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Suboptimal Feedback Control by a Scheme of Iterative

Identi�cation and Control Design

R.A. DE CALLAFONzx P.M.J. VAN DEN HOF�

Abstract

In this paper a framework for an iterative procedure of identi�cation and robust

control design is introduced wherein the robust performance is monitored during the

subsequent steps of the iterative scheme. By monitoring the performance via a model-

based approach, the possibility to guarantee performance improvement in the iterative

scheme is being employed.

In order to monitor achieved performance (for a present controller) and to guar-

antee robust performance (for a future controller), an uncertainty set is used where

the uncertainty structure is chosen in terms of model perturbations in the dual Youla

parametrization. This uncertainty structure is shown to be particularly suitable for the

control performance measure that is considered.

The model uncertainty set can be identi�ed by an uncertainty estimation procedure

on the basis of closed-loop experimental data. To obtain performance robustness, robust

control design tools are used to synthesise controllers on the basis of the identi�ed

uncertainty set.

Keywords: coprime factorizations; robust control; system identi�cation

1 Introduction

For a plant with unknown dynamics, the approach to obtain an enhanced and robust

feedback controller with some predescribed optimality properties, is usually supported by

the application of a system identi�cation technique and a subsequent model-based con-

trol design. As the dynamical model applied in a model-based control design usually is

an approximation of the unknown plant, there is a growing interest in investigating the

interrelation between the problems of modelling by system identi�cation and the design of

feedback controllers. This interrelation has been the main motivation to develop methods

to perform a so-called control-relevant identi�cation, in which the quality of the dynamical
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model with respect to the unknown plant needs to be evaluated in view of the control design

application.

Several approaches that consist of iterative procedures of subsequent system identi�ca-

tion and model-based control design have been proposed in the literature and one is referred

to the survey papers [12] or [32] to obtain a comprehensive overview. In these approaches,

the iterative minimization of an identi�cation criterion and a model-based control design

criterion is hoped to converge to a globally optimal feedback controller of restricted com-

plexity that can be applied successfully to the unknown plant. As already reported by

[30], both the identi�cation and the model-based control design become interrelated and

motivates the usage of a control-relevant system identi�cation techniques.

Convergence of the iterative schemes in terms of performance improvement of the feed-

back controlled plant, using the controller designed during the subsequent steps, has not

been proven (yet). Moreover, optimality of the feedback controller in case of undermod-

elling of the unknown plant even becomes questionable as reported in [17]. However, the

motivation to apply an iterative procedure is induced by the fact that a simultaneous (o�-

line) optimization of both an identi�cation and a model-based control design criterion can

be highly non-linear [2]. Although convergence and optimality is not guaranteed, count-

less numerical simulation examples presented in the literature show promising results, see

e.g. [1], [14], [19], [28] or [37]. Successful `real life' implementations of iterative schemes of

identi�cation and model-based control design have been reported in e.g. [25] and [28].

Inevitably, it is important to have convergence of an iterative scheme in terms of a

performance improvement of the feedback controlled plant. Debatable is the question,

whether or not optimality of a restricted complexity controller applied to the (unknown)

plant is the key issue. From a practical point of view, it is more valuable to have at least

guaranteed performance improvement of the feedback controlled plant, while performing a

step in an iterative scheme of subsequent identi�cation and model-based control design. In

this way, any e�ort put into a step of an iterative scheme is assured to give an improvement

of the feedback controlled plant.

In most of the iterative schemes found in the references listed above, the attention is

focused on iteratively trying to improve nominal performance speci�cations. However, the

model-based controller should be implemented on the actual plant and robustness of the

designed feedback controller should be incorporated. Compared to these approaches, the

aim of this paper is to introduce a framework for an iterative scheme of identi�cation and

model-based control design wherein the robust performance of the feedback controlled plant

will be monitored. By monitoring robust performance, it is possible to subsequently design

model-based controllers in such a way, that the performance improvement of the feedback

controlled plant can be enforced, during the iterative scheme of interrelated identi�cation

and model-based control design. Although this approach does not necessarily lead to a

globally optimal restricted complexity controller for the unknown plant, control performance
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improvement is guaranteed by enforcing subsequent robust performance improvement in the

iterative scheme.

To monitor and guarantee performance robustness, the estimation of a nominal model

only, does not su�ce. Instead, a set of models should be used that is guaranteed to contain

the unknown plant. Such a set of models (or uncertainty set) can be obtained by the esti-

mation of a nominal model along with an upper bound on an uncertainty characterization.

Currently, system identi�cation methods are available to estimate such a set and one is re-

ferred to e.g. [21] or [23] for a nice overview on the topic of worst-case system identi�cation.

This topic will not be discussed in this paper and the methods introduced in [13] or [36]

will be employed to estimate such a set of models.

Clearly, the problem of obtaining control relevancy in system identi�cation as pointed

out above, emphasizes the need to estimate both a nominal model and an upper bound on

an uncertainty characterization in a feedback relevant way. The feedback relevant aspects

should not be used in the estimation of nominal models only, but should also address the

characterization and estimation of the uncertainty set being used. Therefore, this paper

focuses on the estimation of a control-relevant model, along with a characterization of

the model mismatch with a speci�c structure that is particular useful for both system

identi�cation and control design purposes. It will be shown that the set of models obtained

is well suited for (in)validation purposes wherein the closed loop application of the set can be

taken into account. In this way, it is possible to subsequently design enhanced model-based

controllers and to monitor the robust performance of the feedback controlled plant.

2 Problem description

2.1 General problem formulation

To formalize the problem formulations introduced in this section, �rst some basic notations

will be introduced. The notation P will be used to denote any linear time invariant system

that may represent the actual plant denoted by Po or the model denoted by P̂ . Furthermore,

let P be used to denote a set of models and C to represent a feedback controller. The

subscript i that will be applied to the variables P̂ , P or C is used to indicate that the

variable depends on the ith step in an iterative scheme of identi�cation and model-based

control design. Finally, a control objective function is denoted by J(P ;C) and the notion

of performance cost will be characterized by the value of a norm kJ(P ;C)k: a smaller value

of kJ(P;C)k indicates better performance.

Examples of commonly used control objective functions, as pointed out in [32], may

include weighted or mixed sensitivity, as well as LQG and IMC type of control objectives.

