 8.14 and Figure 8.15 give insight how the esti-
mated factorization (N̂i, D̂i) compares with the data (N̂o,F (ωj), D̂o,F (ωj). Addition-
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ally, a Bode plot of the nominal model P̂i = N̂iD̂
−1
i being estimated can be compared

with the frequency domain data Ĝ(ωj). The frequency domain data Ĝ(ωj), as given
in Figure 8.7, can be recomputed from the data (N̂o,F (ωj), D̂o,F (ωj)) via

Ĝ(ωj) = N̂o,F (ωj)D̂−1
o,F (ωj).

To complete the comparison of the frequency domain data with the nominal fac-
torization being estimated, a Bode plot of P̂ (ωj) and Ĝ(ωj) has been depicted in
Figure 8.16.

From Figure 8.14 and Figure 8.15 it can be observed that the diagonal elements
of the data of N̂i(ωj) and D̂i(ωj) has been fitted reasonably well. However, the
non-diagonal elements have not been fitted very well. This is due to the fact that
the non-diagonal elements are smaller in amplitude. Furthermore, the non-diagonal
elements currently do not have a significant contribution to the criterion

σ̄

{
U2(ωj)

([
N̂o,F (ωj)

D̂o,F (ωj)

]
−
[

N(θ, ωj)

D(θ, ωj)

])
F (ωj)

[
Ci(ωj) I

]
U1(ωj)

}
(8.10)

for which the maximum over the frequency grid

Ω = (ω1, . . . , ωj , . . . , ωl), with 0 ≤ ω1 < · · · < ωj < · · · < ωl ≤ π

needs to be minimized according to (6.33). As mentioned before, the controller Ci

used in (6.33) or (8.10) denotes the controller currently implemented on the plant
Po. At the current stage, the controller Ci only consists of the three SISO parallel
placed PID controllers depicted in Figure 8.12. Therefore, the controller Ci has only
diagonal terms that influence the optimization of (6.33), giving an explanation to the
good fit of the diagonal terms of the data.

To give an indication of the result of the 27th order nominal estimate (N̂i, D̂i)
in terms of the criterion mentioned in (8.10), a plot of (8.10) has been depicted in
Figure 8.17. With the frequency domain data (N̂o,F (ωj), D̂o,F (ωj)) and the 27th order
nominal estimate, the criterion can be evaluated along the frequency grid Ω. From
Figure 8.17 it can be observed that the optimization (6.33) has tried to minimize the
maximum of (8.10) over the frequency grid Ω.

8.4.3 Completing the set of models

The set of models, used to reflect the limited knowledge of the plant Po, is structured
according to

P(N̂ , D̂, Nc, Dc, V̂ , Ŵ ) := {P | P = (N̂ + Dc∆R)(D̂ − Nc∆R)−1

with ∆R ∈ RH∞ and ∆ := V̂ ∆RŴ satisfies ‖∆‖∞ < γ−1}
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Fig. 8.17: Evaluation of criterion (8.10) over the frequency grid Ω.

and has been mentioned previously in Definition 5.2-4. As mentioned in Remark 5.2-7,
a nominal factorization (N̂ , D̂) and weighting functions (V̂ , Ŵ ) are needed to com-
plete the set of models. The pair (Nc, Dc) is assumed to be known and is found by
computing a rcf of the (known) controller that is being used in the feedback connection
of Figure 8.12 during the closed-loop experiments.

The results on the estimation of a nominal factorization (N̂i, D̂i) of a nominal
model P̂i = N̂iD̂

−1
i that satisfies T (P̂i, Ci) ∈ RH∞ have been presented in the pre-

vious section. The factorization (N̂i, D̂i) is used as the nominal factorization for the
set of models Pi. Hence, to complete the characterization of this set of models Pi,
frequency dependent weighting functions (V̂i, Ŵi) that upper bound the stable model
perturbation ∆R have to be determined. As indicated in the estimation procedure
depicted in Section 6.3, first a frequency dependent (non-parametric) upper bound
∆̄R(ω) for the unknown, but stable and bounded model perturbation ∆R(e iω) is
being estimated. Subsequently, low order frequency dependent weighting functions
(V̂ , Ŵ ) are determined that upper bound frequency dependent (non-parametric) up-
per bound ∆̄R(ω). The results are presented next.

Upper bound for the model perturbation

To estimate a frequency dependent upper bound ∆̄R(ω) for the unknown, but stable
and bounded model perturbation ∆R, the signals x and z mentioned in Corollary 6.3-1
are needed. These signals x and z can be obtained by filtering of closed-loop measured
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signals. The filtering is given by the filter operations

x := (D̂i + CiN̂i)−1
[

Ci I
] [ y

u

]

z := (Dc,i + P̂iNc,i)−1
[

I −P̂i

] [ y

u

] (8.11)

and the resulting signals x and z yield access to the stable model perturbation ∆R

via
z = ∆Rx + v (8.12)

where v is uncorrelated with x. According to Corollary 6.3-1, ∆R is then given by

∆R = Dc,i
−1(I + PoCi)−1(Po − P̂i)D̂i (8.13)

in which the (unknown) plant Po, the nominal model P̂i and the controller Ci play a
role. Additionally, it can be observed that both the factorization (N̂i, D̂i) of the nom-
inal model and the factorization (Nc,i, Dc,i) of the controller play a role in “shaping”
the model perturbation ∆R. The same information of these factorizations can also
be found in the construction of the signals x and z in (8.11).

Additionally, the knowledge of the controller Ci and a rcf (Nc,i, Dc,i) of Ci is
needed to construct respectively the signals x and z. As the factorization of the
controller is not unique, a choice is made to compute a nrcf (Nc,i, Dc,i) of the controller
Ci. Subsequently, the signals x and z in (8.11) can be created and a spectral estimate
of ∆R in (8.13) can be computed.

The spectral estimate of ∆R is displayed in Figure 8.18 as a dotted line for refer-
ence purposes. It should be noted that the exact knowledge of ∆R is not being used to
characterize a set of models P . The aim is to estimate a frequency dependent upper
bound ∆̄R(ω) of ∆R that guarantees Po ∈ P to hold with a specific probability α.
This is done by the probabilistic uncertainty estimation routine of Hakvoort (1994)
that has been summarized in Section 6.3.2.

As ∆R is a multivariable transfer function, the uncertainty estimation routine is
performed three times for a row-wise evaluation of ∆R. An upper bound on the first
row of ∆R is found by estimating upper bounds for the three transfer functions from
the three dimensional input signal x to the first signal in the three dimensional output
signal z. Analogously, upper bounds for the transfer functions in the second and third
row of ∆R are found, by considering respectively the second and the third signal in
the three dimensional output signal z. The discussion below presents the procedure
being followed for each row-wise evaluation of ∆R, but the final result consists of nine
different frequency dependent upper bounds for the transfer functions in ∆R.

Additional prior information on ∆R must be introduced in order to be able to
estimate a frequency dependent upper bound ∆̄R(ω) of ∆R. Similar to the listing
presented in Section 6.3.2, the following prior information is used.
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Fig. 8.18: Magnitude Bode plot of spectral estimate of model perturbation ∆R given
in (8.13).

• To be able to write ∆R in terms of a series expansion

∆R(q) =
∞∑

k=0

RkBk(q)

and to gain information on the degree of stability of ∆R, first a (high order) LS-
estimation is performed on the spectral estimate of ∆R depicted in Figure 8.18.
The LS-estimation is performed with the frequency identification techniques
presented in Appendix B and provides information on the poles of ∆R. Subse-
quently, the information obtained on the dynamics of ∆R can be used to con-
struct a set of orthonormal basis functions Bk(q) for k = 0, . . . ,∞ (Heuberger
et al. 1995). Additionally, an an upper bound R̄k

|Rk| ≤ R̄k, for k = 0, . . . ,∞
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for the coefficients Rk is obtained. Using these estimates, the prior information
needed

R̄k ≤ Mρk, ∀k > k�

can be formulated in terms of the parameters M ≥ 0 and ρ < 1.

• The prior assumption
|x(t)| ≤ x̄, ∀t ≤ 0

needed to bound the effects of initial conditions, is readily obtained. As in-
dicated in Section 8.3.2, the reference signals r1 and r2 are defined as peri-
odic signals. Using the algebraic relation r1 + Cr2 = u + Cy mentioned in
Corollary 3.2-4, it can be seen that x in (8.11) is also a periodic signal. Due
to the periodic nature of the input signal, the effect of initial conditions can be
eliminated and x̄ is set to 0.

