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Abstract.

For consecutive model-based control design, approximate identification of lin-

ear models should be performed on the basis of a feedback-relevant criterion, compatible
with the control design. For an H.,-norm based control design, a procedure is presented
to estimate a possibly unstable and feedback controlled plant by using an H,-norm based
feedback-relevant identification criterion. It is shown that the formulated identification
problem can be handled by taking (noisy) closed loop frequency domain measurements of
the plant and fitting a model of a prespecified McMillan degree, which is parametrized in a
stable factorization, using a certain non-linear constrained minimization. The procedure

is 1llustrated by an example.

Keywords.

1 Introduction

The motivation for developing methods for so-called
feedback relevant or control relevant system iden-
tification 1s induced by the fact that linear mod-
els found by identification techniques are exploited
usually in a model-based control design. Any model
found by system identification techniques will be in-
evitably approximative and the validity of the model
will highly depend on its intended use. In this per-
spective the identification procedure being used, will
be subjected to several requirements if the model be-
ing estimated is to be used mainly for control design.
These requirements boil down to the fact that the
feedback relevant dynamical behaviour of a plant
operating in a closed loop configuration has to be
estimated, in order to design an enhanced and ro-
bust control system (Gevers, 1993; Van den Hof and
Schrama, 1994).

To tackle the problem of designing an enhanced
and robust control system for a plant with unknown
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system identification; coprime factors; curve fitting; parametrization.

dynamics, a simultaneous (off-line) optimization of
identification and model-based control design crite-
ria would be required, as formulated in Bayard et al.
(1992). On the other hand, it has been widely moti-
vated to separate the two stages of identification and
control design and to use an iterative scheme of iden-
tification and model-based control design (Schrama,
1992). In such an iterative scheme, closed loop ex-
perimental conditions are indispensable to obtain
data from the (possibly unstable) plant (Hakvoort
et al., 1994; Hjalmarsson et al, 1994a; Lee et al.,
1993).

Compatible criteria in both the identification and
control design are a prerequisite in order to ensure
performance improvement of the plant to be con-
trolled during the subsequent iterations of identifi-
cation and model-based control design (Bayard et
al., 1992). For ‘classical’ (weighted) Ho-norm based
identification criteria, control performance specifica-
tions are implicitly restricted to Hy/LQG-type con-
trol design criteria, see e.g. Hakvoort et al. (1994),
Lee et al. (1993), Zang et al. (1992) or Gevers (1993)
for a nice overview. For H.,-norm based control per-
formance specifications this unleashes the need for
an H.,-norm based identification procedure. Fur-
thermore, compatible (weighted) He,-norm based



criteria in both the identification and the control
design of an iterative scheme, opens the possibility
to incorporate (performance) robustness consider-
ations (Doyle et al., 1992) to ensure performance
improvement of the plant to be controlled (Bayard
et al., 1992).

In this paper a procedure is presented to estimate
a linear multivariable discrete or continuous time
model with a prespecified McMillan degree that fits
(noisy) frequency response data of a (possibly un-
stable) plant operating under closed-loop conditions
on the basis of an H,-criterion. The H_-criterion
will be approximated by a pointwise evaluation of
frequency response data, which is the main moti-
vation in this paper to consider frequency domain
data of the plant. Furthermore, convergence aspects
of an iterative scheme of identification and model-
based control design employing an H,-norm con-
trol performance are being discussed. A unified ap-
proach to handle both stable and unstable plants is
obtained by estimating a model via a stable factor-
ization similar as in Lee et al. (1993) or Schrama
and Bosgra (1993). Alternative approaches with
an H.-criterion can also be found in the area of
identification in Ho,, see e.g. Gu and Khargonekar
(1992) or Helmicki et al. (1991). In these approaches
a stable transfer function having some worst-case
optimality properties is being derived on the basis
of (noisy) frequency response data. A drawback is
the lack of ability to prespecify the McMillan degree
of the model being estimated, which may result in
relatively high order models (Friedman and Khar-
gonekar, 1994).