Throughout this paper, the control objective function J(P ;C) 2 IRH1 and is restricted to
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H1-norm based performance speci�cations. A norm-based control design formulated by

Copt := argmin
C

kJ(Po; C)k1 (1)

would lead to an optimal controller Copt in the sense that the performance cost is being

optimized. A way to �nd a feedback controller that will approach Copt, is by performing

subsequent steps of control design, wherein performance improvement is guaranteed in each

step. Basically, this can be formulated as follows.

Problem 2.1 Let the feedback connection of a plant Po and a controller Ci satisfy the

performance speci�cation kJ(Po; Ci)k1 � 
i. Design a controller Ci+1 such that the per-

formance kJ(Po; Ci+1)k1 satis�es

kJ(Po; Ci+1)k1 � 
i+1 < 
i: (2)

Although the subsequent design of a feedback controller as mentioned in problem 2.1

does not necessarily give rise to the optimal controller Copt of (1), it may get arbitrary close

during subsequent design. For this reason the controller found by the subsequent design

mentioned in problem 2.1 is called sub-optimal. The same philosophy is used also in the

general framework of H1 control design to compute sub-optimal controllers, see e.g. [10]

or [38]. A controller that is guaranteed to satisfy the upper bound (2) can be computed

and a sub-optimal controller is found by subsequently trying to lower the upper bound.

Clearly, the plant Po is unknown, which makes problem 2.1 as formulated presently,

intractable for a performance speci�cation based on a general control objective function

J(Po; C). To gain information on the control objective function, measurements can be

taken from the plant Po operating under closed loop conditions. If indeed the performance

characterization can be accessed directly on the basis of (time domain) observations, the

possibility to tune or optimize the controller directly, can be exploited to tackle problem 2.1.

A similar idea is used in [18] to perform a model free tuning of a controller on the basis of

a minimum variance performance speci�cation.

Unfortunately, the restriction to performance speci�cations that can be accessed directly

on the basis of observations from the plant Po operating under closed loop conditions, will

a�ect the general applicability of problem 2.1. Furthermore, the value to characterize the

performance will be subjected to noise and �nite time approximation if measurements are

used to evaluate the performance speci�cation directly. Therefore, a model-based approach

will be employed to evaluate the performance of the controller Ci and to design an im-

proved controller Ci+1 that satis�es (2). Additionally, a model-based approach has several

advantages, compared to a model free tuning.

� The design of the controller can be done for a wide class of performance objectives

and robustness considerations are taken into account [38].
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� Available tools for robust and model-based control design can be used.

� Design trade-o�s imposed by linear feedback control [4, 8] can be taken into consid-

eration.

Supported by the advantages mentioned above, problem 2.1 is recasted into a model-

based problem formulation that can be dealt with by combining system identi�cation and

robust control design techniques.

2.2 A feasible procedure

To tackle problem 2.1 for an unknown plant Po via a model-based approach using system

identi�cation techniques, basically twomain items should be considered. Firstly a procedure

to analyse the upper bound 
i for kJ(Po; Ci)k1 a posteriori1 must be found. Secondly, the

synthesis of a controller Ci+1 that satis�es (2) a priori2 must be formulated. To accomplish

both aspects, a set of models P will be identi�ed.

Basically, this set P will be built up from a nominal model P̂ that approximates Po,

along with a characterization of an upper bound of a mismatch between P̂ and Po, such

that Po 2 P . Subsequently, system identi�cation techniques can provide an estimate of

such a set P on the basis of data and (additional) prior information on both the data and

the plant Po, see e.g. [13, 36]. Hence, the estimated set P can be used to evaluate the

upper bound 
i a posteriori and to synthesise a controller that satis�es (2) a priori. In this

perspective, problem 2.1 can be tackled by including system identi�cation techniques and

considering the following problem formulation.

Problem 2.2 Let a plant Po and an initial controller Ci form a stable feedback connection.

To evaluate kJ(Po; Ci)k1 � 
i, consider the following step.

(a) Use experimental data and prior information on both the data and the plant Po to

estimate a set of models P i such that Po 2 Pi and determine


i = sup
P2Pi

kJ(P ;Ci)k1 (3)

Subsequently, consider the following steps.

(b) Design a controller Ci+1 such that

kJ(P;Ci+1)k1 � 
i+1 < 
i 8P 2 P i (4)

(c) Use (new) experimental data and prior information on both the data and the plant Po

to estimate a set of models Pi+1 such that Po 2 Pi+1 and

kJ(P;Ci+1)k1 � 
i+1 8P 2 Pi+1 (5)

1When the controller Ci is implemented on the plant Po
2Before implementing the controller Ci+1 on the plant Po
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The formulation of problem 2.2 is a rather general set-up to generate a sequence of

model-based controllers that will satisfy (2). Within this set-up, step (b) re
ects the design

of a robust controller in order to ensure (2). Both step (a) and (c) contain the estimation

of a set of models P . These steps will constitute an identi�cation problem to estimate the

set P and/or a model (in)validation problem [31] in order to guarantee Po 2 P. However,

both the identi�cation problem and the model (in)validation problem should be control

relevant. This is re
ected by the fact that the quality of the models P within a set P is

evaluated by the performance speci�cation kJ(P;C)k1, where step (a) and (c) di�er only

in the feedback controller C being used.

Repeatingly executing the subsequent steps (b) and (c) will formulate an iterative

scheme of identi�cation and control, were (4) and (5) re
ect respectively a controller and

a model closed loop validation test in order to enforce (2). Starting from step (a), where

Ci is the controller (initially) implemented on the plant Po, (3) can be viewed as an ini-

tial closed loop performance assessment test to evaluate kJ(Po; Ci)k1 a posteriori. In the

robust control design of step (b), equation (4) is needed to ensure (2) a priori. In this

way, both performance robustness and improvement of the upper bound on the closed-loop

performance can be guaranteed for Ci+1. The performance kJ(Po; Ci)k1 can be evaluated

a posteriori, by implementation of Ci+1 on the plant Po and estimating a new set Pi+1. If

indeed (5) is satis�ed, in step (b) again a new controller can be designed on the basis of

Pi+1.