• As mentioned above, a probabilistic uncertainty bounding identification is used.
For that purpose, the assumption on the noise v in (8.12) or (6.37) is in accor-
dance with Assumption 6.3-2.

As mentioned in Section 6.3, for the estimation of (probabilistic) uncertainty
bounds, the intermediate set of models S in (6.45) is constructed. The intermedi-
ate set S is determined by a bound β on the first derivative of the frequency response
of ∆R and a set of convex (probabilistic) frequency response regions P(ωj) defined
along a frequency grid Ω. With the above mentioned prior information and the results
mentioned in Lemma 6.3-4 and Lemma 6.3-5, a bound β on the first derivative of the
frequency response of ∆R and a set of rectangular frequency response regions P(ωj)
is determined. The frequency response regions P(ωj) are computed around a ORT-
FIR based parametric estimate ∆̂R(e iωj ) that acts as a “carrier” of the uncertainty
regions P(ωj). For the computation of the regions P(wj), the same frequency grid Ω
is used, as mentioned during the experiment design in Section 8.3.2 and consists of
200 points distributed (approximately logarithmically) between 10 Hz and 1200 Hz.

To give an indication of the convex frequency response regions P(ωj) being es-
timated, in Figure 8.19 the regions P(ωj) for the (1, 1) element of the model per-
turbation ∆R have been depicted. To produce a clear picture, only 25 frequency
points ωj from the frequency grid Ω have been used to generate the plot given in
Figure 8.19. It should be noted that regions P(ωj) have been estimated for all fre-
quency points ωj ∈ Ω and for all nine elements of the model perturbation ∆R. A plot
of the remaining frequency response regions P(ωj) is omitted, as similar figures are
obtained.

The real and imaginary bounds of the rectangular shaped regions P(ωj) in
Figure 8.19 hold with a probability of 99% each. It can be seen from this figure that,
similar to Figure 6.1, rectangular shaped regions are estimated for each frequency
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Fig. 8.19: Estimated rectangular uncertainty regions P(ωj) for the (1, 1) element of
∆R(e iω).

point ωj within the frequency grid Ω. Furthermore, most of the regions P(ωj) con-
tain the origin, indicating that the model perturbation ∆R(e iω) is small; the real and
imaginary uncertainty bounds of P at a frequency ωj ∈ Ω are larger than ∆R(e iωj )
itself.

Once β and P(ωj) for each of the elements of ∆R are available, a frequency depen-
dent upper bound ∆̄R(ω) for the model perturbation ∆R in (8.13) can be computed.
This is done by evaluating the corner points of the rectangular frequency response
regions P(ωj) and computing the largest distance to the origin. This yields an am-
plitude bound ∆̄R(ωj) at the frequency points ωj ∈ Ω. Subsequently, the bound β

on the first derivative of the frequency response of ∆R can be used to interpolate to
form a continuous (non-parametric) frequency dependent error bound ∆̄R(ω). This
gives a clear overview of the frequency dependent character of the model uncertainty
or model perturbation ∆R.

The results on the estimation of a frequency dependent (non-parametric) upper
bound ∆̄R(ω) for the unknown, but stable and bounded model perturbation ∆R(e iω)
have been depicted in Figure 8.20. For reference purposes, the spectral estimate of
∆R has also been depicted in this figure.

It should be noted that ∆̄R(ω) is an estimated and guaranteed upper bound for
the model perturbation ∆R(e iω) that holds with a certain probability, provided that
the prior information being introduced is consistent. The probability is determined
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Fig. 8.20: Magnitude Bode plot of spectral estimate of model perturbation ∆R given
in (8.13) (· · · ) and estimated probabilistic frequency dependent amplitude
upper bound ∆̄R(ω) (—).

by the probability chosen when computing the convex frequency response regions
P(ωj) as depicted in Figure 8.19. The (validated) prior information has been listed
on Page 227.

Parametric upper bound

It can be seen from Figure 8.20 that the uncertainty estimation routine has found a
frequency dependent upper bound ∆̄R(ω) that gives information on the size and shape
of the model perturbation ∆R(e iω). This information can be used to find parametric
frequency dependent weighting functions (V̂i, Ŵi) that upper bound the estimated
model perturbation ∆̄R(ω). With the estimation of these parametric weighting func-
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tion, the set of models Pi given by

Pi(N̂i, D̂i, Nc,i, Dc,i, V̂i, Ŵi) = {P | P = (N̂i + Dc,i∆R)(D̂i − Nc,i∆R)−1

with ∆R ∈ RH∞ and ∆i := V̂i∆RŴi satisfies ‖∆i‖∞ < γi
−1}

(8.14)

can be completed to perform performance robustness analysis and the design of an
improved robust controller Ci+1. For that purpose, the set of models Pi is rewritten
into the standard LFT representation

Pi = {P | P = Fu(Q, ∆) with ∆ ∈ RH∞, ‖∆‖∞ < γ−1 and

Q =

[
Ŵi

−1
0

0 I

] [
Q̄11 Q̄12

Q̄21 Q̄22

] [
V̂i

−1
0

0 I

]
with

[
Q̄11 Q̄12

Q̄21 Q̄22

]
=

[
D̂−1

i Nc,i D̂−1
i

(Dc,i + P̂iNc,i) P̂i

] (8.15)

as mentioned in Corollary 5.2-8. The entries in the coefficient matrix Q in (8.15) are
the same entries mentioned in (8.14) to complete the set of models Pi.

It should be noted that the (probabilistic) uncertainty bounding identification has
resulted in a frequency dependent upper bound ∆̄Rij(ω) for each element (i, j) of the
model perturbation ∆R. It was already observed in Section 5.2.5 that such detailed
information can be used to find a scalar stable and stably invertible weighting filter
V̂ ij that bounds each element (i, j) of ∆̄R(ω) separately via

‖V̂ ij∆̄Rij‖∞ ≤ 1. (8.16)

As indicated in Remark 5.2-6, the notation involving the pair (V̂i, Ŵi) was used to keep
track of the (possible) multivariable nature of the model perturbation ∆R. However,
in case detailed information on the upper bound ∆̄Rij(ω) of each element of ∆R is
available, it is beneficial to represent the model perturbation ∆R and the weighting
functions in a diagonal form.

As previously indicated in Section 5.2.5, the unweighted coefficient matrix Q̄ in
(8.15) can be easily modified to account for a diagonal form of the model perturbation
∆R. This modification is found by multiplying Q̄11 with two scaling matrices T1 and
T2 to obtain

Q̄ =

[
T2Q̄11T1 Q̄12

Q̄21 Q̄22

]

as the unweighted coefficient matrix Q̄. Since ∆̄R(ω) consists of 9 scalar elements
(3 × 3), the scaling matrices T1 and T2 are given by

T1 =

⎡
⎢⎢⎣

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

⎤
⎥⎥⎦ , T2 =

⎡
⎢⎢⎣

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

⎤
⎥⎥⎦

T
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to be able to deal with the 9 elements of ∆R in diagonal form.

Compatible with the diagonal form diag{∆̄Rij(ω)} of the model perturbation
∆̄R(ω), only a stable and stably invertible diagonal weighting filter V̂i needs to be
estimated and Ŵi can be omitted. In this case, the weighting filter V̂i has a simi-
lar diagonal form and is denoted by diag{V̂ ij}. The diagonal elements V̂ ij are the
scalar stable and stably invertible weighting filters that bound each element ∆̄Rij(ω)
separately.

Estimating the scalar stable and stably invertible weighting filters V̂ ij is done via
a spectral overbounding (the LPSOF algorithm) discussed in Section 6.3.3. The fre-
quency dependent data ∆̄R(ω) obtained from the uncertainty bounding identification
is used as an input for the LPSOF algorithm and nine different weighting functions
V̂ ij are estimated to find a parametric bound for each ∆̄Rij(ω) separately.

It is tempting to estimate high order weighting functions V̂ ij in order to get a
tight parametric upper bound of the frequency domain data ∆̄Rij(ω). However, the
complexity of the weighting functions V̂ ij directly enters into the coefficient matrix

Q =

[
T2Q̄11T1 Q̄12

Q̄21 Q̄22

] [
diag{V̂ ij}−1 0

0 I

]
(8.17)

that is used in the LFT representation of the set of models. Computation of an
enhanced performance and robust controller is done on the basis of this LFT repre-
sentation. As motivated before, computational problems and the application of high
order controllers can be avoided by limiting the order of the coefficient matrix Q.
This has been the motivation for estimating a relatively low complexity factorization
(N̂i, D̂i). Along the same lines, the order of the weighting functions V̂ ij also need to
be limited.

