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ABSTRACT
This paper discusses the approximate and feedback relevant

parametric identification of a positioning mechanism present in
a wafer stepper. The positioning mechanism in a wafer stepper
is used in chip manufacturing processes for accurate position-
ing of the silicon wafer on which the chips are to be produced.
The accurate positioning requires a robust and high performance
feedback controller that enables a fast through put of silicon
wafers. A set of multivariable finite dimensional linear time in-
variant discrete time models will be estimated, that is suitable
for model-based robust control design of the positioning mecha-
nism.

INTRODUCTION

Wafer steppers combine a high accuracy positioning
and a sophisticated lithographic process to manufacture in-
tegrated circuits (chips) via a fully automated process. By
means of a photolithographic process, the chip architecture
is exposed on the surface of a wafer, a silicon disk covered
with photo resist. In the application discussed in this pa-
per, the wafer is supposed to carry approximately 80 chips.
In order to expose the surface of the wafer, each chip is
processed sequentially. Such a sequential process is needed
as only one mask of the chip layout is available during the
exposure fase of the photolithographic process. For that
purpose, the wafer is placed on a moving table that needs
to be moved (stepped) in 3 Degrees Of Freedom (3DOF)
accurately for the sequential processing of the chips on the
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wafer.
Clearly, both the accuracy and the speed of the servo

mechanism during the subsequent steps of the wafer will in-
fluence the success and throughput of the production pro-
cess of the chips on the wafer. Sophisticated control of this
(multivariable) servo mechanism can help in achieving a
required throughput by designing a multivariable feedback
controller that is able to satisfy high performance require-
ments (de Roover et al. 1996). A model that describes the
dynamical behaviour of the servo mechanism is needed to
design such a controller thoughtfully.

A dynamical model can be obtained by first principle
modelling, see e.g. de Roover and van Marrewijk (1995).
Although such a model provides valuable knowledge of the
dynamical behaviour, either the numerical completion of
specific elements in the servo system is undiscoverable or
deliberate assumptions are posed to simplify the modelling.
This causes the model to deviate from the actual dynamical
behaviour of the system. Alternatively, a system identifica-
tion procedure can be exploited in which experimental data
is used directly. In this way, a model describing the dynam-
ical behaviour is evaluated directly on the basis of the data
coming from the actual system (Ljung 1987).

Although both modelling procedures provide insight
in the dynamical behaviour of the positioning mechanism
present in a wafer stepper, it is impossible to exactly char-
acterize all phenomena describing the dynamics. On the
one hand exact modelling can be impossible or too costly,
on the other hand control design methods can get unman-
ageable if they are applied to models of high complexity. As
a result, the model obtained is only an approximation of the
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system to be controlled. As the validity of any approximate
model hinges on its intended use, the modelling procedure
being applied should take into account the intended use of
the model; control design.

MODELLING FOR CONTROL

In this paper the attention is focused on deriving Finite
Dimensional Linear Time Invariant (FDLTI) models via
system identification techniques that approximates the dy-
namical behaviour of the positioning mechanism in a wafer
stepper. For an existing servo mechanism present in a wafer
stepper, time domain observations are gathered to estimate
models that can be used for subsequent controller design.
The aim of this paper is to outline the system identification
procedure being used and the performance improvement ob-
tained when designing a multivariable controller.

In order to estimate models suitable for control design,
the following requirements should be satisfied. Preferably,
the models should be a linear description of actual sys-
tem to be controlled. In this way, standard tools for lin-
ear model-based control design can be used. Furthermore,
control design methods become unmanageable if they are
applied to models of high complexity. Hence, linear models
should have a reasonable model order in order to formu-
late a manageable control design problem. As the models
will be necessarily approximative, it should contain those
dynamical aspects that are important for control design
(Schrama 1992b). Finally, the identification procedure be-
ing used should be able to deal with data that is obtained
under closed-loop (controlled) conditions. This is due to
the fact that many engineering systems are unable to oper-
ate without additional control, including the position servo
mechanism of the wafer stepper.

Estimating a linear model can be done by existing
system identification techniques reported in the litera-
ture (Ljung 1987, Söderström and Stoica 1989) and avail-
able in the corresponding commercial software packages
(Ljung 1995). However, application of these techniques to
find models on the basis of closed-loop experiments that
capture the dominant dynamical aspects relevant for feed-
back, is by far trivial. Estimating such models boils down to
the fact that models, suitable for control design, can only be
found by taking the closed loop operation of the model into
account (Schrama 1992a). In general, this leads to identi-
fication problem in which the criterion used for designing
the subsequent controller should also be used to deduct the
model. See for example the work by Zang et al. (1995) for
LQG-based controller design.