As standard curve fit procedures do not guaran-
tee stability of the resulting estimate of the factor-
ization, a canonical parametrization given in (Ober,
1991) will be used in this paper to parametrize all
stable, minimal and balanced state space systems
with distinct Hankel singular values of a prespeci-
fied McMillan degree. An alternative curve fit pro-
cedure with conditions on stability of the estimate
can also be found in Hakvoort and Van den Hof
(1994). The procedure in Hakvoort and Van den
Hof (1994) is based on a maximum amplitude cri-
terion, which has a close connection with an H.-
criterion only in the case of fitting a stable scalar
transfer function. Using the parametrization results
of Ober (1991), it is shown that the minimization of
the feedback-relevant H..-criterion can be handled
by a non-linear constrained minimization, where the
parameters lie in a convex set.

The paper is organized as follows. Firstly some
preliminaries and a motivation for the usage of
a H.,-criterion will be motivated respectively in
section 2 and section 3. Next, the framework for
the identification of stable factorizations will be pre-
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sented in section 4 along with the results on the pa-
rametrization of stable, minimal and balanced sys-
tems, as introduced in Ober (1991) and further elab-
orated in Chou (1994), and the resulting minimiza-
tion problem will be presented. Finally, the proce-
dure 1s illustrated by an example in section 5 and
the paper will end with concluding remarks.

2 Preliminaries

Let P be used to denote either the plant P, or the
model P, then the feedback configuration of P and a
controller C' is denoted with 7 (P, C) and defined as

the connection structure depicted in Figure 1. If P

L]

Fig. 1: feedback connection structure 7 (P, ')

equals P, in Figure 1, then the signals u and y reflect
respectively the inputs and outputs of the plant P,,
where v is an additive noise on the output y of the
plant. It is presumed that the noise v is uncorrelated
with the external reference signals r1, 72 and can be
modelled by a monic stable and stably invertible
noise filter H having a white noise input e (Ljung,
1987). The signals u and y are being measured and
r1, r2 (and consequently u., y.) are possibly at our
disposal.

It is assumed that the feedback connection struc-
ture is well posed, that is det[I + C'P] #Z 0. In this
way the mapping of [ry 71]7 to [y u]” is given by
the transfer function matrix T(P, ) with

T(P,C) = [P

I]u+cm*[01L (1)

and the data coming from the closed loop system

T(P,,C) can be described by

H]:ﬂﬂﬂﬂ:]+[iﬂu+gq4u
(2)

In case of an nternally stable closed loop sys-
tem 7 (P,C), all four transfer function matrices in
T(P,C) will be stable which implies T(P,C) €
IRH., for a real rational P, where IRH., denotes
the set of all rational stable transfer functions.



Using the theory of fractional representations, P
will be expressed as a ratio of two stable mappings
N and D. Following Vidyasagar (1985), P has a
right coprime factorization (ref) (N, D) over IRH
if there exists X, Y, N and D such that P = ND~!
and XN +YD = I. In addition, a ref (N, D) is
normalized if it satisfies N*N + D*D = I, where *
denotes the complex conjugate transpose. Dual def-
initions apply for left coprime factorizations (Icf).

3 Motivation for H. -criterion

3.1 Norm-based control design and identifi-
cation

In the analysis of feedback relevant identification,
the characterization of a closed loop (nominal) per-
formance criterion plays a crucial role. If again
the symbol P is used to denote either the actual
plant P, or the model P to be estimated, this crite-
rion can be formalized as follows (Van den Hof and
Schrama, 1994). Let X denote a complete normed
space, where || - [|x is the norm defined on X'. Let
J(P,C) be any function with an image in X', then
an objective function can defined by ||J(P, ()| x.