With the LPSOF algorithm, relatively low order, stable and stably invertible
weighting function V̂ ij have been estimated to bound the nine elements of the fre-
quency dependent upper bound ∆̄R(ω). The results are plotted in the amplitude Bode
diagram of Figure 8.21. The choice for the order of the different weighting functions
V̂ ij is determined by inspecting the (minimum) value for δ(θ) in (6.65) during the
optimization used in the LPSOF algorithm. Additionally, the order of each weighting
function V̂ ij has been limited to 8 to avoid computational complexities. With these
order choices, the total order of the (diagonal) weighting function diag{V̂ ij} becomes
48, being the sum of the orders of the scalar weighting functions V̂ ij computed with
the LPSOF algorithm.

With the knowledge of a nrcf (Nc,i, Dc,i) of the controller Ci and the estimates of
a nominal factorization (N̂i, D̂i) and (diagonal) weighting filter diag{V̂ ij}, the set of
models Pi has been completed.
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Fig. 8.21: Magnitude Bode plot of stable and stably invertible weighting filters
V̂ ij(e iω) (- -) and estimated probabilistic frequency dependent amplitude
upper bound ∆̄R(ω) (—).

8.5 Enhancing the Performance Robustly

8.5.1 Robust controller design

Given the estimated set of models Pi, performance robustness can be evaluated and an
enhanced robust controller can be designed. As such, the estimated set of models Pi is
used to represent the (limited) knowledge of the plant Po that is currently available.
This knowledge is used to actually evaluate the performance of the controller Ci

currently implemented on the plant Po and to redesign the feedback control.

Performance evaluation

To be able to compare the performance of a newly designed controller Ci+1 with the
performance of the controller Ci, the performance of the controller Ci, implemented
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on the plant Po, should be evaluated a posteriori. As the plant Po is unknown, the
estimated set of models Pi is used to represent the knowledge currently available on
the plant Po to evaluate this performance.

It should be noted that stability robustness does not have to be evaluated for the
controller Ci. The knowledge of the controller Ci has been used in the construction
of the set of models Pi. As indicated in Remark 5.3-7, the set of models Pi has been
constructed in such a way that stability robustness is satisfied.

To characterize the performance of the controller Ci, the H∞ norm

‖J(P , Ci)‖∞ = ‖U2T (P, Ci)U1‖∞

needs to be evaluated for all models P ∈ Pi. As previously indicated in (5.11), robust
performance is satisfied when

‖J(P, Ci)‖∞ = ‖U2T (P , Ci)U1‖∞ ≤ γi (8.18)

for all P ∈ Pi. The value of γi indicates the level of (robust) performance of the
controller Ci, applied to all models P ∈ Pi. With the plant Po ∈ Pi, the value of γi

gives an indication of the performance of Ci. This performance level can be compared
with the performance γi+1 of a new controller Ci+1 that will be specifically designed
on the basis of the set of models Pi to achieve

‖U2T (P, Ci+1)U1‖∞ ≤ γi+1 < γi ∀P ∈ Pi

as mentioned in (2.20).
For the evaluation of (8.18), the result mentioned in Lemma 5.3-2 and the struc-

tured singular value µ{M} is being used, see also Corollary 5.3-9. The weighting
functions U2 and U1 are given in (8.2), (8.3) and (8.8). The set of models Pi is
given in an LFT representation with the coefficient matrix Q given in (8.15) and
(8.17). Subsequently, the structured singular value mentioned in Corollary 5.3-9 can
be evaluated and the result has been plotted in Figure 8.22.

The structured singular value of µ{M(e iω)} has been plotted point wise over the
frequency domain range between 10 and 1000Hz. This range incorporates the closed-
loop bandwidth and most of the closed-loop phenomena that might be of interest.
The maximum value of µ{M(e iω)}, occuring in this frequency range, indicates the
performance robustness margin γi. For the controller Ci, applied to the set of mod-
els Pi, the value of γi is found to be 7.53, as can be seen from the dotted line in
Figure 8.22.

As the weighting functions V̂ ij in (8.16) have been chosen to normalize the model
uncertainty ∆̄Rij , the controller Ci applied to the set of models Pi does not satisfy
performance robustness. In that case, µ{M(e iω)} < 1 as the weighting functions are
chosen to normalize (γ = 1) the uncertainty. Lowering the value of γi to improve
performance (robustness) is the task of a newly to be designed controller Ci+1.
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Fig. 8.22: Computation of structured singular value µ{M(e iω)} for the controller Ci

applied to the set of models Pi.

Design of controller

The initial controller Ci consists of three parallel PID controllers. As indicated in the
previous section, the controller Ci can and needs to be improved. To redesign the
controller, again the estimated set of models Pi is used.

For the design of the controller Ci+1, available software for H∞ controller synthesis
is being used. For that purpose, the feedback connection T (P , C) of a controller C

with a model P ∈ Pi is represented in a lower fractional transformation Fl(G, C). The
entries in the coefficient matrix G of the lower fractional transformation Fl(G, C) are
the same variables needed to construct the set of models Pi and also contains the
weightings U2 and U1 associated to the performance characterization. An expression
for the transfer function of the coefficient matrix G can be found in Corollary 5.4-1.
The controller Ci+1 is computed via µ-synthesis using a D-K iteration.

In general, the complexity of a controller Ci+1 generated by a µ-synthesis will
be the higher that the complexity of the coefficient matrix G being used. As G

contains all the entries of the set of models Pi and the weighting functions U2 and
U1, the order of the controller Ci+1 needs to be reduced significantly in order to be
implementable on the DSP. For that purpose, closed-loop reduction tools (Ceton et
al. 1993, Wortelboer 1993) are used to reduce the order of the designed controller
Ci+1 to an acceptable complexity for implementation, without hardly sacrificing any
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Fig. 8.23: Magnitude Bode plot of newly designed controller Ci+1 (—) compared
with initial controller Ci(- -).

closed-loop performance. After reduction, the designed controller Ci+1 is a stable
controller, having a McMillan degree of 11. An amplitude Bode plot of the newly
designed controller Ci+1 can be found in Figure 8.23.

Compared to the (initial) controller Ci it can be seen that Ci+1 is a multivari-
able controller. Furthermore, the controller Ci+1 has additional dynamics to account
for the modelled (uncertain) mechanical resonance modes of the plant Po. Control-
ling these mechanical resonance modes in the wafer stage will yield better control
performance and enhanced robustness. This will be clarified in the next section.

8.5.2 Evaluation of performance

Before implementing the controller Ci+1 in a feedback connection with the plant Po,
the performance and stability of the feedback connection T (Po, Ci+1) needs to be
verified a priori. The a priori performance evaluation can be carried out with the
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estimated set of models Pi, that represent the limited knowledge of the plant Po.
Similarly to the a posteriori performance evaluation, this is done by evaluating

‖J(P , Ci+1)‖∞ = ‖U2T (P, Ci+1)U1‖∞

for all models P ∈ Pi. In this case, stability robustness for the controller Ci+1 also has
to be checked. Both stability and performance robustness of Ci+1 can be evaluated
with the structured singular value µ{M}, see also Corollary 5.3-6 and Corollary 5.3-9.
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Fig. 8.24: Computation of structured singular value µ{M(e iω)} for the controller Ci

(- -) and the controller Ci+1 (—) applied to the set of models Pi.

To compare the performance (robustness) of the newly designed controller Ci+1,
in Figure 8.24 the structured singular value of µ{M(e iω)} has been plotted point wise
over the frequency domain range between 10 and 1000Hz. For both the controller Ci

and Ci+1 the resulting structured singular value µ{M(e iω)} has been plotted and it
can be seen that the controller Ci+1 has improved the performance robustness and
satisfies

‖U2T (P, Ci+1)U1‖∞ ≤ γi+1 < γi

for all models P ∈ Pi.
For presentation purposes, the weighting functions are scaled to normalize the

uncertainty. It can be seen from Figure 8.24 that performance robustness cannot
be guaranteed for the controller Ci+1, as γi+1 �< 1. However, stability robustness
is guaranteed and Ci+1 has a guaranteed improved performance compared to Ci.