As the resulting model is just an approximation of the
system to be identified, the controller based on the model
has to be robust against any dissimilarities between the

model and the system. This has been a motivation for
the development of identification techniques that estimate
an upper bound on the model error, see for example the
contributions by Goodwin et al. (1992), Helmicki et al.
(1993), Partington and Mäkilä (1995) Mäkilä and Parting-
ton (1995) and the references therein. The resulting model
error constitutes an allowable model perturbation around a
nominal model being estimated and defines a set of mod-
els where the actual system is assumed to be an element of.
Subsequently, a robust controller can be designed on the ba-
sis of this set of models (Doyle et al. 1992). In this approach
stability and performance requirements are guaranteed for
the complete set of models, that includes the actual system
to be controlled. The estimation of such a set of models for
the design of a robust controller for the positioning mecha-
nism of the wafer stepper is the main item in this paper.

In order to estimate such a set of models by the es-
timation of a (low complexity) nominal model along with
its allowable model perturbation, the identification proce-
dure discussed in this paper uses the algebraic framework
of stable fractional model representations, similarly as in
de Callafon et al. (1994) or Van den Hof et al. (1995).
The reasoning to use such a fractional model representa-
tions is due to the ability to deal with both stable, unsta-
ble or marginally unstable systems, such as the positioning
mechanism discussed in this paper. As such, this approach
enables one to find a set of feedback relevant models by esti-
mating stable factorizations of a nominal model along with
a stable perturbation on the allowable model perturbations.
Furthermore, the fractional approach can deal with obser-
vations obtained under closed-loop (controlled) conditions
relatively easily.

WAFER STEPPER SERVO MECHANISM

Description of servo mechanism

The servo mechanism discussed in this paper is an in-
tegral part of the Silicon Repeater 3rd generation (SIRE3)
wafer stepper. The moving table, called the wafer chuck,
that needs to position the wafer, is equipped with a air
bearing and placed on a large suspended granite block to
reduce the effect of external vibrations. The position of the
wafer chuck on the horizontal surface of the granite block
is measured by means of laser interferometry. A schematic
overview of this servo mechanism is depicted in Figure 1.

Relative movements of the wafer chuck are measured
by determining the phase shift of the laser beams reflected
on the mirror block depicted in Figure 1. As the horizon-
tal plane allows three degrees of freedom, three laser mea-
surements uniquely determine the horizontal position of the
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Figure 1. SCHEMATIC VIEW OF A WAFER STAGE; 1:WAFER CHUCK,

2:LASER INTERFEROMETERS, 3:LINEAR MOTORS.

wafer, whereas three linear motors are used to position the
wafer chuck in 3DOF. This makes the servo mechanism of
the wafer stepper a multivariable system, having three in-
puts and three outputs. The inputs reflect the currants to
the three linear motors, whereas the outputs are constructed
by measuring the position of the wafer chuck both in x-, y-
direction (translation) and the φ-direction (rotation).

Experimental set up

In order to perform an identification and test the control
of the servo mechanism, an experimental set up has been
provided by the Philips Research Laboratories and has been
depicted in Figure 2

Figure 2. PHOTO OF EXPERIMENTAL SET UP

The experimental set up is equipped with a computer

interface to measure the position in x-, y- and φ-direction
of the wafer chuck on discrete time samples via a digital
signal processor. Due to safety requirements and operating
conditions of the laser interferometers, the signals can be
measured only if a (digital) controller is used to control the
positioning of the wafer chuck. Such a digital controller can
be implemented using the same digital signal processor.

Consequently, only (discrete time) measurements ob-
tained under feedback can be gathered for identification
purposes. Additional external reference signals can be ap-
plied to the feedback connection of the positioning mech-
anism to provide sufficient excitation (Ljung 1987) while
gathering data for identification. A schematic overview of
the signals that can be accessed in the feedback connection
is depicted in the block diagram of Figure 3.
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Figure 3. BLOCK DIAGRAM OF EXPERIMENTAL SET UP OF FEED-

BACK CONTROLLED POSITIONING MECHANISM

As indicated in Figure 3, the positioning mechanism
of the wafer chuck is denoted by Po, while the feedback
controller currently used to control Po is denoted by Co. In
the current experimental set up, the controller Co consists
of 3 parallel PID controllers controlling the positioning in
x- y- and φ-direction separately. The feedback connection
of Po and the controller Co is denoted by T (Po, Co).

Control of the positioning mechanism

Next to the purpose of providing sufficient excitation
of T (Po, Co), the reference signals in Figure 3 can be used
to move or step the wafer chuck in a desired direction. As
such, the signals r1 and r2 can be used to evaluate the per-
formance of the feedback controlled positioning mechanism
by applying a reference signal r2 and a feed forward signal
r1 in order to track a certain desired position signal y of
the wafer chuck. In this way, the input signal uc to the con-
troller Co reflects the servo error between a desired reference
r2 and the actual desired position y.