Although the problem formulation in problem 2.2 is fairly general and somehow trivial,

it does provide a monotonic non-decreasing sequence of 
i. A similar idea was proposed

also in [2], but the results were limited to a set of models P described by weighted open

loop additive perturbations on the nominal model and a performance objective function

based on a (weighted) sensitivity function of the closed loop system. Whether or not a set

of models P described by open loop perturbations (additive as in [2] or multiplicative as

in [31]) is suitable for identi�cation and (in)validation purposes, still remains unanswered.

Obviously, to provide a feasible procedure for handling problem 2.2, the choice for the

structure of the set of models P should be addressed [33]. Summing up, the following

choices will be discussed in this paper.

� The control objective function J(P;C). It plays a crucial role in the closed loop

validation tests and the way the controller is to be designed.

� The structure of the set of models P. By characterizing the mismatch between a

nominal model P̂ and the plant Po within a set P, one should be able to evaluate the

closed performance assessment test (3) and the closed loop validation test of (4) and

(5) in a non-conservative way.

� Identi�cation procedure to estimate and (in)validate a set of models P. It should

take into account the control design application of the set P. Similar procedures are
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needed in step (a) and (c) by considering respectively the feedback controllers Ci and

Ci+1.

� Robust control design method. The design of a controller on the basis of a set of

models P in step (b) is needed to ensure (2).

The remaining part of the paper is devoted to the discussion of the items mentioned

above. First, the choice of the control objective function is discussed in section 3. In

section 4 the speci�cation and the motivation of the structure of the set of models P chosen

in this paper, will be elaborated. Subsequently, results to analyse performance robustness

on the basis of the set P being chosen, are presented in section 5. Based on this analysis,

the control design is discussed in section 6, while the identi�cation procedure to estimate

a set P can be found in section 7.

3 Control objective function

3.1 Feedback and stability

Let again P be used to denote either the plant Po or a model P̂ , then a feedback connection

of P and a feedback controller C is denoted with T (P;C) and de�ned as the connection

structure depicted in Fig. 1. If P equals Po and C equals the currently implemented con-

C

P

d���

d- -u y

r2

r1

ucyc

�
+

+ +
d-? -

+
+
v

?

6

Fig. 1: Feedback connection structure T (P;C).

troller Ci in Fig. 1, then the signals u and y re
ect respectively the inputs and outputs of

the feedback controlled plant Po. The signal v denotes an additive noise on the output y of

the plant. For identi�cation purposes, it is presumed that the noise v is uncorrelated with

the external reference signals r1, r2 and that it can be modelled as the output of a monic

stable and stably invertible noise �lter H0 having a white noise input e [20]. The signals u

and y are being measured and r1, r2 (and consequently uc, yc) are possibly at our disposal.

It is assumed that the feedback connection structure T (P;C) is well posed, that is

det(I + CP ) 6� 0 [4]. The mapping from col(r2; r1) onto col(y; u) is given by the transfer

function matrix T (P;C) with

T (P;C) :=

"
P

I

#
(I + CP )�1

h
C I

i
; (6)
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and the signals in the closed loop system T (Po; Ci) will satisfy"
y

u

#
= T (Po; Ci)

"
r2

r1

#
+

"
I

�Ci

#
(I + PoCi)

�1v: (7)

In case of an internally stable closed loop system T (P;C), all four transfer function matrices

in T (P;C) will be stable which implies T (P;C) 2 IRH1 for a real rational P , where IRH1

denotes the set of all rational stable transfer functions.

Using the theory of fractional representations, the (possibly unstable) transfer function

P will be expressed as a ratio of two stable transfer functions N and D. Following [35],

P has a right coprime factorization (rcf ) (N;D) over IRH1 if there exist X , Y , N and

D 2 IRH1 such that P = ND�1 andXN+Y D = I . In addition, a rcf (N;D) is normalized

if it satis�es N�N + D�D = I , where � denotes the complex conjugate transpose. Dual

de�nitions apply for left coprime factorizations (lcf ).

3.2 Performance speci�cation

The control objective function J(P;C) used in this paper is taken to be an input/output

weighted form of the transfer function matrix T (P;C) de�ned in (6)

kJ(P;C)k1 := kU2T (P;C)U1k1 (8)

where U2 and U1 are (square) weighting functions (not necessarily stable or stably invert-

ible). Now consider problem 2.2 with the positive real number 
i and a nominal model P̂ i,

then a controller Ci+1 is said to satisfy the nominal performance criterion if

kJ(P̂ i; Ci+1)k1 = kU2T (P̂ i; Ci+1)U1k1 � 
i (9)

In problem 2.2 the weighting functions U1 and U2 are assumed to be given and �xed in

order to compare J(P ;Ci) and J(P ;Ci+1) in the subsequent steps (b) and (c).

The reasoning to formulate the performance speci�cation as in (8) is due to the fact

that the feedback properties of any feedback system T (P;C) depend solely on the inner-

loop parts C and P that create the interconnection as depicted in Fig. 1. Although it is

impossible to transform any desirable control design objective into a single norm function

kU2T (P;C)U1k1, the performance characterization (8) has wide applicability. It may in-

clude a weighted sensitivity or mixed sensitivity characterization by proper modi�cation of

the weighting functions U2 and U1 [27].

4 Representation of uncertainty

4.1 Structure of uncertainty set

In this paper, the uncertainty set P, is built up from a nominal model P̂ along with a

characterization of an upper bound on the mismatch between the nominal model P̂ and
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the actual plant Po. The formulation of the set P used in this paper will be based on a

close connection with the dual Youla parametrization. To explain this close connection,

�rst consider this parametrization.

Lemma 4.1 Let a controller C have a rcf (Nc; Dc) and consider an auxiliary model Px with

a rcf (Nx; Dx) such that T (Px; C) 2 IRH1. Then any system P satis�es T (P;C) 2 IRH1

if and only if

9R 2 IRH1; such that P = (Nx +DcR)(Dx �NcR)
�1

Proof: See [9]. 2

The dual Youla parametrization of lemma 4.1 parametrizes all systems P that are in-

ternally stabilized by the controller C on the basis of an auxiliary model Px which is known

already to be stabilized by the controller C. This property is elaborated in the de�nition

of the uncertainty set used in this paper and is given in the following de�nition.