238 Identification and Control of a Wafer Stage

Implementation of Ci+1 on the plant Po also proves the improved performance of the
controller Ci+1.

Application of the step reference signals depicted in Figure 8.9 in an x-direction
yields a (wafer) step in x-direction. Using the newly designed feedback controller Ci+1

and the specified reference signals r1 and r2, a servo error pattern can be measured.
With the controller Ci+1 implemented on the plant Po, the servo error uc,x depicted
in Figure 8.25 is obtained.
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Fig. 8.25: Servo error uc response to a step in x-direction using controller Ci+1 (—)
and using controller Ci (- -) and required accuracy interval (· · · ).

Although there is a slight improvement in the performance of the feedback system
due to reduction and increased speed of the servo error, one can aim for additional
performance improvement. The newly designed controller Ci+1 is now implemented
on the plant Po and provides new closed-loop data to model the dynamics of the plant
Po.

8.6 Multiple Iterations of Identification and Control

8.6.1 Iterative approach

As indicated before in Section 7.3, once a newly designed controller Ci+1 has been
designed and implemented, the identification and control design procedure discussed
in Section 8.4 and Section 8.5 can be reinvoked. Basically, the same steps of nomi-
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nal model identification, model uncertainty estimation and robust control design are
performed, whereas the subscript i in Ci and Pi is updated via i = i + 1.

Applying the designed controller to the plant and reinvoking the estimation of a
set of models Pi and redesigning the controller Ci, sets up an iterative approach of
model set estimation and (robust) control design. The iterative approach is used to
improve the modelling and control of the unknown plant Po by progressively lowering
the (robust) performance criterion.

The new feedback connection T (Po, Ci+1) provides new data for system identifi-
cation purposes. The information of the new controller Ci+1 is re-used, as Ci+1 now
becomes the new initial controller Ci used during identification. The information of
the (new) initial controller Ci is used to gather data from the closed-loop system and
to structure the set of models Pi to be identified.

The auxiliary model Px used to construct the filter F in (4.24) can also be updated.
The filter F is used to access a rcf (No,F , Do,F ) of the plant Po and can be updated
by the nominal model P̂i that has been estimated.

The method of constructing of a new set of models Pi remains unaltered. First
a new nominal factorization (N̂i, D̂i) has to be estimated. Subsequently, the model
uncertainty estimation must be used to characterize an upper bound for the model
uncertainty associated to the newly identified nominal factorization (N̂i, D̂i). Both
complete again a newly identified set of models Pi.

Once a set of models Pi is available, the a posteriori performance evaluation
discussed in Section 8.5.1 can be performed. Followed by a robust control design,
the performance of the feedback connection T (Po, Ci) with i = i + 1 may be further
improved in case the condition

‖U2T (P, Ci)U1‖∞ ≤ γi+1 < γi

can be met for all models P ∈ Pi. Once this condition cannot be met, either due to the
unavoidable size of the model uncertainty or the inherent performance limitations of
the plant Po, the iteration can be stopped. The results on such an iterative approach
to improve the performance of the wafer stage progressively, have been summarized
in the following section.

8.6.2 Further improving performance

The procedure of identifying a nominal model, estimating the model uncertainty
bounding, constructing a set of models and the design of a robust controller is the
same in every step of an iterative approach. To avoid a needless repetition of these
steps, in this section only the (robust) performance results are mentioned.

To indicate the progressive performance improvement during the subsequent steps
within the iterative procedure, the (robust) performance evaluation for 4 consecutive
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steps of subsequent model set estimation and controller design have been summarized
in Figure 8.26.
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Fig. 8.26: Computation of structured singular value µ{M(e iω)} for 4 consecutive
controllers C1 (—), C2 (- -), C3 (-·), C4 (· · · ) found by subsequent model
set Pi estimation and controller Ci+1 design.

It can be observed from Figure 8.26 that the (robust) performance has been im-
proved progressively. The controllers Ci+1 were designed on different sets of models
Pi. The sets of models Pi are estimated on the basis of closed-loop data coming from
the feedback connection of the plant Po and the (previous) controller Ci implemented
on the plant Po.

For reasons of completeness, the amplitude Bode plot of the four consecutive
controllers has been depicted in Figure 8.27. From this figure it can be observed
that the high frequent dynamics and the dynamics of the off-diagonal terms of the
multivariable controller is changing significantly. This is due to the fact that during
the subsequent identification and control design, renewed knowledge of the plant Po is
obtained. On this renewed knowledge, especially coming from the more high frequent
dynamics and the off-diagonal elements, the model-based controlelr is built and is
able to improve the robust performance.

Finally it can be mentioned here that the fourth controller C4 being designed (and
reduced) has a McMillan degree of 19 and satisfies performance robustness condition
as µ{M} < 1. As the performance robustness could be guaranteed, the iterative
approach of model set estimation and (robust) control design is stopped since desired
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Fig. 8.27: Magnitude Bode plot of 4 consecutive controllers C1 (—), C2 (- -), C3 (-·),
C4 (· · · ) found by an iterative approach of mode set estimation and robust
control design.

performance is satisfactory.

The satisfactory performance of the feedback connection of the wafer stage and
designed feedback controller is confirmed by applying step reference signals. To illus-
trate the performance improvement, the step reference signals depicted in Figure 8.9
are applied in x-direction to perform a (wafer) step in x-direction. Similar step ref-
erence signals can also be given in y-direction, but for illustrative purposes only the
x-direction will be displayed here. With the designed feedback controller C4 imple-
mented on the plant, the servo error uc,x depicted in Figure 8.28 is obtained.

It can be seen that the servo error reaches the required accuracy interval in less
than 0.15s, which is a significant improvement compared to the servo error generated
by the initial controller Ci that consists of 3 parallel PID controllers. The first part of
the servo error remains nearly unchanged as the size and shape of this signals highly
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Fig. 8.28: Servo error uc response to a step in x-direction using controller C4 (—)
and using (initial) controller Ci (- -) and required accuracy interval (· · · ).

depends on the feedforward signal instead of the feedback signal (de Roover 1997).

8.7 Discussion

This chapter has presented the results of the model-based procedure given in
Procedure 2.5-4 applied to the mechanical servo mechanism present in a wafer stage.
The application has showed how a set of models P can be estimated on the ba-
sis of closed-loop data and used for robust control design. Furthermore, the ap-
plication showed how to improve the (robust) performance of the feedback control
system by systematically monitoring the performance robustness, as indicated in
Procedure 2.5-4.

The wafer stage application included the estimation of multivariable models on the
basis of closed-loop data. The problem of estimating models on the basis of closed-
loop data is addressed in this thesis by the algebraic framework of fractional model
representations that provides a unified approach to handle the identification of stable
and unstable systems on the basis of closed loop data.

A set of models is estimated on the basis of closed-loop data by formulating a
structure for the set of models that is based on a dual-Youla based perturbation of
the coprime factors of the nominal model. This structure enables an uncertainty
bounding identification routine to operate directly on (filtered) closed-loop data to
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estimate a bound for the model uncertainty to complete the set of models.
The subsequent identification of a set of models P on the basis of closed loop

data, robust controller design and controller implementation while monitoring the
performance robustness has delivered valuable models of the wafer stage (de Roover
1997) and a satisfactory robust controller. The feedback controller produces a fast
and accurate servo mechanism and is able to improve the performance of a wafer
stepper by increasing the number of processed wafers per hour (throughput) and the
number of acceptable IC’s per wafer (yield).
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9
Conclusions and Recommendations

9.1 Contributions of this Thesis

In this thesis it has been advocated that the design of an enhanced performing and ro-
bust controller for an unknown plant can be done on the basis of system identification
techniques followed by a subsequent robust control design. Although a model will al-
ways be a simplified representation of the unknown plant, robust control can account
for the presence of a modelling error being made. As such, the system identification
procedure developed in this thesis addresses the problem of approximate identification
and the effects of modelling errors in developing models for control applications.

The identification procedure in this thesis focuses on the estimation of both an
(approximate) nominal model and an upper bound on the modelling error. In this
way, a set of models is constructed on which an enhanced performing and robust
controller is designed. The need for (high) performance and the conflicting nature
between performance and robustness has motivated the estimation and construction of
a set of models that it is suitable for robust control design. Making the set of models
suitable for control design, is done in this thesis by keeping track of the intended
control application of the set of models. This is done by estimating and constructing
a set of models in which the feedback (controller) plays a leading role.