Controlling the positioning mechanism of the wafer
chuck aims at minimizing the servo error, while moving the
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chuck as fast as possible. The design specification for the
SIRE3 wafer stepper is to bring the servo error within a
bound of 52nm (4 times the measurement resolution) as
soon as possible after a step has been performed. This is
due to the fact that the chuck must be kept in a constant
position before a chip can be exposed on the surface of the
wafer.

Henceforth, controlling the positioning of the wafer
chuck requires the combined design of both a feedback con-
troller and the appropriate reference r2 and feed forward
signal r1 (de Roover et al. 1996). In this paper however, the
attention is focused on the identification of a set of mod-
els, denoted by P, to improve the design of the feedback
controller only.

In order to compare feedback controllers designed on
the basis of the set of models P being estimated, the sig-
nals r2 and r1 are fixed to some prespecified desired trajec-
tory. This prespecified trajectory is based on the dominat-
ing open loop dynamical behaviour of Po that is given by a
double integrator, relating the force generated by the linear
motors to the position of the wafer chuck. Based on this
relatively simple model, r2 will denote a desired position
profile, whereas r1 denotes (a scaled) acceleration profile
obtained by computing the second derivative of r2. A typ-
ical shape of the reference signal r2 and the feed forward
signal r1 to position the wafer chuck in either the x- or y-
direction over 1cm is depicted in Figure 4.

In Figure 4, the position profile r2 is obtained by al-
lowing a maximum jerk (derivative of acceleration) and a
maximum speed of the wafer chuck. The resulting acceler-
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Figure 5. SERVO ERROR RESPONSE TO A STEP IN X-DIRECTION

ation profile r1 is the second derivative of r2. Application
of both reference signals in either an x- or y-direction is
labelled as a step respectively in x- or y-direction. Using
these specified reference signals r1 and r2 for the current
experimental set up in which 3 parallel PID controllers are
used to control the positioning in x- y- and φ-direction sep-
arately, the servo error uc,x depicted in Figure 5 for a step
in the x-direction is obtained.

It can be observed from Figure 5 that the servo error
uc,x is hardly within the bounds of 52nm indicated by the
dotted lines. Furthermore, uc,x exhibits a low frequent vi-
bration after the step has ended. As a result, the settling
time of the step is strongly influenced and both an improve-
ment of the speed of decay and a reduction of the low fre-
quent vibration of the servo error is desired to improve the
behaviour of the servo mechanism.

PRELIMINARIES

Data obtained from experimental set up

For analysis purposes, Po is considered to be a discrete
time linear time invariant map that is characterized by the
difference equation

y(t) = Po(q)u(t) + v(t)

where t = k∆T, k = 0, 1, 2, . . . denotes the discrete time
character of the signals being processed by the digital pro-
cessor and qu(t) = u(t + 1) denotes the forward shift. The
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signals u and y respectively denote the input (currants to
the linear motors) and a disturbed output (measured po-
sition in x-, y- and φ−direction) of the positioning mech-
anism. The signal v is used to model to disturbance that
may present on the output y. The signals u and y are mea-
surable and sampled with a sampling time ∆T = 3 · 10−4,
while known reference signals r1 and r2 are applied to pro-
vide sufficient excitation of T (Po, Co).

It is assumed that the feedback connection T (Po, Co)
is well posed, that is det(I + CoPo) 6≡ 0 (Boyd and
Barrat 1991) and the mapping from the signals col(r2, r1)
onto col(y, u) is given by the transfer function matrix
T (Po, Co) with

T (Po, Co) :=
[

Po

I

]
(I + CoPo)−1

[
Co I

]
, (1)

As a result, the data obtained from the feedback connection
T (Po, Co) of Figure 3 can be described by

[
y
u

]
= T (Po, Co)

[
r2

r1

]
+

[
I

−Co

]
(I + PoCo)−1v (2)

For identification purposes, it is presumed that the noise v
is uncorrelated with the external reference signals r1, r2 and
that it can be modelled as the output of a monic stable and
stably invertible noise filter H0 having a white noise input
e (Ljung 1987).

Norm-based control design

As indicated in Figure 5 the behaviour of the servo
mechanism needs to be improved in order to reduce the
settling time of the wafer chuck. For that purpose, a multi-
variable feedback controller is (re)designed on the basis of
the set of models P found by system identification.