In this paper the normed space A 1s chosen to be
the space IRH, and consequently the norm func-
tion ||J(P,C)||x is the He-norm. The control ob-
jective function J(P,C) € IRHo to be minimized
in a norm based control design is taken to be

17(P, O)loo = [[W2T(P, CYWi|oo (3)

with Ws, W1 € IRHoo, which 1s a weighted form of
the closed loop dynamics described by the transfer
function matrix T(P,C) € RH given in (1).

The actual plant P, under consideration is un-
known and hence the minimization of (3) can-
not be solved straightforwardly for P = P,. In-
stead of minimizing ||J(P,, C')||c directly, generally
[|7(P,, C')||o is minimized iteratively (Gevers, 1993)
using a sequence of controllers Cj, based on obser-
vations of the plant P,, that satisfy at least

I/ (Po, Ci)lloo <7 and 7 <41 (4)

See e.g. Hjalmarsson et al. (19946) for an approach
on direct tuning of controllers C; based on a 2-norm
performance specification. If, on the other hand, a
model P; (obtained by identification techniques) is
introduced and used to design the controller C; in
the ith step of the iterative scheme, then generally
an upper bound on ||J(P,, C)||eo is minimized itera-
tively. The upper bound is inspired by the following
triangular inequality (Schrama, 1992).

17 (Po, Ci)lleo < (1 (Pr, Ci)lloo+

T (Po, C) — T (Pi, C)[oo (5)

The right hand side of (5) can be minimized by mini-
mizing ||J(P;, C)||co by a norm based control design,

C; = ménnj(ﬁi,c)noo (6)

while the minimization of the second term can be
viewed as an identification problem (Schrama, 1992)

Pi = HlP%IlHJ(PoaCZ)_J(PaCZ)HOO (7)

Unfortunately, the controller C; is based on the
model P; via (6), while P; will depend on the con-
troller C; via (7) and both are unknown (yet).
Hence, the introduction of the model P; in the right
hand side of (5) does not help in minimizing the up-
per bound directly. Usually one tries to alternate
on the minimization of (6) and (7) leading off with
some 1initial controller, hoping that a sequence of
controllers will be obtained that satisfy at least (4).

3.2 Enforcing performance enhancement

In order to have a sequence of controllers C; found
by (6) that satisfy (4), conditions on both the mod-
els PZ and the controllers C; should be derived.
These conditions can be found by evaluating the
triangular inequality on the previous step ¢ — 1 of

the 1teration as follows.

17 (Po, Ci1)lloo < 11J(Bi, Cimt)lloot

) (8)
H[J(P,, Ci_1) = J(Pi, Ci—1)|| oo

Now the minimization of the second term of the
right hand side of (8), similar as in (7), can indeed
be seen as an identification problem, since C;_; from
the previous iteration is assumed to be known. The
first term on the right hand side of (8) is now simply
an evaluation of the control objective function, us-
ing the model being estimated. In this perspective
the following iterative scheme of identification and
control can be considered.

Proposition 3.1 Given a controller C;_y and a
Yic1 such that ||J(Po, Ci—1)|loee < 7i—1. Consider
the following iterative scheme.

1. Estimate a model P; by the minimization

Pz’ = H}Din||J(Po,Ci—1)_J(P,Ci—l)Hoo (9)

and accept the model P; only if B; < Yi—1, with
Bi = ||J(Pi, Ciz1)|loo +
—_—

(a) 10
+ [T (Po, Ciz1) = T (P, Cim)foo - (o)

()




2. Design a controller C; on the basis ofpi
minimizalion

by the

Ci = ngnHJ(Pi,mHoo (11)

and accept the controller only if v; < G;, with
vi = I (Pi, C)lloo +
—_————

(©) 12
+ || (Po, Ci) = T(Pr, )| oo -

(4)

3. v =141, goto 1
Then the sequence of controllers C; satisfy (4).

Proof: The inequality given in (10) is an upper
bound for ||J(P,, Ci—1)||oc, while (12) is an upper
bound for ||J(Ps, Ci)lleo- [|T(Ps, Ci)llec < i and
[|7(Po, Ci—1)||eo < B with v < 3 < yi-1.