As such, in this thesis the following research areas have been merged to come
up with a model based approach that is able to monitor and improve the feedback
controlled performance of an unknown plant. thesis include the following topics

• Control relevant identification of nominal models

• Estimation of model uncertainty

• Robust control design

The emphasize of this thesis lies on the field of system identification, for which new



248 Conclusions and Recommendations

results on closed-loop identification and model uncertainty set estimation for robust
control design are presented.

Within the abovementioned areas existing results on model uncertainty estimation
and robust controller design techniques have been used. However, to improve the
suitability of a model uncertainty set obtained by system identification techniques,
the issue of model complexity of both the nominal model and the model uncertainty
bound is addressed in this thesis. New results are presented on the estimation of
reduced order complexity models to model a possibly unstable plant. Additionally,
a structure of the model uncertainty set is proposed that is based on coprime factor
perturbations. This structure is shown to be particularly useful for identification
purposes and is applicable to data obtained under closed-loop or controlled conditions.

Along the lines of a motivation to merge the research areas, in this thesis the iden-
tification and construction of a set of models is done entirely in a closed-loop manner.
A set of models is proposed that is based on the estimation of a low complexity nom-
inal model obtained via closed-loop experiments. Furthermore, the modelling errors
are described via perturbations on the nominal model in a closed-loop setting and are
also estimated on the basis of closed-loop experiments.

Both the identification and the robust controller design have been integrated in
this thesis in a scientific, iterative procedure that enables a subsequently improvement
of the performance of the feedback controlled plant. The closed-loop approach and the
use of corresponding closed-loop experiments has led to the development of so-called
(multivariable) closed-loop identification techniques in this thesis. The closed-loop
identification techniques are able to deal with data coming from closed-loop exper-
iments. Furthermore, the techniques are mainly based on the framework of stable
factorizations to enable a unified approach for the identification of stable and unsta-
ble plants. The effectiveness of the procedure has been illustrated on the identification
and control of a multivariable servo mechanism present in a wafer stepper.

9.2 Main Conclusions

Designing a controller that is able to improve the performance of a controlled system
by means of system identification and robust control design begins by recognizing the
interaction and the link between modelling and control. Characterizing a model on
the basis of open-loop considerations can be misleading in case the model needs to be
used in a closed-loop setting.

To characterize the quality of the model, the errors being made during modelling
need to be quantified. Furthermore, robust control can account for the presence of
modelling errors being made to design a robust performing controller. Taking into
account the link between modelling and control, not only the (nominal) modelling but
also the characterization of the modelling errors must be subjected to a description
based on closed-loop considerations.
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To treat the issue of approximate modelling for control, a set of models built up
from a nominal model and an upper bound on the model error can be used. To take
into account the link between modelling and control, both the estimation of a nominal
model and the estimation of the model error should take into account the intended
control application. For that purpose, approximate models should be identified using
a closed-loop relevant identification criterium. Additionally, the model error should
be described in a closed-loop setting to study the effect of model perturbations in a
feedback controlled conditions. Both requirements unleash the need to perform the
modelling on the basis of closed-loop experiments.

A unified treatment of stable and unstable systems operating under feedback can
be obtained by the framework of stable factorizations. In this framework, the dynam-
ical behaviour of the possibly unstable system is thought to be split up in a map of
two stable factors. Next to the unified treatment of stable and unstable systems, the
algebraic framework used in this thesis provides the following benefits.

• The algebraic framework of (stable) fractional representations opens the possi-
bility of an open-loop equivalent identification of the stable factors. In this way,
the identification of a possible unstable system on the basis of closed-loop data
can be handled relatively easily.

• The algebraic framework allows possible model errors to be described in a closed-
loop setting, using a perturbation in a dual-Youla parametrization. In this way,
a set of models is obtained that is able to study the effect of model perturbations
under feedback controlled conditions. Specifically, the set of models describes
all models that are stabilized by a given feedback controller. This is done
by considering a nominal stable factorization perturbed by an unknown, but
bounded stable operator.

Taking into account the intended control application unleashes the need for an
iterative scheme, as the control application (the feedback controller) is not know yet.
Starting with an initial feedback controller, an iterative scheme of modelling and
redesigned feedback controllers will provide information on the dynamics of the plant
relevant for feedback control.

Information on the required complexity of the nominal model, shape of allowable
model uncertainty and attainable robust performance is gathered while performing
such an iteration. Including the characterization of modelling errors enables one
to avoid performance deterioration during the iterative scheme. Avoiding perfor-
mance deterioration during the iterative scheme also opens the possibility to formu-
late (in)validation criteria to accept or refuse models and/or controllers found during
the iterative scheme.
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9.3 Retrospect and Recommendations

The interaction between modelling and control has been recognized before, see e.g.
Åström and Wittenmark (1971) or Skelton (1989). The problem of designing (robust)
controllers on the basis of models that exhibit model errors has been ongoing field of
research (Zhou et al. 1996). Modelling by system identification and the use of data
obtained under closed-loop conditions to address the problem the interaction between
modelling and control has also been studied before, see e.g. Gevers and Ljung (1986)
or Bitmead et al. (1990a). The benefits of using the algebraic framework of fractional
representations has been motivated in Hansen (1989) or Schrama (1992b) both for
dealing with closed-loop data and to address the problem of closed-loop relevant
identification.

In this perspective, this thesis continues and combines the work that has been
done in these areas. As a result, a reasonably complicated iterative procedure has
been developed in which the performance of the feedback controlled plant is monitored
and improved by subsequent system identification and robust control design. This
procedure was presented in Procedure 2.5-4 and depicted schematically in Figure 2.7.

For many applications, the proposed procedure may be too complicated to perform
and simplifications may be necessary. After all, the only objective is retune the
feedback controller to improve the performance of the feedback controlled plant. As
such, the following remarks can be given.

• The proposed procedure delivers more than necessary. Especially, the identifi-
cation provides information on the required complexity of the nominal model,
shape of allowable model uncertainty and attainable robust performance. One
may question the benefit of having such a detailed model. Sacrificing the need
to guarantee to attain robust performance may lead to a more straightforward
method of controller tuning, see e.g. Hjalmarsson et al. (1994).

• In many situation, the plant is known to be stable. An identification based on
stable factorizations may be an exaggerated approach to handle the modelling
of a stable plant. In that case, more simplified versions to deal with closed-
loop data, such as presented in (Van den Hof and Schrama 1993), may be
advisable. Development and analysis of special and user friendly identification
algorithms, that deal with specific closed-loop situations, is advisable (Van den
Hof et al. 1997).

• The need for an iterative procedure for joint identification and control (Schrama
1992b) is also advocated in this thesis. Clearly, the iterative procedure is in-
troduced to replace the far more complicated problem of a joint optimization
of modelling and control. Possibilities to perform such a joint optimization still
need to be investigated.
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• The need for finding low complexity models may be questioned in the near fu-
ture. With increasing computing power or the possibility to compute low com-
plexity robust controller on the basis of complex models, the need for deliberate
undermodelling or low complexity models may become superfluous. In this per-
spective, research in the area of fixed order controller design is valuable. Still,
the need for low complexity models and/or deliberate undermodelling remains
valuable to avoid the estimation, simulation and computation of unnecessarily
and highly complicated models.

The above mentioned items also indicate possibilities for new research in the field
of closed-loop relevant system identification and robust control design. Despite pos-
sible requirements on simplification, the procedure is generally applicable to many
feedback controlled systems that may require an improved tuning of the feedback
connection. The identification requires and can deal with data obtained under closed-
loop conditions, while both the identification of stable and unstable systems can be
handled.
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A
Matrix & State Space Formulae

A.1 Matrix Inversion Lemma

Let A be a sqare matrix that is partioned as follows

A =

[
A11 A12

A21 A22

]

where A11 and A22 are again square matrices. In case A11 is non-singular, the matrix
A admits the following decomposition

A =

[
I 0

A21A
−1
11 I

][
A11 0

0 S

][
I A−1

11 A12

0 I

]

where S := A22 − A21A
−1
11 A12 is the Schur complement of A11 with respect to A. In

case A22 is non-singular, the matrix A admits the following decomposition

A =

[
I A12A

−1
22

0 I

][
S 0

0 A22

][
I 0

A−1
22 A21 I

]

where S := A11−A12A
−1
22 A21 is the Schur complement of A22 with respect to A. It can

be seen that A is non-singular if and only if the Schur complement is non-singular.