In order to design the feedback controller, a norm-
based control design will be used. In this way, the design
specifications are translated in a control objective function,
whereas a norm of the function is used to indicate the per-
formance of the resulting feedback connection. For nota-
tional convenience a control objective function is denoted
by J(P ,C) ∈ RH∞, where P and C are FDLTI (possibly
unstable) mappings and used to denote respectively a sys-
tem and a feedback controller. The notion of performance
will be characterized by the value of the norm ‖J(P ,C)‖∞:
a smaller value of ‖J(P ,C)‖∞ indicates better performance
(Van den Hof and Schrama 1995).

The mapping from the reference signals (r2, r1) to the
output and input signals (y, u) of the plant Po is given by
the matrix T (Po, Co) in (1). In a similar way, a feedback

connection of a system P and a controller C can be studied
by inspecting the matrix T (P ,C) with

T (P ,C) :=
[

P
I

]
(I + CP )−1

[
C I

]
, (3)

Note that a feedback connection T (P ,C) is internally stable
if and only if T (P ,C) ∈ RH∞ (Schrama and Bosgra 1993).
In order to incorporate control design specification for the
map T (P ,C), the control objective function J(P ,C) is
taken to be a weighted form of the matrix T (P ,C) given
in (3) and is defined as follows

‖J(P ,C)‖∞ := ‖U2T (P ,C)U1‖∞ (4)

where U2 and U1 are (square) weighting functions. The
weighting functions U1 and U2 are chosen in such a way
that the bandwidth of the resulting feedback connection
can be adjusted, which will increase the speed of decay of
the resulting servo error depicted in Figure 5. Furthermore,
the weighting functions can be used to design a controller C
that allows for an additional suppression of the low frequent
vibration of the servo error.

The performance characterization (4) is fairly general
and will be used for analysis purposes in this paper. In this
perspective, the performance objective function J(P ,C) as
given in (4) will be used to evaluate both the identification
of a set of models P and the additional reduction of a robust
controller designed based on the set P. For that purpose,
the set of models P as used in this paper is discussed below.

Characterization of the set of models

In order to design a robust controller for the positioning
mechanism of the wafer stepper, the estimation of a single
approximate (nominal) model does not suffices. To be ro-
bust against any dissimilarities between a model and the
actual system Po, a set of models P needs to be estimated.
Such a set of models allows one to capture the actual system
Po in the robust controller design, provided that Po ∈ P.
An (upper) LFT

Fu(Q,∆) := Q22 + Q21∆(I − Q11∆)−1Q12 (5)

provides a general notation to represent all models P ∈ P
as follows

P = {P | P = Fu(Q,∆)

with ∆ ∈ RH∞ and ‖∆‖∞ < 1}
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where ∆ indicates an unknown (but bounded) uncertainty.
The entries of the coefficient matrix Q in (5) dictate the
way in which the set of models P is being structured. As a
special entry one can recognize the nominal model, denoted
by P̂ , for which ∆ = 0

P̂ := F(Q, 0) = Q22

Employing the knowledge of the controller Co im-
plemented on the system Po for experimental considera-
tions, the set of models P will be characterized by us-
ing the algebraic theory of fractional model representations
(Vidyasagar 1985). In this way, the coefficient matrix Q
in (5) is formed by considering a model perturbation that
is structured according to a Youla-Kucera parametrization.
Following this parametrization, the set of models used in
this paper is structured as follows

P = {P | P = (N̂ + Dc∆̄)(D̂ − Nc∆̄)−1

with ∆̄ ∈ RH∞ and ‖V̂ ∆̄Ŵ‖∞ < 1}
(6)

where (Nc, Dc) and (N̂ , D̂) respectively denote a right co-
prime factorization (rcf ) of the controller Co implemented
on the system Po and a nominal model P̂ , that satis-
fies T (P̂ , Co) ∈ RH∞. The (stable and stably invertible)
weighting functions V̂ , Ŵ are used to normalize the upper
bound on V̂ ∆̄Ŵ .

In order to design a robust controller for the system Po

on the basis of the set of models P, Po ∈ P must be guar-
anteed. In order to Po ∈ P, additional prior information on
the plant Po must be introduced. This is due to the fact that
Po ∈ P cannot be validated solely on the basis of finite time,
possibly disturbed, observations coming from the plant Po

(Mäkilä et al. 1995, Ninness and Goodwin 1995). Such in-
formation is in accordance with the uncertainty modelling
procedure of Hakvoort (1994), that is used in this paper to
bound the uncertainty ∆̄ in (6).

