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Abstract

In this paper an approach is presented to estimate
a linear multivariable model on the basis of (noisy) fre-
quency domain data via a curve �tting procedure. The
multivariable model is parametrized in either a left or
a right polynomial matrix fraction description and the
parameters are computed by using a two-norm mini-
mization of a multivariable output error. Additionally,
input-output or element-wise based multivariable fre-
quency weightings can be speci�ed to tune the curve
�tting error in a exible way. The procedure is demon-
strated on experimental data obtained from a 3 input
3 output Wafer Stepper system.

1 Introduction

Formulating a procedure that is able to estimate a model on
the basis of frequency domain data has gained considerable
attention in the research on system identi�cation. Although
the clear distinction between time and frequency domain
data is generally overestimated [12], estimation of models
by �tting complex frequency domain data has several ad-
vantages compared to time domain approaches. Firstly, rep-
resenting data in the frequency domain domain can yield
substantial data reduction [14]. Secondly, compressing a
huge amount of time domain data into a �nite number of
frequency points facilitates noise reduction directly. Both
aspects are used extensively in commercially available so-
phisticated test equipment for spectral analysis.
Based on Least Squares (LS) estimation techniques, as

used by Levi in [10] and further re�ned by Sanathanan and
Koerner in [15], multivariable frequency domain curve �t-
ters have been formulated in the literature. One is referred
to [11], [4] and the more recently introduced procedure in
[1]. Basically, the procedures di�er in the way the multi-
variable model is parametrized and whether or not the pro-
cedure allows for a speci�cation of the model order and a
(multivariable) weighting on the curve �t error. As such,
in [11] a multivariable model is found by the composition of
scalar subsystems, while the order of the subsequent transfer
functions is determined by testing the residuals. A similar
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approach can be found in [4], wherein a Chebyshev poly-
nomial basis is used to improve numerical conditioning of
the LS-problem. In [1] the model is parametrized directly
by means of a matrix numerator polynomial and a scalar
common denominator polynomial, whereas only a scalar fre-
quency dependent weighting on the curve �t error is allowed.
Several alternatives to a LS-approach can also be found in

the literature. In [13] a subspace based algorithm in the fre-
quency domain is presented that allows the user to specify
an additional frequency weighting. In [9] a frequency do-
main curve �tter has been developed in which a maximum
amplitude of a (weighted) curve �t error is being consid-
ered. Furthermore, so-called H1-identi�cation procedures,
currently applicable to scalar frequency domain data, can
guarantee an upper bound on the additive error, see e.g. [8]
and the references therein. Unfortunately, a maximum am-
plitude criterion can be highly sensitive to noise, whereas
the available H1-identi�cation procedures might yield high
order models for moderately damped processes [5].
Based on the LS-approach, this paper presents a multi-

variable frequency domain curve �tter in which the aim is to
minimize the two-norm on a (weighted) curve �t error for a
model having a limited McMillan degree. The multivariable
model is parametrized by either a left or right polynomial
Matrix Fraction Description (MFD). By use of Kronecker
calculus it will be shown that both a pre, post or element-
wise multivariable frequency weighting on the curve �t error
can handled relatively easily. Furthermore, it will be shown
that the iteration described by [15], denoted by SK-iteration,
can be generalized to estimate a polynomial MFD. Due to the
subsequent convex optimization steps in the SK-iteration,
this approach supports the estimation of models with many
parameters. Similar to the approach followed by [1] and sup-
ported by the work of [17], the resulting estimate can be used
as an initial value for a Gauss-Newton optimization.
Although cumbersome iterations can be avoided by the

use of a realization based algorithm as reported in [13], the
possibility to prespecify the McMillan degree of the model
and to introduce a exible element-wise frequency weighting
on the multivariable data is quite helpful from a practical
point of view. The procedure will be illustrated by �tting
a multivariable model on the frequency response obtained
from the positioning mechanism present in a wafer stepper.