A.2 State Space Realization of T (P, C)

Let the state space realization of the system P be given by

P
.=

[
Ap Bp

Cp Dp

]
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and let the state space realization of the controller C be given by

C
.=

[
Ac Bc

Cc Dc

]

then the transfer function

T (P, C) :=

[
P

I

]
(I + CP )−1

[
C I

]

has a state space realization

T (P, C) .=

[
A B

C D

]

where the state space matrices are given by

A =

[
Ap − BpMDcCp BMCc

−BcC + BcDpMDcCp Ac − BcDpMCc

]

B =

[
BpMDc BpM

Bc − BcDpMDc −BcDpM

]

C =

[
Cp − DpMDcCp DpMCc

−MDcCp MCc

]

D =

[
DpMDc DpM

MDc M

]

and M := (I + DcDp)−1.

A.3 State Space Realization of ND−1

Given a rcf (N, D), this section described the state space realization of P computed
via P = ND−1. Dual state space formulae exist for a lcf (Ñ , D̃) with P = D̃−1Ñ .

Let (N, D) be a rcf where N and D have a state space realization with a common
state matrix AND and input matrix BND. Then, the state space realization of the rcf

(N, D) can be written as [
N

D

]
.=

⎡
⎢⎢⎣

AND BND

CN DN

CD DD

⎤
⎥⎥⎦ (A.1)
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and the state space realization of P := ND−1 is given by

P
.=

[
Ap Bp

Cp Dp

]

where the state space matrices are given by

Ap = AND − BNDD−1
D CD

Bp = BNDD−1
D

Cp = CN − DND−1
D CD

Dp = DND−1
D

(A.2)

provided that DD is non-singular. It can be observed that in this case P in general
will have a McMillan degree less than or equal to the McMillan degree of (N, D).

A.4 State Space Realization of Q̄

This section describes the state space realization of the unweighted coefficient matrix
Q̄ as used int he LFT respresentation of the set of model P. To simplify notations,
the state space realization of Q̄ is presented as a series connection of two state space
realizations.

Let (N, D) be a rcf of the system P and let (Nc, Dc) be a rcf of the controller.
Then the unweighted coefficient matrix Q̄ is given by

Q̄ =

[
D−1Nc D−1

(Dc + PNc) P

]
=

[
D−1 0

P I

]
︸ ︷︷ ︸

Q̄1

[
Nc I

Dc 0

]
︸ ︷︷ ︸

Q̄2

(A.3)

and can be viewed as a series connection of the two transfer function matrices Q̄1 and
Q̄2 on the right hand side of (A.3). Similar to the state space realization of the rcf

(N, D) in (A.1), the state space realization of the rcf (Nc, Dc) can be written as

[
Nc

Dc

]
.=

⎡
⎢⎢⎣

ANcDc BNcDc

CNc DNc

CDc DDc

⎤
⎥⎥⎦ (A.4)

yielding [
Nc I

Dc 0

]
.=

⎡
⎢⎢⎣

ANcDc BNcDc 0

CNc DNc I

CDc DDc 0

⎤
⎥⎥⎦ (A.5)
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as a state space realization for Q̄2 in (A.3). The state space realization of the rcf

(N, D) is given in (A.1) and yields

D−1 .=

[
AND − BNDD−1

D CD BNDD−1
D

D−1
D CD D−1

D

]
(A.6)

as state space realization for D−1. Combining (A.2) and (A.6) yields

[
D−1 0

P I

]
.=

⎡
⎢⎢⎣

AND − BNDD−1
D CD BNDD−1

D 0

D−1
D CD D−1

D 0

CN − DND−1
D CD DND−1

D I

⎤
⎥⎥⎦ (A.7)

as a state space realization for Q̄1 in (A.3). Henceforth, the state space realization
of Q̄ is found by a series connection of (A.7) and (A.5). This leads to a state space
realization where the McMillan degree is the sum of the McMillan degree of the system
P and the controller C.
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B
Least-Squares Frequency Response Curve

Fitting

B.1 Problem formulation

To formulate the multivariable frequency domain identification problem, consider the
following set G of noisy complex frequency response data observations G(ωj), evalu-
ated at N frequency points ωj.

G := {G(ωj) | G(ωj) ∈ Cp×m, for j ∈ 1, . . . , N} (B.1)

The aim of the identification problem discussed in this appendix1 is to find a linear
time invariant multivariable model P of limited complexity, having m inputs and p

outputs, that approximates the data G in (B.1).
To address the limited complexity, the model P (θ) is parametrized by a either a

left or right polynomial MFD that depends on a real valued parameter θ of limited
dimension. The specific parametrization of the polynomial MFD of P (θ) is discussed
in the next section. The approximation of the data G by the model P (θ) is addressed
by considering the following additive error.

Ea(ωj , θ) := [G(ωj) − P (ξ(ωj), θ)] for j ∈ 1, . . . , N (B.2)

The complex variable ξ(·) in (B.2) is used to denote the frequency dependency of the
model P (θ). In this way, ξ(ωj) = iωj to represent a continuous time model, whereas
ξ(ωj) = eiωjT (shift operator) or ξ(ωj) = (eiωj − 1)/T (δ operator) to represent a
discrete time model with sampling time T .

To tune the additive error Ea in (B.2), both an input-output frequency weighted
curve fit error Ew with

Ew(ωj , θ) := Wout(ωj)Ea(ωj , θ)Win(ωj) (B.3)
1Parts of this appendix have also been published in de Callafon et al. (1996a)
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and an element-wise frequency weighted curve fit error Es with

Es(ωj , θ) := S(ωj). ∗ Ea(ωj , θ) (B.4)

will be considered in this appendix. In (B.4) .∗ is used to denote the Schur product;
an element-by-element multiplication.

Using the notation E to denote the frequency weighted curve fit error Ew in (B.3)
and Es in (B.4), the deviation of the data G is characterized by following the norm
function J(θ).

J(θ) :=
N∑

i=1

tr{E(ωj, θ)E∗(ωj , θ)} = ‖E(θ)‖2
F (B.5)

In (B.5) ∗ is used to denote the complex conjugate transpose, tr{·} is the trace op-
erator and ‖E(θ)‖F denotes the Frobenius norm operating on the matrix E(θ) =
[E(ω1, θ) · · · E(ωN , θ)]. Consequently, the goal of the procedure described in this
appendix is to find a real valued parameter θ̂ of limited complexity that can be for-
mulated by the following minimization.

θ̂ := arg min
θ ∈ IR

J(θ) (B.6)

B.2 Parametrization

The multivariable model is represented by either a left or right polynomial MFD,
respectively given by

P (ξ, θ) = A(ξ−1, θ)−1B(ξ−1, θ) (B.7)

P (ξ, θ) = B(ξ−1, θ)A(ξ−1, θ)−1 (B.8)

where A and B denote parametrized polynomial matrices in the indeterminate ξ−1.
For a model having m inputs and p outputs, the the polynomial matrix B(ξ−1, θ)

is parametrized by

B(ξ−1, θ) =
d+b−1∑

k=d

Bk ξ−k (B.9)

where Bk ∈ IRp×m, d denotes the number of leading zero matrix coefficients and b

the number of non-zero matrix coefficients in B(ξ−1, θ). For the left MFD in (B.7),
A(ξ−1, θ) is parametrized by

A(ξ−1, θ) = Ip×p + ξ−1
a∑

k=1

Ak ξ−k+1 (B.10)

where Ak ∈ IRp×p and a denotes the number of non-zero matrix coefficients in the
monic polynomial A(ξ−1, θ). The parameter θ is determined by the corresponding
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unknown matrix coefficients in the polynomials. Hence,

θ =
[

Bd · · · Bd+b−1 A1 · · · Aa

]
(B.11)

and θ ∈ IRp×(mb+pa) for the left MFD in (B.7). Dual results can be formulated for
the right MFD in (B.8).

Additionally to the full polynomial parametrization presented here, so-called
structural parameters dij , bij and aij with d := min{dij}, b := max{bij}, and
a := max{aij} can be used to specify a non-full polynomial parametrization. In
this way, the parameter θ as given in (B.11) may contain prespecified zero entries at
specific locations. This may occur in a discrete time model with ξ−1 = z−1 where
the value of dij has a direct connection with the number of time delays from the jth
input to the ith output.

