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Abstract

In view of consecutive control design, approximate iden-
ti�cation of linear models is performed on the basis of
a feedback relevant performance criterion. The resulting
closed loop identi�cation problem is handled by identi-
fying stable coprime factors of a possibly unstable plant,
while the model class is restricted to contain models of a
prespeci�ed McMillan degree. It is shown that the formu-
lated performance criterion can be handled by imposing
a constraint on the model parametrization. A solution to
deal with this restriction based on an update algorithm
is presented and illustrated by an example.

1 Introduction

Induced by the fact that dynamicalmodels obtained from
system identi�cation are used as a basis for model based
control design, there is a growing interest in merging the
problems of identi�cation and control. This has been the
motivation to develop methods for a so-called feedback
relevant identi�cation, which implies that the feedback
relevant dynamical behaviour of the plant operating in a
closed loop con�guration has to be estimated in order to
design enhanced controllers [8, 19].
To perform a feedback relevant identi�cation, closed

loop experiments from the real plant Po are a prerequisite
to come up with a model P̂ suitable for control design
[9, 12]. The need for closed loop experiments is induced
by a feedback relevant criterion to be minimized for the
estimation of a model P̂ . Since the controller that creates
the closed loop con�guration can (yet) be unknown, a
simultaneous optimization of identi�cation and control
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design has been proposed in [1] or [11]. In addition, it
has been widely motivated to separate the two stages of
identi�cation and control design and to use an iterative
scheme [17]. Recently developed iterative schemes can be
found in [12], [16], [18] or [22].

In this paper the identi�cation stage in such an itera-
tive scheme will be discussed. During the identi�cation
a feedback relevant criterion will be minimized on the
basis of closed loop observations of the plant Po, to ob-
tain a model P̂ of a prespeci�ed McMillan degree. Both
the feedback relevant criterion and the usage of closed
loop data can be handled by the algebraic theory of frac-
tional representations [21]. Similar approaches based on
a Youla parametrization can also be found in [10] or [12]
but these techniques lack the ability to prespecify the
McMillan degree of the model P̂ being estimated.

By estimating a stable factorization of the model P̂
directly, similar as in [18, 20], the McMillan degree of
the model P̂ can be controlled. However, minimizing
the feedback relevant criterion for a �xed order model
P̂ leads to an additional restriction on the factorization
to be estimated. A possible solution to deal with this
restriction based on an update algorithm is presented and
illustrated by an example.

2 Preliminaries

Let P be used to denote either the plant Po or the model
P̂ , then the feedback con�guration of P and a controller
C is denoted with T (P ;C) and de�ned as the connection
structure depicted in Figure 1.

If P equals Po in Figure 1, then the signals u and y re-
ect respectively the inputs and outputs of the plant Po,
where v is an additive noise on the output y of the plant.
It is presumed that the noise v is uncorrelated with the
external reference signals r1, r2 and can be modelled by
a monic stable and stably invertible noise �lter H hav-
ing a white noise input e [13]. The signals u and y are
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Fig. 1: feedback connection structure T (P ;C)

being measured and r1, r2 (and consequently uc, yc) are
possibly at our disposal.
It is assumed that the feedback connection structure

is well posed, that is det[I + CP ] 6� 0. In this way the
mapping of [r2 r1]T to [y u]T is given by the transfer
function matrix T (P ;C) with

T (P;C) :=

�
P
I

�
[I + CP ]�1

�
C I

�
(1)

and the data coming from the closed loop system
T (Po; C) can be described by

�
y
u

�
= T (Po; C)

�
r2
r1

�
+

�
I
�C

�
[I + PoC]

�1v (2)

In case of an internally stable closed loop system T (P;C),
all four transfer function matrices in T (P;C) will be sta-
ble [2, 7] which implies T (P ;C) 2 IRH1 for a real ratio-
nal P , where IRH1 denotes the set of all rational stable
transfer functions.
Using the theory of fractional representations, P will

be expressed as a ratio of two stable mappings N and
D. Following [21], P has a right coprime factorization
(rcf ) (N;D) over IRH1 if there exists X, Y , N and D
such that P = ND�1 and XN +Y D = I. In addition, a
rcf (N;D) is normalized if it satis�es N�N +D�D = I,
where � denotes the complex conjugate transposed. Dual
de�nitions apply for left coprime factorizations (lcf ).