De�nition 4.2 Let a nominal model P̂ with a rcf (N̂; D̂) and a controller C with a rcf

(Nc; Dc) form an internally stable feedback connection T (P̂ ; C). Then the uncertainty set

P is de�ned by

P(N̂; D̂; Nc; Dc; V̂ ; Ŵ) := fP j P = (N̂ +Dc�R)(D̂�Nc�R)
�1

with �R 2 IRH1 and kV̂�RŴ k1 < 
�1g
(10)

for stable and stably invertible weighting functions V̂ and Ŵ .

The set P essentially depends on the factorization (N̂; D̂) of the nominal model P̂ , the

factorization (Nc; Dc) of the controller C and the weighting functions Ŵ , V̂ . Without loss

of generality, the bound on the uncertainty in (10) can also be normalized by the weighting

functions V̂ or Ŵ . Hence, the set P does not essentially depend on the number 
, but

bounding it by 
�1 will simplify notation considerably throughout the paper. Furthermore,

the arguments of P will be omitted in the sequel, since the dependency mentioned above

is clear from de�nition 4.2. For similar reasons of notational simplicity, it will be assumed

that �R in (10) is unstructured.

Clearly, the set Pi used in step (a) of problem 2.2 can be characterized by employing

the knowledge of the stabilizing controller Ci that is implemented on the actual plant Po.

Using a rcf (Nc;i; Dc;i) of Ci and a nominal model P̂ i with a rcf (N̂ i; D̂i) that satis�es

T (P̂ i; Ci) 2 IRH1, the set P i is given by

P i = fP j P = (N̂ i +Dc;i�R;i)(D̂i �Nc;i�R;i)
�1

with �R;i 2 IRH1 and kV̂ i�R;iŴ ik1 < 
�1i g
(11)
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for stable and stably invertible weighting functions V̂ i and Ŵ i. In exactly the same way, the

set Pi+1 of problem 2.2 can be obtained, by considering the known and stabilizing controller

Ci+1 in step (c) and a (new) nominal model P̂ i+1 that satis�es T (P̂ i+1; Ci+1) 2 IRH1.

Due to the close connection with the dual Youla parametrization, the uncertainty set Pi

in (11) contains only models that are stabilized by the currently implemented and known

controller Ci, regardless of the value 
i. This advantage, observed also by [27, pp. 139-141]

or [29], is not shared by alternative uncertainty characterizations, as e.g. an open loop

additive uncertainty description.

To anticipate on the results presented in the following sections, it can be noted here

that the set P of (10) will yield an a�ne expression in �R to evaluate U2T (P;C)U1 used in

the performance speci�cation (8). This is a basic reason to choose the uncertainty structure

(11); it can be exploited to formulate a control relevant identi�cation problem to handle

both step (a) and (c) of problem 2.2.

4.2 Representation via LFT's

Although the uncertainty set P is characterized fully by de�nition 4.2, the fairly general

framework to represent any uncertainty by use of a Linear Fractional Transformation (LFT)

[11] will be adopted in this paper. This LFT framework opens the possibility to rewrite

the uncertainty set P into a standard form to which standard results can be applied for

evaluating stability and performance.

To apply the LFT framework to the set P given in (10), the perturbation on the nominal

model P̂ is represented by an LFT with a norm bounded uncertainty � 2 IRH1 as depicted

in Fig. 2. In Fig. 2, the signals u and y denote respectively the input and output of any

-
-

Q

� �

-
u y

zd

Fig. 2: LFT representation of model perturbation.

model P 2 P, while the uncertainty on the nominal model P̂ is represented by the mapping

� between the �ctitious signals d and z. In this way, the mapping from u onto y for some

� 2 IRH1 is given by the upper LFT

Fu(Q;�) := Q22 +Q21�(I �Q11�)�1Q12 (12)

provided that (I �Q11�)�1 exists.

By de�ning d = V̂�RŴz, it can be veri�ed that the map from col(d; u) onto col(z; y)

for any P 2 P given in (10) can be represented by Fig. 3.
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Ŵ
�1

-
N̂D̂

�1

d

N c Dc
-�

?

6

?

V̂
�1

?

- d?

-
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?z
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+ + +
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Fig. 3: Representation of Q for the set of models P de�ned in (10).

On the basis of Fig. 3 the following alternative representation of the set P in (10) in

terms of an LFT can be obtained.

Corollary 4.3 The set of models P given in (10) can be written as

P = fP j P = Fu(Q;�) with � 2 IRH1; k�k1 < 
�1 and

Q =

"
Q11 Q12

Q21 Q22

#
=

"
Ŵ

�1
D̂
�1
NcV̂

�1
Ŵ

�1
D̂
�1

(Dc + P̂Nc)V̂
�1

P̂

# (13)

Proof: The entries of Q can be found by de�ning � = V̂�RŴ and considering the map

from col(d; u) onto col(z; y) in Fig. 3. 2

With the result of corollary 4.3, the set Pi of (11) as used in step (a) of problem 2.2,

can be expressed in an LFT representation. This representation is obtained by using the

upper bound 
i and modifying Q in (13) using the rcf (N̂ i; D̂i), the rcf (Nc;i; Dc;i) and the

weighting �lters V̂ i, Ŵ i. In a similar way, the LFT representation of the set Pi+1 can be

obtained.

5 Analysis of performance robustness

5.1 LFT representation

Referring to problem 2.2, the performance of a controller should be evaluated a posteriori

in step (a) for Ci and in step (c) for Ci+1, while the performance of the newly designed

controller Ci+1 must be guaranteed a priori in step (b). Due to the model-based approach,

the evaluation of the performance a posteriori and a priori can be handled relatively easily.

This can be done by evaluating the worst case performance, or similarly, checking robust
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performance of a controller C3 when applying C to all the models within an uncertainty

set. In order to be able to check performance robustness, the performance of a controller C

applied to any model P 2 Pi of (11) is written in terms of an LFT. In this way, standard

results present in literature [38] can be used to evaluate performance.