The LFT characterization of the models P within the
set of models of (5) can be represented by the block diagram
given in Figure 6. It can be verified from the map col(d, u)
to col(z, y) in Figure 6 that the coefficient matrix Q in the
LFT of (5) is given by

Q =

[
Ŵ

−1
D̂

−1
NcV̂

−1
Ŵ

−1
D̂

−1

(Dc + P̂Nc)V̂
−1

P̂

]
(7)

Consequently, the matrix Q contains all the relevant infor-
mation in order to characterize the set of models P. In

Ŵ
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Figure 6. BLOCK DIAGRAM OF LFT REPRESENTATION

(7), the nominal model P̂ , or its rcf (N̂ , D̂), and the sta-
ble and stably weighting filters V̂ and Ŵ are the unknown
quantities to be estimated.

Feedback relevant identification

In order to find a set of models that take into the in-
tended application of the design of a controller, knowledge
of the controller Co that is implemented on the system Po

can be exploited to estimate a set of models P. In order to
estimate the set of models P given in (6), a factorization of
a nominal model and frequency dependent stable and stably
invertible weighting filters must be estimated.

To control the complexity of the controller being de-
signed, it is required to bound the complexity of the nom-
inal model (N̂ , D̂) and the weighting filters (V̂ , Ŵ ). By
again exploiting the knowledge of the controller Co, an ap-
proximate identification of both a nominal model and the
weighting filters can be tuned towards the intended control
application. In other words, a set of models P, subjected
to the condition Po ∈ P, should be estimated such that

sup
P∈P

‖J(P ,Co)‖∞ (8)

is minimized. In this way, a set of models is found for
which the worst case performance for the controller Co is
minimized.

Minimizing (8) using the limited complexity rcf (N̂ , D̂)
and weighting filters (V̂ , Ŵ ) simultaneously is intractable.
Therefore, minimization of (8) is tackled by estimating the
rcf (N̂ , D̂) and the pair (V̂ , Ŵ ) separately. Clearly, by the
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separate identification of the rcf (N̂ , D̂) of a nominal model
P̂ and the weighting filters (V̂ , Ŵ ) only an upper bound
on (8) can be minimized. However, available tools for the
identification of a nominal factorization and an uncertainty
bound can be exploited to complete the estimation of the
set of models.

ESTIMATION OF A NOMINAL MODEL

Access to coprime factorizations

The first step in the characterization of the set of mod-
els P, is the (approximate) identification of a stable nominal
factorization (N̂ , D̂) of a (possibly unstable) nominal model
P̂ . Access to a rcf of the system Po for identification pur-
poses can be obtained by a simple filtering of the signals
present in the feedback connection T (Po, Co).

Inspecting (2), the transfer functions (PoSin, Sin), with
Sin = (I +CoPo)−1, can be considered to be a stable (right)
factorization of the system Po with Po = [PoSin][Sin]−1.
Denoting r := r1 + Cor2 = u + Coy it can be observed that
(PoSin, Sin) is accessible from data as u and y are measured.
To avoid the presence and estimation of common unstable
zeros in the stable right factorization of Po, the factorization
needs to be a rcf . Furthermore, a rcf is not unique and
access to different factorizations would be preferable.

As indicated in Van den Hof et al. (1995) or de Calla-
fon and Van den Hof (1995b), an additional filtering of the
reference signal r via x := Fr can be introduced to fulfil
these requirements. With (2) this yields

x = F
[
Co I

] [
r2

r1

]
= F

[
Co I

] [
y
u

]
(9)

and (2) reduces to

[
y
u

]
=

[
PoSinF−1

SinF−1

]
x +

[
(I + PoCo)−1

−Co(I + PoCo)−1

]
v (10)

where (PoSinF−1, SinF−1) can be considered to be a (right)
factorization of the system Po.

In order to let (PoSinF−1, SinF−1) be a rcf of the sys-
tem Po, the form of the filter F in (9) is restricted and the
result is summarized below.

Lemma 1. Let Po and Co form a stable feedback connection
T (Po, Co) then the following statements are equivalent.

(i) (PoSinF−1, SinF−1) is a rcf.

(ii) there exists a rcf (Nx, Dx) of an auxiliary model Px with
T (Px, C) ∈ RH∞ such that

F = [Dx + CoNx]−1 (11)

Both conditions on F imply F
[
Co I

]
∈ RH∞.

Proof. See Van den Hof et al. (1995).

Consequently, a simple filtering (9) of the signals
present in the feedback connection T (Po, Co) allows the ac-
cess to a rcf of the system Po. As a result, the following
proposition to access a rcf of the system Po on the basis of
closed loop signals can be given.

Proposition 2. Let the plant Po and a controller Co create
an stable feedback connection T (Po, Co), then (2) can be
rewritten as

[
y
u

]
=

[
No,F

Do,F

]
x +

[
I

−Co

]
[I + PoCo]−1v

where x is given in (9), F is given in (11) and (No,F , Do,F )
is the rcf of the plant Po given by

[
No,F

Do,F

]
=

[
Po

I

]
[I + CPo]−1[I + CPx]Dx (12)

Since x in (9) is uncorrelated with v, Proposition 2 gives
rise to an equivalent open loop identification problem of the
rcf (No,F , Do,F ) of the system Po.