B.3 Computational Procedure

B.3.1 Iterative minimization

In this section, the minimization of (B.6) will be discussed by means of an iterative
procedure of convex optimization steps similar to the SK-iteration of Sanathanan and
Koerner (1963). The attention will be restricted to a parametrization of P (ξ, θ) based
on the left MFD (B.7) as dual results can be obtained for a right MFD. To extend the
SK-iteration to the multivariable case, first consider the (unweighted) additive curve
fit error of (B.2).

For a model P (ξ, θ) parametrized by left MFD, (B.2) can be written as

Ea(ωj , θ) = A(ξ(ωj)−1, θ)−1Ẽ(ωj , θ) (B.12)

where Ẽ(ωj , θ) is the equation error defined by

Ẽ(ωj , θ) := A(ξ(ωj)−1, θ)G(ωj) − B(ξ(ωj)−1, θ). (B.13)

Substituting the parametrization (B.7) for the polynomials A, B, the equation error
in (B.13) can be represented by

Ẽ(ωj , θ) = G(ωj) − θΦ(ωj) (B.14)

where θ is given in (B.11) and

Φ(ωj) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Im×mξ(ωj)−d

...

Im×mξ(ωj)−(d+b−1)

G(ωj)ξ(ωj)−1

...

G(ωj)ξ(ωj)−a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.15)
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with Φ(ωj) ∈ C(mb+pa)×m.
A matrix Ẽ(θ) can be formed by stacking Ẽ(ωj , θ) column-wise for j ∈ 1, . . . , N

and this yields
arg min

θ ∈ IR
‖Ẽ(θ)‖2

F = arg min
θ ∈ IR

‖G − θP‖2
F (B.16)

where G and P are found by stacking the real and imaginary part of respectively
G(ωj) and Φ(ωj) for j ∈ 1, . . . , N . Due to the linear appearance of the parameter θ,
(B.16) corresponds a standard least squares problem that can be solved by numerical
reliable tools as e.g a QR-factorization with (partial) pivoting (Golub and Van Loan,
1989).

Due to the fact that A(ξ−1, θ) in (B.12) also depends on the parameter θ, the linear
appearance of the parameter θ in (B.12) is violated. In order to facilitate the convexity
in minimizing the two-norm on the equation error in (B.16), an iterative procedure
similar as in Sanathanan and Koerner (1963) can be used. An estimate θ̂t in step t is
computed by replacing A(ξ(ωj)−1, θ) in (B.12) by a fixed A(ξ(ωj)−1, θ̂t−1) based on an
estimate θ̂t−1 obtained from the previous step t− 1. In this way the Frobenius norm
of an output weighted equation error Ẽw(ωj , θ̂t−1, θ) = A(ξ(ωj)−1, θ̂t−1)−1Ẽ(ωj , θ)
needs to be minimized repeatedly according to

θ̂t = arg min
θ ∈ IR

‖Ẽw(θ̂t−1, θ)‖2
F .

This generalizes the SK-iteration to multivariable models parametrized by a left poly-
nomial MFD. A dual approach can be formulated for a right polynomial MFD.

The estimate obtained from the SK-iteration is not optimal in the sense of (B.6)
in presence of noise and/or incorrect model order, but it does provide a tool to find
an initial estimate for a GN-optimization (Whitfield, 1987). Furthermore, the convex
optimization to be solved in each step of the multivariable SK-iteration supports
the estimation of models with many parameters. The computational procedure to
obtain the parameter θ̂ in case of the (weighted) curve fit errors of (B.3) and (B.4) is
presented in the subsequent sections.

B.3.2 Input-output weighting

The input-output weighted curve fit error of (B.3) can be rewritten into

Ew(ωj , θ) = W̃out(ωj , θ)Ẽ(ωj , θ)Win(ωj) (B.17)

where W̃out(ωj , θ) := Wout(ωj)A(ξ(ωj)−1, θ)−1 and Ẽ(ωj , θ) is given in (B.13).
Using a similar approach of iterative minimization steps as used in Section B.3.1,

the parameter θ in W̃out(ωj , θ) in (B.17) is fixed to an estimate θ̂t−1 obtained from
the previous step t − 1. Consequently, the weighted equation error Ẽw defined by

Ẽw(ωj , θ̂t−1, θ) := W̃out(ωj , θt)Ẽ(ωj , θ)Win(ωj) (B.18)
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again indicates that the parameter θ to be estimated appears linearly in (B.18).
Although the free parameter θ appears linearly in (B.18), writing down a matrix

representation for the weighted equation error Ẽw similar to (B.16) would inevitably
lead to additional (large) sparse matrices that need to be stored in order to compute
the least squares solution. The sparse matrices arise from the frequency dependent
output (and input) weighting that need to be incorporated (Bayard, 1994). Further-
more, the parameter θ might have a structure containing zero entries at prespecified
locations if a non-full polynomial parametrization is being used.

To avoid the computational and memory storage issues that arise from dealing
with (large) sparse matrices and to be able to take into account the specific structure
that might be present in the parameter θ, a fairly simple and straightforward compu-
tational procedure based on Kronecker calculus is presented here. For this purpose
consider the following definition.

Definition B.3-1 Consider two matrices X ∈ Cn1×n2 and Y ∈ Cm1×m2 , then the
Kronecker vector vec(X) ∈ Cn1n2×1 and the Kronecker product X ⊗Y ∈ Cn1m1×n2m2

are respectively defined by vec(X) := [x1 · · · xn2 ]T and

X ⊗ Y :=

⎡
⎢⎢⎣

x1,1Y · · · x1,n2Y
... · · ·

...

xn1,1Y · · · xn1,n2Y

⎤
⎥⎥⎦

where xi,j and xj for i ∈ 1, . . . , n1 and j ∈ 1, . . . , n2 are used to denote respectively
the (i, j)th entry in X and the jth column in X.

The Kronecker product is a well known concept (Bellman, 1970) and by stacking
the columns of a matrix to obtain the corresponding Kronecker vector as mentioned
in Definition B.3-1, the following result can be obtained.

Proposition B.3-2 Consider (complex) matrices X, Y and Z with appropriate di-
mensions, such that the matrix product C := XY Z is well defined. Then vec(C)
satisfies

vec(C) = [ZT ⊗ X ]vec(Y ).

Proof: The proof can be found in Bellman (1970). �

On the basis of Proposition B.3-2, the Kronecker vector of the input/output
weighted equation error Ẽw(ωj , θ̂t−1, θ) in (B.18) can be written as

vec(Ẽw) = vec(W̃outGWin) − [[ΦWin]T ⊗ W̃out]vec(θ)

wherein the arguments ωj, θ̂t−1 and θ are left out, to avoid notational issues. As
the Frobenius-norm satisfies ‖X‖2

F = ‖vec(X)‖2
F for an arbitrary matrix X , the
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Frobenius-norm on Ẽw can be characterized by a matrix representation formed by
stacking vec(Ẽw(ωj , θ̂t−1, θ)) row-wise for j ∈ 1, . . . , N . This yields the following
estimate

θ̂ = arg min
θ ∈ IR

‖vec(Ẽw(θ̂t−1, θ))‖2
F

= arg min
θ̄ ∈ IR

‖Gw − Pw θ̄‖2
F

(B.19)

where θ̄ = vec(θ) ∈ IRp(mb+pa)×1 according to (B.11). Furthermore, Gw ∈ IR2pmN×1

and Pw ∈ IR2pmN×p(mb+pa) are matrices that can be found by row-wise stacking
of the real and imaginary part of respectively vec(W̃out(ωj , θ̂t−1)G(ωj)Win(ωj)) and
vec([Φ(ωj)Win(ωj)]T ⊗ W̃out(ωj , θ̂t−1)) for j ∈ 1, . . . , N .

The regression matrix Pw in (B.19) does not exhibit any sparse matrix structure
as occurs e.g. in the method of Bayard (1994). In fact, 2pmN × p(mb + pa) entries
is the smallest dimension of the regression matrix Pw in order to compute a least
squares parameter θ̂ that has p(mb+pa) unknown entries (for a a left full polynomial
parametrization) on the basis of N complex frequency domain points of a p × m

multivariable system. In this way memory storage problems are avoided directly as
much as possible.

As the parameter θ is converted into a column parameter θ̄ = vec(θ), any prespec-
ified zero entries in θ̄ can be incorporated in the estimation of the parameter relatively
easy. This can be done by omitting the columns in the regression matrix Pw that
correspond to the zero entries in θ̄ and thereby reducing the size of the parameter to
be estimated directly.