Lemma 5.1 Consider the set P i de�ned in (11) and a controller C such that the map

J(P;C) = U2T (P;C)U1 is well-posed for all P 2 P i. Then

P i = fP j J(P;C) = Fu(M;�) with � 2 IRH1; k�k1 < 
�1i g

where the entries of M are given by

M11 = �Ŵ
�1

i (D̂i + CN̂ i)
�1(C � Ci)Dc;iV̂

�1

i

M12 = Ŵ
�1

i (D̂i + CN̂ i)
�1
h
C I

i
U1

M21 = �U2

"
�I

C

#
(I + P̂ iC)

�1(I + P̂ iCi)Dc;iV̂
�1

i

M22 = U2

"
N̂ i

D̂i

#
(D̂i + CN̂ i)

�1
h
C I

i
U1

(14)

Proof: Consider a LFT representation of Pi similar to (13). Create the feedback connec-

tion of Q depicted in Fig. 2 with a controller C, where u := r1 + C(r2 � y) and de�ne

signals col(w1; w2) and col(d1; d2) such that col(r2; r1) = U1col(w1; w2) and col(e1; e2) =

U2col(y; u). It can be veri�ed that the map from col(d; w1; w2) onto col(z; e1; e2) is given by

the transfer function M in (14), whereas the map from col(w1; w2) onto col(e1; e2) equals

the upper LFT Fu(M;�). 2

With lemma 5.1, the (worst case) performance kJ(P ;C)k1 of a controller C applied to

all models P 2 Pi can be evaluated by

kFu(M;�)k1 = kM22 +M21�(I �M11�)�1M12k1 (15)

for all � 2 IRH1 with k�k1 � 
�1i . Note that the entries of the transfer function M

in (14) are determined solely by the controller C, the structure and the variables used to

represent the set Pi of (11) and the weightings U2, U1 of the performance speci�cation (8).

As a special entry of M , one can recognise M11 as the lower LFT Fl(Q;�C), whereas M22

equals the (nominal) performance speci�cation U2T (P̂ i; C)U1.

Clearly, the controller C in (14) still needs to be speci�ed. Referring to problem 2.2,

substituting C = Ci can be used for the performance assessment in step (a) a posteriori,

while setting C = Ci+1 can be employed to check and guarantee performance of Ci+1 a

priori in step (b). Similar results can also be obtained for the set Pi+1 used in step (c)

of problem 2.2.

3the symbol C will be used to denote either Ci or Ci+1
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As mentioned before, evaluating (15) can be done by applying standard results available

in the literature [24, 38]. However, in order to be able to compute the (worst case) perfor-

mance for the LFT given in (15) in a non-conservative way, the concept of � or structured

singular value [24] is needed.

5.2 Structured singular value

The structured singular value is a matrix function, denoted by �(M), where M can be any

(square) complex matrix. It plays a crucial role in the evaluation of performance robustness

[10], which is the main reason to use it in this paper.

The de�nition of �(�) depends on an underlying (diagonal) structure [10, 38]. This

structure, which will be denoted by �, is determined by the structure of the uncertainty

set and the performance objective function being used. The structured singular value �(�)

with respect to such a structure � will be denoted by ��(�). Using the symbol ��(�) to

denote the maximum singular value of �, the de�nition of ��(�) adopted from [11] reads

as follows.

De�nition 5.2 For a complex matrix M , the structured singular value ��(M) is de�ned

by

��(M) :=

8><
>:

1

min
�2�

f��(�)g
if 9� 2� s.t. det(I �M�) = 0

0 if 6 9� 2� s.t. det(I �M�) = 0

For reasons of simplicity that become apparent in section 5.3, in this paper the structure

� used in de�nition 5.2 is restricted to have a diagonal form, having two unstructured

uncertainty blocks �1 and �2 only. Now let M be partitioned as

M =

"
M11 M12

M21 M22

#
(16)

then the blocks �1 and �2 are compatible in size with M11 and M22, meaning that both

M11�1 and M22�2 are square. In this way the structure of � is given by

� :=

("
�1 0

0 �2

#
j �1;�2 2 IRH1; k�1k1 < 1; k�2k1 < 1

)
: (17)

In general ��(M) is approximated by computing upper and lower bounds. The upper

bound is derived by the computation of non-negative scaling matrices Dl and Dr de�ned

within a set D that commutes with the structure �. One is referred to e.g. [24] for a

detailed discussion on the speci�cation of such a set D of scaling matrices. Basically, the

commutation of D with � implies that for all Dl; Dr 2 D and for all � 2�, Dr� = �Dl

and ��(M) = ��(DlMD�1
r ). This gives rise to the computation of the following upper

bound.
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��(M) � inf
Dl;Dr2D

��(DlMD�1
r ) (18)

The in�mization formulated in (18) can be reformulated as a convex optimization prob-

lem [24]. However, for the special cases of M and � used in this paper, it is possible to

compute ��(M) exactly.

Lemma 5.3 Consider the structure � given in (17) and ��(M) given in de�nition 5.2,

then

��(M) = inf
Dl;Dr2D

��(DlMD�1
r )

Proof: The structure � consists of two full blocks. Application of theorem 9.1 in [24] or

theorem 11.5 in [38] yields the result. 2

5.3 Evaluating performance

The properties of ��(M) as given in de�nition 5.2 and the result mentioned in lemma 5.3

can now be used to study the upper LFT Fu(M;�) of (15). In this way, the worst case

performance for all stable norm bounded perturbations can be evaluated by using standard

results that are available in the literature [24, 38] as formulated in the following lemma.

Lemma 5.4 Consider stable transfer functions M;� 2 IRH1 where M is partitioned as

in (16) and ��(M) is de�ned related to the structure � given in (17). Then Fu(M;�) is

well-posed, BIBO stable and kFu(M;�)k1 � 
 for all � with k�k1 < 
�1, if and only if

��(M) � 
 (19)

Proof: By setting � = �1 and adding a �ctitious full block uncertainty �2 2 IRH1 with

k�2k < 
�1, the uncertainty structure (17) is obtained. Application of the main loop

theorem, similar as in theorem 11.7 in [38] now proves the result. 2

The result of lemma 5.4 opens the possibility to evaluate the (worst case) performance

of a controller C applied to a set of models P in a non-conservative way. This set of models

P can be either Pi as used in step (a) and (b) of problem 2.2, or a newly identi�ed set of

models P i+1 as used in step (c). The result for evaluating the performance of a controller C

applied to the Pi of (11) is stated in the following theorem. Similar results can be derived

for P i+1.