2 Problem formulation

To formulate the multivariable frequency domain identi�ca-
tion problem, consider the following set G of noisy complex
frequency response data observations G(!j), evaluated at N
frequency points !j .

G := fG(!j ) j G(!j) 2 Cp�m; for j 2 1; . . . ; Ng (1)

The aim of the identi�cation problem discussed in this pa-
per is to �nd a linear time invariant multivariable model P
of limited complexity, having m inputs and p outputs, that
approximates the data G in (1).
To address the limited complexity, the model P (�) is

parametrized by a either a left or right polynomial MFD
that depends on a real valued parameter � of limited dimen-
sion. The speci�c parametrization of the polynomial MFD
of P (�) is discussed in the next section. The approximation
of the data G by the model P (�) is addressed by considering
the following additive error.

Ea(!j ; �) := [G(!j )� P (�(!j); �)] for j 2 1; . . . ; N (2)

The complex variable �(�) in (2) is used to denote the
frequency dependency of the model P (�). In this way,
�(!j) = i!j to represent a continuous time model, whereas
�(!j) = ei!jT (shift operator) or �(!j) = (ei!j � 1)=T (�
operator) to represent a discrete time model with sampling
time T .
To tune the additive error Ea in (2), both an input-output

frequency weighted curve �t error Ew with

Ew(!j ; �) :=Wout(!j)Ea(!j ; �)Win(!j ) (3)

and an element-wise frequency weighted curve �t error Es

with
Es(!j ; �) := S(!j ): � Ea(!j ; �) (4)

will be considered in this paper. In (4) :� is used to denote
the Schur product; an element-by-element multiplication.
Using the notation E to denote the frequency weighted

curve �t error Ew in (3) and Es in (4), the deviation of the
data G is characterized by following the norm function J(�).

J(�) :=

NX
i=1

trfE(!j ; �)E
�(!j ; �)g = kE(�)k2F (5)

In (5) � is used to denote the complex conjugate trans-
pose, trf�g is the trace operator and kE(�)kF denotes
the Frobenius norm operating on the matrix E(�) =
[E(!1 ; �) � � � E(!N ; �)]. Consequently, the goal of the pro-
cedure described in this paper is to �nd a real valued param-
eter �̂ of limited complexity that can be formulated by the
following minimization.

�̂ := arg min
� 2 IR

J(�) (6)

3 Parametrization

3.1 Polynomial matrix fraction descriptions

The multivariable model is represented by either a left or
right polynomial MFD, respectively given by

P (�; �) = A(��1; �)�1B(��1; �) (7)

P (�; �) = B(��1; �)A(��1; �)�1 (8)

where A and B denote parametrized polynomial matrices in
the indeterminate ��1.
For a model having m inputs and p outputs, the the poly-

nomial matrix B(��1; �) is parametrized by

B(��1; �) =

d+b�1X
k=d

Bk �
�k (9)

where Bk 2 IRp�m, d denotes the number of leading zero
matrix coe�cients and b the number of non-zero matrix co-
e�cients in B(��1; �). For the left MFD in (7), A(��1; �) is
parametrized by

A(��1; �) = Ip�p + ��1
aX

k=1

Ak �
�k+1 (10)

where Ak 2 IRp�p and a denotes the number of non-zero
matrix coe�cients in the monic polynomial A(��1; �). The
parameter � is determined by the corresponding unknown
matrix coe�cients in the polynomials. Hence,

� =
�
Bd � � � Bd+b�1 A1 � � � Aa

�
(11)

and � 2 IRp�(mb+pa) for the left MFD in (7). Dual results can
be formulated for the right MFD in (8).
Additionally to the full polynomial parametrization pre-

sented here, so-called structural parameters dij , bij and aij
with d := minfdijg, b := maxfbijg, and a := maxfaijg can
be used to specify a none-full polynomial parametrization.
In this way, the parameter � as given in (11) may contain
prespeci�ed zero entries at speci�c locations. This may oc-
cur in a discrete time model with ��1 = z�1 where the value
of dij has a direct connection with the number of time delays
from the jth input to the ith output.