Note that proposition 3.1 is a rather general set-
up of an iterative scheme to generate a sequence of
controllers that satisfies (4). In this set-up (10) and
(12) reflect respectively a model and a controller
validation test in order to enforce (4). The numer-
ical values of (b) and (c) are simply the minimiz-
ing values of respectively the minimization (9) and
(11), while (a) is just an evaluation of the control
objective function. The contribution of (d) can be
overestimated by incorporating an estimation of the
model mismatch between PZ and P,, see also (Ba-
yard et al, 1992). Moreover, this model mismatch
can be used in the minimization (11) of step 2 by
formulating a robust control design problem (Doyle
et al., 1992).

For notational convenience the known controller
C;-1 (coming from the previous iteration) and im-
plemented on the actual feedback controlled plant
P,, will be simply denoted by C' in the sequel of

this paper. With the choice of the objective func-
tion given in (3), the minimization (9) to estimate
a model P; can now be formulated as P; := P(0;)
with

0; = arg min |AT(P,, Pi(6),

AT(PO,PZ(H) C
Wa[T(P,, C) = T(P(0

(]| and

)= (13)
), O)NW.

For the minimization of (11) one is referred to
standard H,-control design problems present in the
literature (Bongers and Bosgra, 1990; McFarlane
and Glover, 1990). In the remaining part of this pa-
per, the minimization (13) will be considered. The
minimization will be based on closed loop data com-

ing from the plant and employing a stable factoriza-
tion of the model to be estimated.
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4 Estimation and parametrization of
stable factorizations

4.1 Identification of coprime factors

A coprime factorization of a plant P, operating un-
der closed loop conditions can be accessed by per-
forming a filtering of the signals present in the closed
loop system (Van den Hof et al., 1995) and defined
by

z:=Flr1+ Cro] =

Flu+ Cy]. (14)

By considering the map from x in (14) onto col(y, u),
a stable right factorization (P,S;, F'=1, Sin F71) of
P, 1s readily available from the data of the closed
loop controlled plant. For exact details, one is re-
ferred to Van den Hof et al. (1995) or de Callafon
and Van den Hof (1995), but in order to evaluate the
usefulness of the filtering (14), the following result
can be given.

Lemma 4.1 Let the plant P, and a controller C
form an internally stable feedback system T (P,,C')
and denote S;, = [I + CP,]=t. Then the following
statements are equivalent.
(i) (PoSinF' =Y, SinF~1) is a rcf.
(i) there exists arct (Ng, Dy) of an auziliary model
P, with T(Py,C) € RHoo such that

F=[D,+CN,]™! (15)

Both conditions imply F [ C I] e RH

Proof: See Van den Hof et al. (1995) or de Callafon
and Van den Hof (1995). O

Using the notation

Nop = PSiy F™, Dypi= Sip F71, (16)
Lemma 4.1 characterizes the freedom in choosing
the right coprime factorization (N, p, D, r) of the
plant P, by the choice of any stable rlght fac-
torization of any auxiliary model P, that is in-
ternally stabilized by the controller C'.  Using
the ref (Norp,D,r) of the plant P,, the error
AT(P,, P;(#),C) in (13) can be expressed in the fol-

lowing way.

Lemma 4.2 Let P, and C' create an internally sta-
ble feedback system T (P,,C") and let (N, r, D, r) be
the ret of P, given in (16), where F is given in (15)
Consider any P;(6), then

(i) for all® € © there exists a vcf (N;
P;(0) such that D;(0) + CN;(0) = F



(i) ||AT(Py, Pi(9),C)||oo in (13) equals

e ([ 5] - [56

D;(6)
where (N;(0), D;(0)) is any rcf of Pi(0) that
satisfies (1).