Theorem 5.5 Consider the set Pi de�ned in (11) and a controller C such that T (P̂ i; C) is

well-posed, internally stable and satis�es U2T (P̂ i; C)U1 2 IRH1. Then, for all P 2 Pi, the
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feedback system T (P;C) is well-posed, internally stable and satis�es kU2T (P;C)U1k1 � 
i

if and only if

��

 "
Ŵ

�1

i 0

0 U2

#
Text(P̂ i; Ci; C)

"
�V̂

�1

i 0

0 U1

#!
� 
i (20)

where Text(P̂ i; Ci; C) is given by2
664

Zi(C � Ci)Dc;i Zi

h
C I

i
 "

N̂ i

D̂i

#
ZiC +

"
I

0

#!
(Dc;i + P̂ iN c;i)

"
N̂ i

D̂i

#
Zi

h
C I

i
3
775 (21)

where Zi = (D̂i + CN̂ i)
�1 = D̂

�1

i (I + CP̂ i)
�1.

Proof: Lemma 5.1 connects Fu(M;�) with U2T (P;C)U1 for all P 2 P i. The expression

for Text(P̂ i; Ci; C) can be found by use of (14) and algebraic manipulation. Applying

lemma 5.4 yields the necessary and su�cient condition for kFu(M;�)k1 � 
i to hold for

all P 2 Pi. 2

Referring to problem 2.2, substituting C = Ci in (20) can be used for the performance

assessment in step (a) a posteriori. On the other hand, substitution of C = Ci+1 in (20) can

be used to check and guarantee performance robustness of Ci+1 in step (b) a priori. Recall

from lemma 5.3 that for structure �4 the value of (20) can be computed exactly. Similar

results can be derived also for the set of models Pi+1 as used in step (c) of problem 2.2.

Finally, it can be observed from (21) or (14) that substitution of C = Ci yields M11 = 0.

This implies that the controller Ci applied to the (identi�ed) set of models Pi satis�es

stability robustness [38], regardless of the value of 
�1i . This was one of the motivations

already mentioned in section 4.1 to use the uncertainty set (11). Moreover, the upper LFT

Fu(M;�) modi�es into

M22 +M21�M12 (22)

which is an a�ne expression in �. The stucture of (22) will be exploited in section 7.2

to formulate a (control relevant) identi�cation problem, by employing the knowledge of a

stabilizing controller that is implemented on the (unknown) plant Po. First, the robust

control design in step (b) of problem 2.2 will be discussed.

6 Robust control design problem

In order to satisfy (4) in step (b) of problem 2.2, a controller Ci+1 can be designed by the

minimization

Ci+1 = argmin
C

sup
P2Pi

kJ(P;C)k1 (23)

4in the case of unstructured �R
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Basically, (23) is a robust performance control design, wherein the controller Ci+1 is being

designed, such that the worst case performance J(P;Ci+1) for all P 2 P i is being optimized.

Substitution of C = Ci+1 in theorem 5.5 yields a necessary and su�cient condition for

the expression (4) to hold. Hence, the minimization (23) to synthesise a controller Ci+1

can be replaced by the minimization

Ci+1 = argmin
C

��

 "
Ŵ

�1

i 0

0 U2

#
Text(P̂ i; Ci; C)

"
�V̂

�1

i 0

0 U1

#!
(24)

Basically, (24) is a �-synthesis problem that can be tackled by using the upper bound (18)

and solving

min
C

inf
Dl;Dr2D






Dl

"
Ŵ

�1

i 0

0 U2

#
Text(P̂ i; Ci; C)

"
�V̂

�1

i 0

0 U1

#
D�1
r







1

(25)

iteratively for the scaling matrices Dl, Dr and the controller C, subjected to internal stabil-

ity of the feedback connection of C and P̂ i. This iteration is known as the D-K iteration5

and for �xed scaling Dl; Dr with Dl; D
�1
r 2 IRH1 (25) is an H1 optimization problem, for

which standard solutions exists, see e.g. [38]. Although convergence of the D-K iteration

is not guaranteed, several successful applications have been reported in the literature. Fur-

thermore, it should be stressed that precise minimization of (24) is not needed. If su�ces

to �nd a controller Ci+1 that satis�es (20), or equivalently (4).

In order to use the available standard results on H1 controller synthesis, the transfer

functionM of the LFT Fu(M;�) should be represented as a lower fractional transformation

Fl(G;C) as illustrated in Fig. 4.

yc

-
-

-
G

C �

-
-

DlD�1
rmin

C











1

-
-

-
-

uc

d
w e

z

Fig. 4: Controller synthesis via H1 optimization for �xed D-scaling.

This can be done by extracting the controller C from the expression of M given in (14)

and is given in the following corollary.

5the naming D-K iteration is widely used in the literature and is adopted here, although D-C would be

more appropriate
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Corollary 6.1 Consider the map M given in (14), then M = Fl(G;C) where G is given

by

G =

2
664
Ŵ

�1

i 0 0

0 U2 0

0 0 I

3
775
2
66664

D̂
�1

i Nc;i D̂
�1

i 0 D̂
�1

i

(Dc;i + P̂ iNc;i) P̂ i 0 P̂ i

0 I 0 I

�(Dc;i + P̂ iN c;i) �P̂ i I �P̂ i

3
77775
2
664
�V̂

�1

i 0 0

0 U1 0

0 0 I

3
775

Proof: The entries of G can be found by the map from col(d; w; yc) onto col(z; e; uc) in

Fig. 4. 2

Finally it can be noted that the control design discussed here is a generalization of

the robust controller synthesis as presented in e.g. [3] or [22]. It can be veri�ed from

corollary 6.1 that by ignoring the map from d onto z (representing the uncertainty), G

reduces to "
U2 0

0 I

#2664
P̂ i 0 P̂ i

I 0 I

�P̂ i I �P̂ i

3
775
"
U1 0

0 I

#

and M = Fl(G;C) = U2T (P̂ i; C)U1. In the special case of a diagonal weighting function

U = diag(Uin; U
�1
out) with U2 = U and U1 = U�1, the controller Ci+1 that minimizes

kUT (P̂ i; Ci+1)U�1k1 can be found by loop shaping techniques [3, pp. 107-108]. Explicit

state space formulae of the optimal controller for this special case can be found in [3] or [22].