3.2 Model order

Due to the indeterminate ��1, it can be veri�ed that the
MFD of (7) or (8) gives rise to a (strictly) proper transfer
function matrix P (�; �), regardless of the value of the in-
tegers di;j , bi;j or ai;j . Hence, there are no restrictions on
the size of the structural parameters, other than a limita-
tion on the McMillan degree of the resulting model P (�; �̂).
For the connection between the structural parameters and
the McMillan degree of P (�; �), the following result can be
given.

Lemma 3.1 Consider a parameter �̂ such that Aa 6= 0 and
Bd+b�1 6= 0. De�ne

� := maxfa; d+ b� 1g (12)

and �A(�; �̂) := ��A(��1; �̂), �B(�; �̂) := ��B(��1; �̂). Let n
be used to denote the McMillan degree of the multivariable
transfer function model P (�; �̂) obtained by (7) or (8), then

n = deg detf �A(�; �̂)g

if and only if �A(�; �̂) and �B(�; �̂) are left coprime over IR[�]
in case of (7) and right coprime over IR[�] in case of (8).

Proof: The proof is given for (8). With the condition Aa 6=
0, Bd+b�1 6= 0, it follows that �A(�) := ��A(��1) and �B(�) :=
��B(��1) are polynomial matrices in �. In case of (8), P (�) =
�B(�) �A(�)�1 and a state space realization [A,B,C,D] for P (�)



can be obtained, such that dimA = deg detf �A(�)g and fA,Bg
controllable, see e.g [3]. Furthermore, fC,Ag is observable if
and only if �A(�) and �B(�) are right coprime over IR[�], see
theorem 6.1 in [3]. Dually, the result can be shown for (7).

2

Under some mild condition on the polynomials A(��1; �̂)

and B(��1; �̂) being estimated, lemma 3.1 gives a direct rela-

tion between the deg detf �A(�; �̂)g and the McMillan degree

of the resulting estimate P (�; �̂). In case of the left MFD

(7), deg detf �A(�; �̂)g generally will be equal to �p. Hence,
the structural parameters give rise to (an upper bound) on
the McMillan degree of the model being estimated. For a
more detailed discussion on the exact relation between the
McMillan degree, the row degree of the polynomial matrices
A(��1; �), B(��1; �) and the observability indices of a model
computed by a left polynomial MFD, one is referred to [6]
or [16].
Compared to a parametrization of the multivariable model

P (�; �) using a scalar common denominator polynomial
d(��1; �) as presented in [1], the parametrization using a
(left) MFD is more exible, as a scalar common denominator
restricts A(��1; �) to be Ip�pd(�

�1; �). A model with one out-
put that is parametrized by the left MFD of (7), constitutes
a scalar common denominator polynomial A(��1; �).

4 Computational procedure

4.1 Iterative minimization

In this section, the minimization of (6) will be discussed by
means of an iterative procedure of convex optimization steps
similar to the SK-iteration of [15]. The attention will be
restricted to a parametrization of P (�; �) based on the left
MFD (7) as dual results can be obtained for a right MFD.
To extend the SK-iteration to the multivariable case, �rst
consider the (unweighted) additive curve �t error of (2).
For a model P (�; �) parametrized by left MFD, (2) can be

written as

Ea(!j ; �) = A(�(!j)
�1; �)�1 ~E(!j ; �) (13)

where ~E(!j ; �) is the equation error de�ned by

~E(!j ; �) := A(�(!j)
�1 ; �)G(!j)� B(�(!j)

�1; �): (14)

Substituting the parametrization (7) for the polynomials A,
B, the equation error in (14) can be represented by

~E(!j ; �) = G(!j )� ��(!j) (15)

where � is given in (11) and

�(!j) =

2
666666664

Im�m�(!j)
�d

...

Im�m�(!j)�(d+b�1)

G(!j )�(!j)
�1

...