Feedback relevant estimation of coprime factorizations

In the estimation of the rcf (N̂ , D̂), minimization of
(8) must be taken into account when estimating a nominal
factorization (N̂ , D̂). Furthermore, P̂ = N̂D̂

−1
is subjected

to internal stability of the feedback connection T (P̂ , Co) in
order to characterize the set of models P given in (6).

Clearly, at this stage the set of models P is unknown
and (8) cannot be computed. In fact, the set of models P is
arbitrarily large as the norm bounded uncertainty ∆̄ is (6)
has not been characterized. Consequently, for any nominal
model P̂ there exist a norm bounded uncertainty ∆̄ that
forms a set of models P for which Po ∈ P. As Po ∈ P, for
any nominal model P̂ ∈ P the following upper bound for
‖J(P̂ , Co)‖∞ can be given.

‖J(Po, Co)‖∞ ≤ ‖J(Po, Co)‖∞ + ‖J(P̂ , Co) − J(Po, Co)‖∞
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As ‖J(Po, Co)‖∞ in the above expression does not depend
on the nominal model P̂ , a rcf (N̂ , D̂) of a nominal model
can be found by minimizing

‖J(P ,Co) − J(Po, Co)‖∞ =

= U2[T (Po, Co) − T (P̂ , Co)]U1

(13)

and constitutes a control relevant criterion for the estima-
tion of a nominal model.

Estimating a rcf (N̂ , D̂) of a nominal model by mini-
mizing (13) can be done by minimizing an additive weighted
difference between the rcf (No,F , Do,F ) of the system Po

given in (12) and the rcf (N̂ , D̂) of the nominal model.
This additive difference can be characterized as follows.

Lemma 3. Let Po and Co create a stable feedback connection
T (Po, Co) and let (No,F , Do,F ) be the rcf of Po given by (12)
where F is any filter satisfying (11). Consider any model
P̂ , then

(i) there exists a rcf (N̂ , D̂) of the model P̂ such that D̂ +
CoN̂ = F−1.

(ii) U2[T (Po, Co) − T (P̂ , Co)]U1 equals

U2

([
No,F

Do,F

]
−

[
N̂

D̂

])
F

[
Co I

]
U1 (14)

where (N̂ , D̂) is a rcf of P̂ that satisfies (i).

For a proof of this lemma and a discussion of the mini-
mization of (14) one is referred to de Callafon and Van den
Hof (1995b). The estimation of a nominal factorization for
the positioning mechanism of the wafer stepper will be il-
lustrated in the next section.

Estimation of nominal factorizations

To estimate a nominal factorization (N̂ , D̂), fre-
quency domain measurements of the factorization No,F (ω),
Do,F (ω) along a prespecified frequency grid are used. Sub-
sequently, the curve fitting procedure described in de Calla-
fon and Van den Hof (1995a) is used to tackle the weighted
minimization of (14) frequency wise. As the curve fitting
procedure is a non-linear optimization, an initial estimate
is required to start the optimization. For that purpose, a
multivariable least squares curve fitting procedure is used
de Callafon et al. (1996).

An amplitude Bode plot of the rcf (N̂ , D̂) being esti-
mated can be found in Figure 7. The resulting estimate of
col(N̂ , D̂) is a 30th order discrete time multivariable model
having 6 inputs and 3 outputs. Computing P̂ = N̂D̂
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Figure 7. AMPLITUDE BODE PLOT OF ESTIMATED COPRIME FAC-

TORS N̂ (—) AND D̂ (- -)

yields a 30th order nominal model, having 3 inputs and 3
outputs. The Amplitude Bode plot of the model P̂ , along
with the available frequency domain data computed via
No,F (ω)Do,F (ω)−1 is depicted in Figure 8.
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Figure 8. AMPLITUDE BODE PLOT OF COMPUTED P̂ (—) AND FRE-

QUENCY DOMAIN DATA (· · ·)

Although stability of T (P̂ , Co) is not guaranteed by the
estimation of the coprime factorization (N̂ , D̂) discussed
here, the model P̂ is stabilized by Co. This mainly due

8 Copyright c© 1997 by ASME



to the fact that a good fit of the frequency domain data
is obtained in closed-loop relevant frequency area around
200Hz.