7 Identi�cation problem

7.1 Introduction

This section deals with the problem of estimating a set of models that appears both in step

(a) and (c) of problem 2.2. Estimating the set Pi such that 
i in (3) is as small as possible

in step (a), could be achieved by solving

min
Pi

sup
P2Pi

kJ(P;Ci)k1 (26)

subjected to the condition Po 2 Pi. Similarly, a set Pi+1 such that (3) will be satis�ed in

step (c) can be found by

min
Pi+1

sup
P2Pi+1

kJ(P ;Ci+1)k1 (27)

again subjected to the condition Po 2 Pi+1. Clearly, the identi�cation problems of step (a)

and (c) are similar and di�er only in the controller being implemented on the plant Po.

According to de�nition 4.2, the structure of the set of models is determined by a fac-

torization (N̂; D̂) of a nominal model P̂ and the weighting functions (V̂ ; Ŵ). Omitting the



Suboptimal Feedback Control 18

indices i and i + 1 for notational convenience, a set P that minimizes either (26) or (27)

can be solved by

(N̂; D̂; V̂ ; Ŵ) = arg min
N;D;V ;W

sup
P2P

kJ(P ;C)k1 (28)

subjected to both Po 2 P and internal stability of the feedback connection T (P̂ ; C). At

the current state, the minimization of (28) using the variables (N̂ ; D̂; V̂ ; Ŵ) simultaneously,

cannot be solved directly. Therefore, the minimization of (28) is tackled by estimating the

rcf (N̂ ; D̂) and the pair (V̂ ; Ŵ) separately:

� Estimation of a nominal model

This involves the estimation of P̂ = N̂D̂
�1

such that (28) is being minimized using

the rcf (N;D) only, subjected to internal stability of T (P̂ ; C). The pair (V̂ ; Ŵ ) is

unknown and assumed to vary freely in order to satisfy Po 2 P.

� Estimation of uncertainty

This consists of the characterization of an upper bound on �R in (11) via (V̂ ; Ŵ)

such that (28) is being minimized using (V;W ) only, subjected to Po 2 P. The rcf

(N̂; D̂) is �xed to the estimate obtained above.

By the separate identi�cation of the rcf (N̂ ; D̂) and the weighting functions (V̂ ; Ŵ)

only an upper bound on (28) can be minimized. However, it should be stressed that precise

minimization of (28) is not needed. If su�ces to �nd a set of models that passes the

validation test of (3) or (5). Furthermore, (standard) tools to estimate a nominal model

and to characterize uncertainty can be applied as indicated in the following two sections.

Finally it can be noted that due to the separation being made, the attention can be focused

on �nding models of limited complexity [32]. The rationale is to avoid the computation of

controllers on the basis of highly complex models as much as possible, since this will lead

to high order controllers for which the computation may be badly conditioned.

7.2 Estimation of a nominal model

Following the separate identi�cation of nominal model and uncertainty, this section deals

with the estimation of a (possibly unstable) nominal model. The minimization of (28) on

the basis of the rcf (N;D) only, will be used to estimate a nominal model P̂ of limited

complexity. Hence, to obtain a nominal model P̂ i or nominal rcf (N̂ i; D̂i) such that 
i in

(3) is as small as possible, can be achieved by

min
N;D

sup
P2Pi

kJ(P;Ci)k1 (29)

where Po 2 P i and (N;D) is a rcf of limited complexity. Similar arguments can be given

when estimating a nominal model P̂ i+1 in step (c) of problem 2.2.
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Clearly, the set Pi is (still) unknown and the minimization of (29) cannot be solved

directly. Instead, an identi�cation problem to estimate a rcf of a nominal model can be

formulated by evaluating kJ(P ;Ci)k1 only, using the following triangular inequality [27].

kJ(P;Ci)k1 � kJ(Po; Ci)k1 + kJ(P ;Ci)� J(Po; Ci)k1 (30)

As kJ(Po; Ci)k1 in (30) does not depend on the nominal model, the rcf (N̂ i; D̂i) of a

nominal model P̂ i found by the minimization

(N̂ i; D̂i) = argmin
N;D

kJ(P;Ci � J(Po; Ci)k1 (31)

can be used to formulate a control relevant identi�cation of a nominal model.

Minimization of (31) on the basis of closed loop experiments obtained from the feedback

connection of the plant Po and the controller Ci, has been studied extensively in [7] and

[34]. Following these references, access to a rcf of the plant Po denoted by (No;F ; Do;F ) is

used to minimize (31). Such a rcf (No;F ; Do;F ) can be obtained by considering the map

from an auxiliary signal x onto col(y; u). The signal x is found by an appropriate �ltering

of the closed loop signals

x = F
h
C I

i " r2
r1

#
= F

h
C I

i " y
u

#
(32)

depicted in Fig. 1. In this way, the rcf of the plant Po that can be accessed is given by"
y

u

#
=

"
No;F

Do;F

#
x+

"
Sout

�CiSout

#
v

with No;F := PoSinF
�1; Do;F := SinF

�1:

(33)

For exact details on the construction of the �lter F mentioned in (32), one is referred to

e.g. [7] or [34]. For a model P i(�) parametrized by a rcf (Ni(�); Di(�)) with � 2 �, where

� is given by

� := f� 2 IRn j (N(�); D(�)) 2 IRH1g � IRn (34)

the following result can be used to minimize (31).

Lemma 7.1 Let Po and C create an internally stable feedback system T (Po; C) and let

(No;F ; Do;F ) be the rcf of Po as given in (33), where F is an appropriate �lter used in (32).

Consider any model P i(�) = N i(�)Di(�)
�1 then

(i) for all � 2 � of (34) there exists a rcf (N i(�); Di(�)) of P i(�) such that

Di(�) + CiN i(�) = F�1:
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(ii) the minimization of (31) equals

min
�2�






U2
 "

No;F

Do;F

#
�

"
N i(�)

Di(�)

#!
F
h
Ci I

i
U1







1

(35)

where (N i(�); Di(�)) is any rcf of P i(�) that satis�es (i).

Proof: See [7] 2

It should be noted that the minimization of (35) for a �xed �lter F is not straightfor-

ward, due to the 1-norm criterion. An alternative would be the approximation of (35)

by the minimization of an 2-norm speci�cation. This is motivated by the fact that an

L2-norm approximation tends to L1-norm approximation provided that some smoothness

conditions6 are satis�ed [5]. Similar arguments are used also in [27, pp. 158]. To mini-

mize (35) using a H2-norm can be accomplished by use of the signals x and col(y; u) and

application of a least squares prediction error algorithm [20] employing an output error

model structure, see e.g. [34]. An approach to minimize the H1-norm in (35) for a �xed

�lter F can be found in [6]. Similar to the procedure described in [15], frequency domain

measurements are used in order to evaluate and approximate the H1 criterion.