G(!j)�(!j)
�a

3
777777775

(16)

with �(!j) 2 C(mb+pa)�m.

A matrix ~E(�) can be formed by stacking ~E(!j ; �) column-
wise for j 2 1; . . . ; N and this yields

arg min
� 2 IR

k ~E(�)k2F = arg min
� 2 IR

kG� �Pk2F (17)

where G and P are found by stacking the real and imaginary
part of respectively G(!j) and �(!j) for j 2 1; . . . ; N . Due
to the linear appearance of the parameter �, (17) corresponds
a standard least squares problem that can be solved by nu-
merical reliable tools as e.g a QR-factorization with (partial)
pivoting [7].
Due to the fact that A(��1; �) in (13) also depends on

the parameter �, the linear appearance of the parameter �
in (13) is violated. In order to facilitate the convexity in
minimizing the two-norm on the equation error in (17), an
iterative procedure similar as in [15] can be used. An es-

timate �̂t in step t is computed by replacing A(�(!j)�1; �)

in (13) by a �xed A(�(!j)�1; �̂t�1) based on an estimate

�̂t�1 obtained from the previous step t � 1. In this way
the Frobenius norm of an output weighted equation error
~Ew(!j ; �̂t�1; �) = A(�(!j)

�1; �̂t�1)
�1 ~E(!j ; �) needs to be min-

imized repeatedly according to

�̂t = arg min
� 2 IR

k ~Ew(�̂t�1; �)k
2
F :

This generalizes the SK-iteration to multivariable models
parametrized by a left polynomial MFD. A dual approach
can be formulated for a right polynomial MFD.
The estimate obtained from the SK-iteration is not opti-

mal in the sense of (6) in presence of noise and/or incorrect
model order, but it does provide a tool to �nd an initial es-
timate for a GN-optimization [17]. Furthermore, the convex
optimization to be solved in each step of the multivariable
SK-iteration supports the estimation of models with many
parameters. The computational procedure to obtain the pa-
rameter �̂ in case of the (weighted) curve �t errors of (3) and
(4) is presented in the subsequent sections.

4.2 Input-output weighting

The input-output weighted curve �t error of (3) can be
rewritten into

Ew(!j ; �) = ~Wout(!j ; �) ~E(!j ; �)Win(!j) (18)

where ~Wout(!j ; �) := Wout(!j )A(�(!j)
�1; �)�1 and ~E(!j ; �)

is given in (14).
Using a similar approach of iterative minimization steps

as used in section 4.1, the parameter � in ~Wout(!j ; �) in (18)

is �xed to an estimate �̂t�1 obtained from the previous step
t� 1. Consequently, the weighted equation error ~Ew de�ned
by

~Ew(!j ; �̂t�1; �) := ~Wout(!j ; �t) ~E(!j ; �)Win(!j ) (19)

again indicates that the parameter � to be estimated appears
linearly in (19).
Although the free parameter � appears linearly in (19),

writing down a matrix representation for the weighted equa-
tion error ~Ew similar to (17) would inevitably lead to addi-
tional (large) sparse matrices that need to be stored in order
to compute the least squares solution. The sparse matri-
ces arise from the frequency dependent output (and input)
weighting that need to be incorporated [1]. Furthermore, the
parameter � might have a structure containing zero entries
at prespeci�ed locations if a none-full polynomial paramet-
rization is being used.
To avoid the computational and memory storage issues

that arise from dealing with (large) sparse matrices and to
be able to take into account the speci�c structure that might



be present in the parameter �, a fairly simple and straightfor-
ward computational procedure based on Kronecker calculus
is presented here. For this purpose consider the following
de�nition.