B.3.3 Schur weighting

Consider the Schur or element-wise frequency weighted curve fit error in (B.4) and
rewrite this into

Es(ωj , θ) = S(ωj). ∗ [A(ξ(ωj)−1, θ)−1Ẽ(ωj , θ)] (B.20)

where the equation error Ẽ(ωj , θ) was defined in (B.13). Using a similar ap-
proach of iterative minimization steps as used in Section B.3.1, the parameter θ in
A(ξ(ωj)−1, θ)−1 in (B.20) is fixed to an estimate θ̂t−1 obtained from the previous step
t − 1. Consequently, the weighted equation error Ẽs defined by

Ẽs(ωj , θ̂t−1, θ) :=

S(ωj). ∗ [A(ξ(ωj)−1, θ̂t−1)−1Ẽ(ωj , θ)]

again indicates that the parameter θ to be estimated appears linearly. Finally, it can
be verified (leaving out the arguments ωj , ξ(ωj)−1, θ̂t−1 and θ) that vec(Ẽs) can be
rewritten into

vec(S. ∗ [A−1G]) − diag(vec(S))[ΦT ⊗ A−1]vec(θ) (B.21)
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by using the result of Proposition B.3-2. Hence, stacking vec(Ẽs(ωj , θ̂t−1, θ)) row wise
for each j ∈ 1, . . . , N will yield a similar expression for the minimizing argument θ̂ as
given in (B.19). However, the matrix Gw in (B.19) now contains real and imaginary
part of vec(S(ωj). ∗ [A(ξ(ωj)−1, θ̂t−1)G(ωj)]), whereas Pw in (B.19) will consist of
the real and imaginary part of diag(vec(S(ωj)))[Φ(ωj)T ⊗ A−1(ξ(ωj)−1, θ̂t−1)] for
j ∈ 1, . . . , N . Hence, the same computational procedure can be used to incorporate
an element-by-element weighted curve fit error (B.4) by a slight modification of the
matrices in (B.19).
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Mäkilä, P.M. and J.R. Partington (1992). Worst-case identification from closed loop
time series. In Proc. American Control Conference. Chicago, IL, USA. pp. 301–306.
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Söderström, T. and P. Stoica (1983). Instrumental Variable Methods for System Iden-
tification. Springer Verlag, Berlin, Germany.
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Samenvatting

Terugkoppeling Gebaseerde Identificatie voor
Verbeterde en Robuuste Regelingen

een fractionele aanpak toegepast op een wafer stage

R.A. de Callafon, Oktober 1998

Teruggekoppelde regelingen en systeemidentificatie zijn beide betrokken bij de
regeling en prediktie of modelvorming van de dynamische aspecten van een systeem, en
toch worden ze slechts zelden samengevoegd. Het gebruik van experimentele gegevens
voor de modellering van de dynamica van een systeem is een krachtig gereedschap voor
het aanleveren van modellen om regelaars te ontwerpen voor dat systeem. Echter,
meer verfijnde en verbeterde robuuste regelaars kunnen ontwikkeld worden wanneer
de systeemidentificatie en het ontwerp van de terugkoppelingsregeling simultaan uit-
gevoerd worden. Dit proefschrift draagt bij in de ontwikkeling van een dergelijke
gëıntegreerde aanpak van zowel de terugkoppelingsregeling als de systeemidentificatie,
met de bedoeling om een systematische procedure te ontwikkelen voor het ontwerp van
een geavanceerde en robuust presterende terugkoppelingsregeling voor een dynamisch
systeem.

De nadruk van dit proefschrift ligt op het gebied van de systeemidentificatie en ver-
schaft resultaten en hulpmiddelen voor een zogeheten terugkoppeling gebaseerde iden-
tificatie van systemen. Nieuwe resultaten voor de verbetering van de integratie van
systeemidentificatie met robuust regelaarontwerp kunnen in dit proefschrift gevonden
worden. De gëıntegreerde aanpak wordt gëıllustreerd en succesvol toegepast op een
industriële, hoge nauwkeurigheid, multivariabel mechanisch positioneer systeem, be-
kend onder de naam wafer stage. Een dergelijke wafer stage wordt gebruikt in wafer
steppers voor de fabricage van gëıntegreerde circuits.

Om de gesloten-lus prestaties van het terugkoppelingsgeregelde systeem te volgen
en te garanderen, wordt een model-gebaseerde procedure voorgedragen. De model-
gebaseerde procedure omvat de schatting van een verzameling van modellen, opge-
bouwd via een nominaal model voorzien van een karakterisering van de modelonze-
kerheid. De gëıdentificeerde verzameling van modellen wordt vervolgens gebruikt in
een robuuste regelaarontwerp methodiek om een verbeterde en robuuste terugkop-
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pelingsregeling te verkrijgen. Om de verbetering van de gesloten-lus prestaties te
garanderen tijdens de uitvoering van de opeenvolgende stappen van modelverzame-
lingsschatting en robuust regelaarontwerp, zijn er gesloten-lus validatie testen gefor-
muleerd voor zowel de terugkoppeling gebaseerde identificatie en het robuuste rege-
laarontwerp. De gesloten-lus validatie testen garanderen dat een bovengrens op de
gesloten-lus prestaties monotonisch verbeterd kan worden.

Het gebruik van systeemidentificatie voor het vinden van modellen voor rege-
laarontwerp wordt gekenmerkt door de identificatie van een systeem dat opereert
onder gesloten-lus geregelde condities. Bovendien, benaderende modellen of modellen
met een lage complexiteit zijn nodig voor het opzetten van een hanteerbaar lage orde
regelaarontwerpprobleem. Met dit doel voor ogen, bevat dit proefschrift een kritische
evaluatie van zogeheten gesloten-lus benaderende identificatie technieken die gebruikt
worden om het probleem van het vinden van benaderende modellen van een (mogelijk
instabiel) systeem aan te pakken. Een fractionele model aanpak, waarbij het mogelijk
instabiele systeem wordt gerepresenteerd en gëıdentificeerd via stabiele coprieme fac-
toren, wordt gemotiveerd en gebruikt om het gesloten-lus benaderende identificatie
probleem op te lossen.

Met de fractionele model aanpak wordt het nominale model gëıdentificeerd via
de schatting van stabiele coprieme factoren. Frequentie domein technieken worden
gebruikt om een dergelijke stabiele coprieme factorizatie van het systeem te schat-
ten. De modelonzekerheid wordt gekarakteriseerd via het in beschouwing nemen van
een perturbatie in een zogenoemde duale-Youla parametrizatie. De modelonzekerheid
wordt geschat via beschikbare technieken voor probabilistische onzekerheidsbegren-
zende identificatie. Het wordt aangetoond dat, met behulp van de fractionele model
aanpak en de gekozen structuur van de verzameling van modellen, de benaderende en
terugkoppeling gebaseerde identificatie van de verzameling van modellen volledig kan
en moet worden gedaan, op basis van gesloten-lus experimenten. Daarnaast wordt
aangetoond dat de voorgestelde structuur van de verzameling van modellen uiter-
mate geschikt is voor het evalueren en bijhouden van de gesloten-lus prestaties van
het teruggekoppelde geregelde systeem.

De voorgestelde model-gebaseerde procedure verschaft een methodiek om sys-
teemidentificatie en robuust regelaarontwerp te integreren. Het levert een syste-
matische procedure op voor het ontwerp van een verbeterde en robuuste terugkop-
pelingsregeling voor een mogelijk instabiel, multivariabel, dynamisch systeem. Elke
opeenvolgende stap van terugkoppeling gebaseerde identificatie en robuust regelaar-
ontwerp binnen de procedure kan gebruikt worden om de gesloten-lus prestaties van
het dynamisch systeem stapsgewijs te verbeteren.
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I made a big decision a little while ago.
I don’t remember what it was, which prob’ly goes to show
That many times a simple choice can prove to be essential

Even though it often might appear inconsequential.

I must have been distracted when I left my home because
Left or right I’m sure I went. (I wonder which it was!)

Anyway, I never veered: I walked in that direction
Utterly absorbed, it seems, in quiet introspection.

For no reason I can think of, I’ve wandered far astray.
And that is how I got to where I find myself today.

Bill Watterson in The Indispensable Calvin and Hobbes.