])ﬂcgm (17)

oQ

Proof: See de Callafon and Van den Hof (1995) O

With the result mentioned in lemma 4.2 it can
be seen that AT(P,, P;(#),C) in (13) is simply a
weighted difference between the ref (N, p, D, r)
and (N;(0), D;(0)) respectively of the plant P, and
the model P;(#). However, the weighting contains
the filter F', which depends on the factorization
(N;(0), D;(0)) of the model. In de Callafon and
Van den Hof (1995) an iterative procedure has been
presented to update the filter F' on the basis of the
factorization (Nz(é), Dz(é)) being estimated, to sat-
isfy (i) in Lemma 4.2.

Since the ref (N, g, D, p) can be accessed via the
map from z in (14) onto col(u,y), complex (noisy)
frequency domain data can be obtained. The data
of the factorization (N, g, D, r) will be denoted by
(N(&;),D(&)), where & for j = 1,2,...,1 denotes
a (prespecified) frequency grid & = e for dis-
crete time systems and &; = ww; for continuous time
systems. In this way the minimization of the H .-
criterion (13) will be approximated by performing a
pointwise evaluation of (17). The actual minimiza-
tion problem can now be formalized as follows.

s 706 ([ e |- e ])
F(E)[C&) TTwWig)

(18)
where ¢{-} denotes the maximum singular value.
To ensure stability of the estimate (Nz(é), Dl(é)), a
special parametrization presented in Ober (1991) of
minimal, stable and balanced state space represen-
tations for the factorization (N;(9), D;(6)) will be
used. Combining the requirements for minimality
and stability along with a balancing property of the
state space representation, will lead to parameter
constraints that can be dealt with relatively easily.

4.2 Parametrization of stable factorizations

The parametrization results on stable, minimal and
balanced state space realization in Ober (1991) and
further elaborated in Chou (1994), are based on con-
tinues time systems having multiple common Han-
kel singular values. For discrete time systems an
indirect state space parametrization can be based
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on a Mobius transformation, since this transforma-
tion preserves both stability, minimality and the bal-
anced property of the continues time state space
realization. Furthermore, in this paper only the
case of distinct Hankel singular values will be dis-
cussed, which can be considered to be the generic

case (Chou, 1994).

Lemma 4.3 Let G(s) be defined by

where (N(s),D(s)) is a rct of the p x m ratio-
nal transfer function P(s), then the following state-
ments are equivalent

1. G(s) is a (p+ m) x m stable rational transfer
function matriz of McMillan degree n, with n
distinct Hankel singular values.

2. G(s) has a state space refprefsentatiion repre-
sented by the matrices A, B, C and E with

by
B = | | withb; = [b;] € R™™
bn
and bi; >0 for1 <j<n (19)
C = e | withe = uj[bjb]»T]l/z,
u; € RPH™XT g
u]»Tujzlforlgjgn (20)
A = [a;] RPN a;y = —bjbjT fori=j,
20;
O'jbib]T — O'Z'CZTC]' o
and a;; = TU]Z for i # j,
oip1>0; >0 forl<j<n-—1 (21)
E = [ei]'] € R(pHm)xm

which is a balanced state space representation
having distinct Hankel singular values o;.

Proof: Direct application of theorem 2.1 in Ober
(1991) for a system with distinct Hankel singular
values. ad

Splitting up C and F respectively into [CT CE]T
and [EX EL]T, the operation P = ND™! leads to
a state space realization (A, B,C, E) of P given by

A =
C

A-BE\Cp B =
CN—ENEﬁléD F =

It should be noted that (19) and (21) reflect pa-
rameter constraints that can be dealt with relatively



easy. In standard pseudo canonical (overlapping)
parametrizations (Ljung, 1987) more complicated
parameter constraints should have been specified
to enforce stability. Unfortunately, (20) reflect a
non-linear equality constraint to parametrize the el-
ements of a unitary vector.

To circumvent (20), in Chou (1994) a parametri-
zation based on rotating actions has been proposed.
This parametrization parametrizes almost all uni-
tary vectors in IR**! for k > 1, without a non-linear
constraint. Since p 4+ m > 1, this can be applied
without objections and it will be shown here that all
unitary vectors € IRP+Y™*! can be parametrized.