De�nition 4.1 Consider two matrices X 2 Cn1�n2 and Y 2
Cm1�m2, then the Kronecker vector vec(X) 2 Cn1n2�1 and
the Kronecker product X 
 Y 2 Cn1m1�n2m2 are respectively
de�ned by vec(X) := [x1 � � � xn2 ]

T and

X 
 Y :=

2
64

x1;1Y � � � x1;n2Y
... � � �

...

xn1;1Y � � � xn1;n2Y

3
75

where xi;j and xj for i 2 1; . . . ; n1 and j 2 1; . . . ; n2 are
used to denote respectively the (i; j)th entry in X and the
jth column in X.

The Kronecker product is a well known concept [2] and by
stacking the columns of a matrix to obtain the corresponding
Kronecker vector as mentioned in de�nition 4.1, the follow-
ing result can be obtained.

Proposition 4.2 Consider (complex) matrices X, Y and
Z with appropriate dimensions, such that the matrix product
C := XY Z is well de�ned. Then vec(C) satis�es

vec(C) = [ZT 
X ]vec(Y ):

Proof: The proof can be found in [2]. 2

On the basis of proposition 4.2, the Kronecker vector of
the input/output weighted equation error ~Ew(!j ; �̂t�1; �) in
(19) can be written as

vec( ~Ew) = vec( ~WoutGWin)� [[�Win ]
T 
 ~Wout]vec(�)

wherein the arguments !j , �̂t�1 and � are left out, to avoid
notational issues. As the Frobenius-norm satis�es kXk2F =
kvec(X)k2F for an arbitrary matrix X , the Frobenius-norm on
~Ew can be characterized by a matrix representation formed
by stacking vec( ~Ew(!j ; �̂t�1; �)) row-wise for j 2 1; . . . ; N .
This yields the following estimate

�̂ = arg min
� 2 IR

kvec( ~Ew(�̂t�1; �))k
2
F

= arg min
�� 2 IR

kGw � Pw
��k2F

(20)

where �� = vec(�) 2 IRp(mb+pa)�1 according to (11). Further-
more, Gw 2 IR2pmN�1 and Pw 2 IR2pmN�p(mb+pa) are matrices
that can be found by row-wise stacking of the real and imag-
inary part of respectively vec( ~Wout(!j ; �̂t�1)G(!j )Win(!j))

and vec([�(!j )Win(!j)]
T 
 ~Wout(!j ; �̂t�1)) for j 2 1; . . . ; N .

The regression matrix Pw in (20) does not exhibit any
sparse matrix structure as occurs e.g. in the method of [1]. In
fact, 2pmN �p(mb+pa) entries is the smallest dimension of
the regression matrix Pw in order to compute a least squares
parameter �̂ that has p(mb+pa) unknown entries (for a a left
full polynomial parametrization) on the basis of N complex
frequency domain points of a p�m multivariable system. In
this way memory storage problems are avoided directly as
much as possible.
As the parameter � is converted into a column parameter

�� = vec(�), any prespeci�ed zero entries in �� can be incorpo-
rated in the estimation of the parameter relatively easy. This
can be done by omitting the columns in the regression ma-
trix Pw that correspond to the zero entries in �� and thereby
reducing the size of the parameter to be estimated directly.

4.3 Schur weighting

Consider the Schur or element-wise frequency weighted curve
�t error in (4) and rewrite this into

Es(!j ; �) = S(!j): � [A(�(!j)
�1; �)�1 ~E(!j ; �)] (21)

where the equation error ~E(!j ; �) was de�ned in (14). Using
a similar approach of iterative minimization steps as used
in section 4.1, the parameter � in A(�(!j)

�1; �)�1 in (21) is

�xed to an estimate �̂t�1 obtained from the previous step
t� 1. Consequently, the weighted equation error ~Es de�ned
by

~Es(!j ; �̂t�1; �) := S(!j): � [A(�(!j)
�1; �̂t�1)

�1 ~E(!j ; �)]

again indicates that the parameter � to be estimated appears
linearly. Finally, it can be veri�ed (leaving out the arguments