ESTIMATION OF MODEL UNCERTAINTY BOUNDS

Access to model uncertainty

Once a rcf of a nominal model is obtained, an estima-
tion of the allowable model perturbation ∆̄ in (6) can be
performed. Estimation of an allowable model perturbation
involves the characterization of an upper bound on ∆̄ in (6)
via the stable and stably invertible filters (V̂ , Ŵ ) such that
(8) is being minimized and Po ∈ P. For that purpose, first
(an upper bound on) the allowable model perturbation ∆̄
is determined by applying a model error bounding estima-
tion technique. An uncertainty estimation routine such as
the procedure described by Hakvoort (1994) can be used to
obtain a frequency dependent upper bound for ∆̄

‖∆̄(ω)‖ ≤ δ(ω) with probability ≥ α (15)

where α is a prechosen probability. In the multivariable
case, the upper bound (15) can be obtained for each transfer
function. Subsequently, stable and stably invertible weight-
ings V̂ and Ŵ can be determined that overbound the esti-
mated upper bound δ(ω).

Clearly, in order to estimate a frequency dependent up-
per bound on ∆̄, the map ∆̄ must be accessible from data.
The following proposition provides the access to ∆̄ simply
by an appropriate filtering of the signal present in the feed-
back connection T (Po, Co).

Proposition 4. Consider Co with rcf (Nc, Dc) and P̂ with rcf
(N̂ , D̂). Let T (Po, Co) and T (P̂ , Co) be stable and define

z := (Dc + P̂Nc)−1
[
I −P̂

] [
y
u

]
(16)

then ∆̄ in

z = ∆̄x + Dc,i(I + PoCo)−1v (17)

satisfies ∆̄ ∈ RH, while x is given in (9) and is uncorrelated
with v.

Consequently, Proposition 4 constitutes an open loop
bounded error identification problem to find an upper
bound for a stable ∆̄. The estimated upper bound of ∆̄
in (15) can then be used to complete the characterization
of the set of models P.

Feedback relevant estimation of model uncertainty

Limiting the complexity of a controller designed on the
basis of the set of models P being identified also requires
the complexity of the weighting filters (V̂ , Ŵ ) in (7) to be
bounded. As a consequence, the estimated upper bound
δ(ω) in (15) needs to be approximated and over bounded
by low complexity weighting filters (V̂ , Ŵ ). Using the LFT
representation of the set of models P given in (7), the per-
formance of a controller C applied to any model P ∈ P
can be rewritten in terms of an LFT. The result has been
summarized in the following lemma and will be used to ad-
dress the estimation of limited complexity weighting filters
(V̂ , Ŵ ).

Lemma 5. Consider the set P defined in (6) that uses the
knowledge of the controller Co and let C be any controller
such that the map J(P,C) = U2T (P,C)U1 is well-posed for
all P ∈ P. Then

J(P,C) = Fu(M,∆) ∀P ∈ P

where the entries of M are given by

M11 = −Ŵ
−1

(D̂ + CN̂)−1(C − Co)DcV̂
−1

M12 = Ŵ
−1

(D̂ + CN̂)−1
[
C I

]
U1

M21 = −U2

[
−I
C

]
(I + P̂C)−1(I + P̂Co)DcV̂

−1

M22 = U2

[
N̂

D̂

]
(D̂ + CN̂)−1

[
C I

]
U1

(18)

Proof. By algebraic manipulation, see de Callafon and
Van den Hof (1997).

It can be observed from (18) that substitution of C =
Co yields M11 = 0. This implies that when the controller
Co is applied to the estimated set of models P, the upper
LFT Fu(M,∆) modifies into

M22 + M21∆M12 (19)

which is an affine expression in ∆. Substituting M21 and
M12 in (19) with ∆ = V̂ ∆̄Ŵ yields the following expression

M22 + M21∆M12 = M22 + W2∆̄W1

where

W2 = −U2

[
−Dc

Nc

]
Dc

W1 = D̂
−1

(I + CoP̂ )−1
[
Co I

]
U1

(20)

9 Copyright c© 1997 by ASME



Consequently, the effect of replacing an accurate (and high
order estimate) of the upper bound ∆̄ by a low order up-
per bound approximation ∆̃ on the (robust) performance
‖J(Po, Co)‖ = ‖M22 + W2∆̄W1‖ can be bounded by the
following triangular inequality

‖M22 + W2∆̄W1‖ ≤
‖M22 + W2∆̃W1‖ + ‖W2(∆̄ − ∆̃)W1‖

(21)

From (21) it can be observed that, similar to identifica-
tion of a low complexity factorization of a nominal model,
a weighted difference between the actual and highly com-
plex uncertainty ∆̄ and the low complexity approximation
∆̃ must be taken into account. The weightings W2 and W1

are given in (20) and are known, once a nominal factoriza-
tion (N̂ , D̂) has been estimated.