7.3 Estimation of model uncertainty

From the control relevant identi�cation discussed in the previous section, only a nominal

model P̂ i is obtained. If the controller Ci internally stabilizes P̂ i, the set Pi of (11) can be

completed by solving

min
V ;W

sup
P2Pi

kJ(P ;Ci)k1 (36)

where Po 2 P i and (V;W ) are stable and stably invertible and of limited complexity. As

the weighting functions in P i are used only to bound �R;i in (11), the minimization in (36)

can be handled by a system identi�cation procedure that is able to estimate the smallest

(frequency dependent) upper bound on �R;i such that Po 2 Pi. The system identi�cation

used for this purpose will be discussed by �rst considering the following proposition.

Proposition 7.2 Consider a controller Ci with rcf (N c;i; Dc;i), a nominal model P̂ i with

rcf (N̂ i; D̂i) and a plant Po. Let the feedback connections T (Po; Ci) and T (P̂ i; Ci) be

internally stable and de�ne

x := (D̂i + CiN̂ i)
�1
h
Ci I

i " y

u

#

z := (Dc;i + P̂ iNc;i)
�1
h
I �P̂ i

i " y

u

# (37)

6to verify the smoothness conditions, knowledge on the actual plant Po is required
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where y = Pou+ v and u = r1 + Ci(r2 � y). Then

z = �R;ix+Dc;i(I + PoCi)
�1v (38)

where �R;i 2 IRH1 and x is uncorrelated with v.

Proof: Equation (38) and the property x ? v can be veri�ed by algebraic manipulation,

see [32]. The property �R 2 IRH1 follows from lemma 4.1. 2

Proposition 7.2 gives rise to an equivalent open loop identi�cation problem of the stable

dual Youla parameter �R, as also been indicated in [16] or [19]. However, compared to the

approach followed in these references, the dual Youla parameter is being used here only to

construct the set Pi of (11) such that Po 2 P i.

The system identi�cation procedures described by [36] or [13] can be used to obtain

a frequency dependent upper bound �(!) on the additive error between the frequency

response of the stable rational transfer function �R;i(!) and a stable parametric estimate

R̂i(!). As a result, a frequency dependent upper bound �(!)

k�R;i(!)k � �(!) with probability � � (39)

can be obtained, where � is a prechosen probability and �(!) = kR̂i(!)k + �(!). In the

multivariable case, the upper bound (39) can be obtained for each transfer function, but to

avoid comprehensive notations, it is assumed that �R is unstructured in (39).

On the basis of the frequency dependent information �(!) obtained in (39), the linear

programming algorithm presented in [26] can be used to �nd stable and stably invertible

weighting functions (V̂ i; Ŵ i) of limited complexity. However, in order to �nd (V̂ i; Ŵ i) such

that (36) is being minimized, additional weightings in the LPSOF algorithm of [26] need to

be speci�ed. According to lemma 5.1, evaluating kJ(P;C)k1 for all P 2 Pi is equivalent

to evaluating kFu(M;�)k1 as mentioned in (15). However, with C = Ci the upper LFT

Fu(M;�) modi�es into the a�ne expression of (22). Applying the triangular inequality

kM22 +M21�M12k1 � kM22k1 + kM21�M12k1

yields the weightings M21 and M12 to be used in the LPSOF algorithm. The entries M21

and M12 can be found by using (14) and � = V̂ i�R;iŴ i from (11).

8 Validation tests

The performance assessment test of (3) and the closed loop validation tests given in (4)

and (5) needed to handle problem 2.2, can be found by combining the result presented

in the previous sections. The estimate of a rcf (N̂ i; D̂i) discussed in section 7.2 and the

weighting functions (V̂ i; Ŵ i) discussed in section 7.3 are used to construct the set Pi. The
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performance assessment test of (5) can now be performed by using the result mentioned

in theorem 5.5 for C = Ci. For C = Ci+1, theorem 5.5 can also be used to perform the

validation of a newly designed controller Ci+1 in (4).

If the controller Ci+1 passes the validation test (4), it can be implemented on the plant

Po. A new set Pi+1 can be constructed by estimating a rcf (N̂ i+1; D̂i+1) and weighting

functions (V̂ i+1; Ŵ i+1) on the basis of closed loop experiments using the newly designed

controller Ci+1. Similarly, the validation of the set Pi+1 in (3) can be veri�ed with the

result mentioned in theorem 5.5.

It should be noted, that an estimate of the weighting functions V̂ and Ŵ is required

to synthesize a robust controller, in order to form a state space realization of G given

in corollary 6.1. The validation tests mentioned in problem 2.2 can be evaluated also by

plotting ��(M(!)) along a frequency grid ! and inspecting the peak value. In this way,

the estimated upper bound �(!) of (39) can be used directly, by setting V̂
�1

i (!) = �(w)
i

or Ŵ
�1

i (!) = �(w)
i.

9 Conclusions

In this paper a model-based iterative procedure of identi�cation and robust control design is

introduced wherein the robust performance is monitored during the subsequent steps of the

iterative scheme. By monitoring the performance, the possibility to guarantee performance

improvement in the iterative scheme is being employed.

To monitor performance, a set of models is used. The set is built up from a nominal

model along with an upper bound on an allowable perturbation such that the set is guar-

anteed to contain the unknown plant. The nominal model is described by a stable coprime

factorization having a prespeci�ed McMillan degree, while the set of models is constructed

by considering a stable perturbation in a dual Youla parametrization. This speci�c struc-

ture of the set is induced by the performance cost being used and can be exploited to

formulate a (control relevant) identi�cation problem to estimate the set. Currently, sys-

tem identi�cation techniques are available to estimate such a set and these techniques are

utilized in this paper.

To obtain performance robustness, robust control design tools are used to synthesise

controllers on the basis of a set of models being estimated. Finally, to guarantee perfor-

mance improvement robustly, closed loop model and controller validation tests have been

formulated in this paper, which should be veri�ed in each step of the iterative scheme.
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