!j , �(!j)
�1, �̂t�1 and �) that vec( ~Es) can be rewritten into

vec(S: � [A�1G])� diag(vec(S))[�T 
A�1]vec(�) (22)

by using the result of proposition 4.2. Hence, stacking
vec( ~Es(!j ; �̂t�1; �)) row wise for each j 2 1; . . . ; N will yield

a similar expression for the minimizing argument �̂ as given
in (20). However, the matrix Gw in (20) now contains real

and imaginary part of vec(S(!j): � [A(�(!j)
�1; �̂t�1)G(!j )]),

whereas Pw in (20) will consist of the real and imaginary

part of diag(vec(S(!j )))[�(!j )T 
A�1(�(!j)�1; �̂t�1)] for j 2
1; . . . ; N . Hence, the same computational procedure can be
used to incorporate an element-by-element weighted curve
�t error (4) by a slight modi�cation of the matrices in (20).

5 Application to experimental data

5.1 Description of the wafer stepper system

The multivariable curve �t procedure discussed in this pa-
per is illustrated by curve �tting experimental data obtained
from a positioning system of a wafer stepper.

j3

r
r r

r r
jj1 2

r

r

Fig. 1: Schematic view of a wafer stage; 1:wafer chuck,
2:laser interferometers, 3:linear motors.

A wafer stepper is a high accuracy positioning machine,
used in chip manufacturing processes and a schematic view
is depicted in Figure 1. The wafer carries approximately 80
chips and is placed on a moving table, called the wafer chuck,
which needs to be positioned accurately. The position of the
wafer chuck on the horizontal surface of a granite block is
measured by means of three laser interferometry measure-
ments, whereas three linear motors are used to position the
wafer chuck. In this way, the positioning system is consid-
ered to be a multivariable system, having three currants to
the linear motors as inputs and three position measurements
as outputs of the process.



5.2 Experimental results

Periodic random noise signals of 1024 points are used to ex-
cite the system. Using the resulting averaged time series, a
spectral estimate is computed, resulting in a �nite number
of frequency domain data points that constitutes a suitable
starting point for the subsequent curve �t procedure.
As the resulting model has to be used for discrete time

control design purposes, the aim is to estimate a possibly
low order discrete time multivariable model, that describes
the dynamical behaviour of the positioning system in the
frequency domain till approximately 400 Hz. For frequencies
smaller than 100 Hz, the positioning system acts like a double
integrator. To illustrate the usage of weighting functions in
order to shape the curve �t error, an output weighting is used
that emphasizes the frequency range between 200 and 300 Hz
and starts to roll o� at 300 Hz. The order of the resulting
multivariable model (without the 3 double integrators) is
chosen to be 12, represented by a full left polynomial matrix
fraction description having 81 parameters.
The SK-iteration is started up by �rst estimating a high

order model to compute an initial value for the modi�ed
output weighting ~Wout in (19). After this initialization, the
SK-iteration is invoked 8 times. The Bode amplitude plot
and phase plot of the 18th order estimate (including the 3
double integrators) is depicted respectively in Figure 2 and
Figure 3. It should be noted that the multivariable output
weighting applied during the estimation procedure empha-
sizes the frequency domain area of interest.

6 Conclusions

An approach is presented to estimate a linear multivariable
model on the basis of noisy frequency domain data using a
two-norm minimization of a weighted curve �t error. The
weighting on the curve �t error can be speci�ed by either an
input/output or an element-by-element frequency dependent
multivariable weighting function. The multivariable model
is parametrized in either a left or right polynomial matrix
fraction description wherein structural parameters allow the
speci�cation of both full polynomial or none-full polynomial
descriptions. The computational procedure is able to esti-
mate complex models by using an iterative procedure of solv-
ing weighted multivariable least squares problems and ex-
ploits the structure of the least squares problem, thereby re-
ducing any computation and memory requirements directly.
The curve is demonstrated on experimental multivariable fre-
quency domain data obtained from a Wafer Stepper system
having 3 inputs and 3 outputs.
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P (ei!j ; �̂) and the data G(!j).
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