Lemma 4.4 Let U := {u € RPT™>*! | 4Ty =1},
¢ :=[p1 - Pprm-1] € IRPHm=DXL 4nd the sel
® = {¢p € RPT-DX1 | o ¢ (=m/2,7/2] for 1 <
i<p+m—1, epypm1 € (—m,7|}. Consider the
map f: REFM=XL RPN e by

u= Hf;m_l x;, with
:| , Lo = 1
then

(a) f(¢) €U forall p € R(P+m-1)x1

(b) the map f: IRPT =X 14 45 surjective

. cos(p; )51
v sin(p;)

(¢) the map f:® — U is bijective.

Proof: (a) The fact f(¢) € U, V¢ € RPHm—1x1
can be found by induction, see also Chou (1994).

(b) Take any w :=[u; -+ upym]? €U and define k
to denote the index of the first non-zero entry uj in
u. Using the map (23) for verification, the elements
p; of ¢ can be given by ¢; = w/2 for 1 <i <k —1,

i—1

H cos(pj)

i=k

Ui 1
U

i = tan™!

for £ < ¢ < p+m—1 and finally ¢pym-1 =
sigh(ptm )[1 —sign(ug)]7/2+sign(ug) sin™ (wptm ),
where sign(-) denotes the sign function defined by
sign(z) := 1 if # > 0 and sign(z) := —1 if z < 0.
Clearly, 3 ¢ € RPT™~1 which proves (b).

(¢) Tt can be verified that the elements ¢; of ¢; de-
fined above, restricts ¢ to be an element of & and
therefore uniquely determines ¢ € ®. a

With the result mentioned in lemma 4.4, the pa-
rametrization of the unitary vectors u; € IR"t™ in
(20) can be replaced by the alternative parametri-
zation in terms of ¢ € IRPT™~ ! Putting linear con-
straints on the elements ¢; such that ¢ € ® accord-
ing to lemma 4.4, will yield a unique parametriza-
tion. However, due to the periodicity of the elements
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w; of ¢, the parametrization will be locally identifi-

able. Therefore, the constraints on the elements ¢;

of ¢ can be omitted during the optimization.
Resuming, the minimization problem given in

(18) can be formulated as follows. TLet G;(f) be

defined as
_ | Ni9)
6= o
having m inputs, p + m outputs and parametrized
according to the results mentioned in lemma 4.3 and
lemma 4.4. Then [A, B, C] are given by the param-
eter

9:[0’1 s Op bl

<o by, (/f (ﬂ]’ with
§ € © C R *(2m+r)

where © is determined by the additional constraints
given in (19) and (21). These constraints can be
rewritten into

Op—0pn_1 >0, -, 00—01 >0, 60 >0

24
b1 >0, ba1 >0, -+, b1 >0 (24)

to ensure a minimal, stable and balanced continuous
time state space realization of the stable factoriza-
tion (N;(6), D;(9)). In this way the minimization
given in (18) is in fact a non-linear constrained min-
imization, where the parameters lie in a convex set
O. This can be solved by standard constrained min-
imization routines, for example available in the op-
timization toolbox of the MatLab package (MatLab,
1994).

Compared to the curve fit procedure presented in
Hakvoort and Van den Hof (1994), an alternative
parametrization along with linear parameter con-
straints is presented here, to enforce stability of the
multivariable estimate having multiple outputs. In
addition, the frequency grid is used here to evaluate
a maximum singular value, instead of a maximum
amplitude criterion over all possible transfer func-
tions.

5 Example

In this section, only the results on the minimiza-
tion of (18) will be illustrated for a fixed filter F
and unity weightings W7 and Ws. Using lemma 4.3
and lemma 4.4 to parametrize the state space real-
ization of (N (), D(#)) and the convex parameter
constraints given in (24), (18) will be solved by a
non-linear constrained optimization.