Estimation of model uncertainty

Given the nominal factorization (N̂ , D̂) and a normal-
ized rcf (Nc, Dc) of the controller Co, an estimation of the
allowable model perturbation ∆̄ in (6) is performed. For
that purpose, the uncertainty estimation as presented in
Hakvoort (1994) has been applied to estimate a frequency
dependent upper bound on ∆̄. As a complete discussion of
the uncertainty estimation procedure of Hakvoort (1994) is
beyond the scope of this paper, only the result is presented
in Figure 9.

It can be observed from Figure 9 that the upper bound
of the frequency domain estimation of ∆̄ is crossing the
upper bound δ(ω). Partly, this is due to the fact the upper
bound only holds within a prespecified probability of 95%.

USING THE IDENTIFIED SET FOR CONTROL DESIGN

On the basis of the identified set of models, a ro-
bust controller was designed via a µ-synthesis (Zhou et
al. 1996). As δ(ω) is only a frequency dependent upper
bound for ∆̄, low frequent weighting filters (V̂ , Ŵ ) are used
to parametrize the upper bound on the estimated uncer-
tainty bound δ(ω) depicted in Figure 9. In this way, the
estimated upper bound can be taken into account during a
robust controller design.

In the construction of (V̂ , Ŵ ) the weightings W1 and
W1 given in (20) are used to emphasize the frequency range
for the upper bounding of δ(ω) by the parametric stable
and stablly invertible weightings (V̂ , Ŵ ) is most critical.
It can be observed from (20) that the input sensitivity
(I + CoP̂ )−1, based on the nominal model P̂ , is incorpo-
rated in the weightings given in (20). As a consequence,
the weightings emphasize (again) the closed-loop relevant
frequency area around 200Hz.
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Figure 9. AMPLITUDE BODE PLOT OF ESTIMATED UNCERTAINTY

BOUND δ(ω) (—) OF ∆̄ AND FREQUENCY DOMAIN ESTIMATE OF

∆̄ (· · ·)

Extracting the controller C from the LFT given in (18),
the following lower LFT Fl(G,C) can be obtained for the
synthesis of a robust controller.

Proposition 6. Consider the map M given in (18). Then
M = Fl(G,C) where G is given by


 Ŵ

−1
0 0

0 U2 0
0 0 I







D̂
−1

Nc 0 D̂
−1

D̂
−1

(Dc + P̂Nc) 0 P̂ P̂ i

0 0 I I

−(Dc + P̂Nc) I −P̂ −P̂





−V̂

−1
0 0

0 U1 0
0 0 I




Invoking the µ-design, a high order multivariable feed-
back controller is obtained. In order to implement the con-
troller being designed, an additional closed-loop controller
reduction Wortelboer (1993) was used to reduce the con-
troller to a 32nd order state space realization. A compar-
ison between the controller Co previously implemented on
the system Po and the newly designed controller C is given
in terms of the amplitude Bode plot depicted in Figure 10.

In order to show the improvement of the positioning
control of the servo mechanism in the wafer stepper, the
reference signals r1 and r2 depicted in Figure 4 are put on
the newly designed feedback connection T (Po, C). A com-
parison with the servo error of Figure 5 obtained with the
previous controller Co is depicted in Figure 11. It can be
seen from Figure 11 that both the speed and the accuracy
of positioning have been improved successfully.

10 Copyright c© 1997 by ASME



10
0

10
2

10
0

10
0

10
2

10
0

10
0

10
2

10
0

10
0

10
2

10
0

10
0

10
2

10
0

10
0

10
2

10
0

10
0

10
2

10
0

10
0

10
2

10
0

10
0

10
2

10
0

f [Hz]

Figure 10. AMPLITUDE BODE PLOT OF OLD CONTROLLER Co (- -)

AND NEWLY DESIGNED CONTROLLER C (—)
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Figure 11. SERVO ERROR RESPONSE TO A STEP IN X-DIRECTION

WITH OLD CONTROLLER Co (- -) AND NEW CONTROLLER C (—)

CONCLUSIONS

This paper discusses the approximate and feedback rele-
vant parametric identification of a servo mechanism present
in a wafer stepper. Via the identification of a set of mod-
els, built up from a nominal model along with an allowable
model perturbation, the dynamical behaviour of the servo
mechanism has been modelled.

The feedback relevant identification in this paper is

based on the algebraic theory of stable fractional represen-
tations. This framework leads to an equivalent open loop
identification of a stable factorization of a nominal model
and an allowable model perturbation written in terms of a
(dual) Youla parametrization. Both the estimation of nomi-
nal factorization and the uncertainty estimation can be per-
formed in a feedback relevant way, taking the intended con-
trol application of the estimated set of model into account.

The estimated set of models is used for the design of a
robust controller for which significant improvement of the
positioning mechanism has been illustrated.
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