Consider a bth order SISO discrete time plant P,
having a DC-gain of 5, zeros located at 0.52+0.44:,
0.9740.06%, poles located at 0.76+0.40z, 0.9940.062
and 0.94. The plant P, is controlled by a discrete
time controller C' given by

Olg) 2.04¢ — 1.66¢% — 1.14¢ + 1.24
= 75 T 1.68¢2 + 1.03 — 0.35

(25)



As mentioned before, the minimization of (18) will
be illustrated and W; and W5 are chosen to be iden-
tity. Furthermore, the filter F' in (15) is taken to
be fixed and based on an auxiliary model P, that
equals P,, where the factorization (N, D) is taken
to be a discrete time normalized right coprime fac-
torization. Noisy frequency response measurements
were generated at 100 frequency points distributed
between 1072 and 1Hz and based on time domain
observations of z in (14) and col(y, u).

The aim is to fit a 3rd order stable factorization
on the frequency response data (N(e'wi), D(eiwi))
of the 5th order plant P,, using the non-linear con-
strained minimization. In order to start up the
non-linear minimization, an ordinary least-squares
equation error fit is applied to have an initial esti-
mate of the factorization. The initial estimate hap-
pens to be stable and therefore it can be balanced
and converted to the parametrization of lemma 4.3
and lemma 4.4. After this, the non-linear constraint
optimization is started up. The final result (after
432 iterations) represented in a transfer function of
col(N(q), ﬁ(q)) is given by

0.0005¢3 + 0.1162¢% — 0.1165¢ + 0.0594
0.8802¢° — 2.1267¢° + 1.8395¢ — 0.5871
[¢3 — 2.1861¢2 + 1.7704q — 0.5244]

which is of course stable. The amplitude Bode plot
of the result is given in Figure 2.

NN el N1 DL 1Dorl], 1]

10

100

10’2 L L L L
10° 107 10" 10° 10° 107 107 10°

w; [He] w; [He]

Fig. 2. Amplitude Bode plot of the frequency re-
sponse data (N (e™7), D(e'“i)) (dotted), of
the factorization (Noyp(e“"j), Doyp(e“"j)) of
the plant P, (dashed) and 3rd order esti-
mate (N ('), D(e/3)) (solid)

To 1llustrate the character of the minimization
(18) being performed, a plot of the weighted error

(TN [ wE 1Y
{([DW)] [D(e“‘”)D (26)
F(ewi)[ C(eti) 1]}
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is depicted in Figure 3. Clearly, this plot indicates
the objective to minimize pointwise the maximum
value of the error (26) along the available frequency

grid.

weighted error

10°

. .
10° 107 10" 10°

w; [He]

Fig. 3: Amplitude plot of the weighted error given
in (26)

For completeness, a Bode plot of the resulting es-
timate P := ND_l is depicted in Figure 4. From
this picture it can be seen that a good estimate is
obtained around the cross-over frequency of 0.2Hz.
Moreover, it can be verified that the model P is also
stabilized by the controller given in (25).

|P|, [P, |P|

10° 10"2 w; [HZ] 1(;" 10

Fig. 4: Bode plot of data P(e'i) (dotted), plant
Eo(eiwj) (dashed) and 3rd order estimate
P(e™i) (solid)

6 Conclusions

In this paper a procedure is presented to estimate a
possibly unstable and feedback controlled multivari-
able plant by using an H.,-norm based feedback-
relevant identification criterion. To handle the H .-
norm based criterion, (noisy) closed loop frequency



domain measurements of the plant are used to fit
a model, parametrized in a stable factorization of a
prespecified McMillan degree, by a pointwise eval-
uation of the error along a prespecified frequency
grid. To ensure stability of the factorization being
estimated, a parametrization that enforces a stable,
minimal and balanced state space representation is
being used. With this parametrization, the H..-
norm based identification criterion can be solved by
a non—linear constrained optimization.
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