3 Merging identi�cation and control

The characterization of a closed loop performance cri-
terion plays a crucial role in the analysis of feedback
relevant identi�cation. A characterization by means of
an objective function that depends on the plant Po and
the controller C can be formalized as follows [19]. Let
X denote a complete normed space, where k � kX is the
norm de�ned on X . Let J(Po; C) be any function with
an image in X , then an objective function can de�ned by
kJ(Po; C)kX .
In this respect a norm based control design can be

formulated by the minimization of kJ(Po; C)kX . Since
the actual plant Po is unknown, the control design
can be based on minimization of an objective function
kJ(P̂ ; C)kX , by the introduction of a (nominal) model P̂ .

The resulting controller, denoted by CP̂ , is said to satisfy

a (nominal) control objective if kJ(P̂ ; CP̂ )kX � , where
 is some prespeci�ed non-negative real number.
The introduction of a model P̂ also opens the possiblity

to lower and upper bound kJ(Po; CP̂ )kX by employing
the following triangular inequalities [18]

���kJ(P̂ ; CP̂ )kX � kJ(Po; CP̂ )� J(P̂ ; CP̂ )kX

���
� kJ(Po; CP̂ )kX �

kJ(P̂ ; CP̂ )kX + kJ(Po; CP̂ )� J(P̂ ; CP̂ )kX

From the second inequality it can be seen that

kJ(P̂ ; C
P̂
)kX + kJ(Po; CP̂

)� J(P̂ ; C
P̂
)kX �  (3)

is a su�cient condition in order to have a controller CP̂

which satis�es the control objective on the real plant Po.
Clearly, the �rst term on the left hand side in (3) can be
minimized by the norm based control design for a �xed
model P̂ . The minimization of the mismatch kJ(Po; C)�
J(P̂ ; C)kX for a �xed controller C can be viewed as a
feedback relevant identi�cation problem.
In this paper the normed space X is chosen to be

the space IRH1 and the control objective function
kJ(P̂ ; C)k1 2 IRH1 is taken to be

kJ(P̂ ; C)k1 := kWoT (P̂ ; C)Wik1
and CP̂ := argmin

C
kWoT (P̂ ; C)Wik1

(4)

with Wo, Wi 2 IRH1. The objective function given in
(4) represents a large class of 1-norm based control de-
sign schemes and the usage of the weightings Wo, Wi

is inspired by the ability to create a trade o� between
conicting requirements and constraints always present
[3]. With the choice of the objective function given in
(4), the minimization of the performance degradation
kJ(Po; C)� J(P̂ ; C)kX

�̂ = argmin
�
kWo[T (Po; C)� T (P (�); C)]Wik1 (5)

will be regarded as the feedback relevant identi�cation
problem.
The minimization (5) on the basis of data coming from

the plant Po operating under closed loop conditions can
be handled by the framework of fractional representa-
tions, which additionally gives a uni�ed appraoch to han-
dle stable and unstable plants. How to access a stable fac-
torization of the plant Po is discussed in section 4, while
in section 5 the minimization (5) for a �xed order model
P (�) will be expressed in terms of a fractional represen-
tation.

4 Access to stable factorizations

Denoting r := r1+Cr2 and Si := [I +CP o]�1, it follows
from (2) that the transfer functions (PoSi; Si), which are
accessible from data as r, u and y are measured, can be



considered to be a stable (right) factorization of the plant
Po, i.e. P0 = [PoSi][Si]

�1. To avoid the presence and
estimation of common unstable zeros in the stable right
factorization of Po, the factorization needs to be a rcf .
Furthermore, a rcf is not unique and access to di�erent
factorizations would be preferable.
Similar as in [20] or [5], an additional �ltering x := Fr

can be introduced to ful�ll these requirements. With (2)
this yields

x = F
�
C I

� � r2
r1

�
= F

�
C I

� � y
u

�
(6)

and (2) reduces to

�
y
u

�
=

�
PoSiF

�1

SiF
�1

�
x+

�
So

�CSo

�
He (7)

where (PoSiF�1; SiF�1) can be considered to be a (right)
factorization of the plant Po.
The freedom in choosing the �lter F can be found by

restricting (PoSiF�1; SiF�1) to be a rcf and is summa-
rized below.

Lemma 4.1 Let P and C form an internally stable feed-

back system T (P;C). Then the following statements are

equivalent.

(i) (PSiF�1; SiF�1) is a rcf.

(ii) there exists a rcf (Nx; Dx) of an auxiliary model Px
with T (Px; C) 2 IRH1 such that

F = [Dx +CNx]
�1 (8)

Both conditions on F imply F
�
C I

�
2 IRH1.

Proof: See [20] or [4]. 2

With the result of lemma 4.1 the following proposition
to get access to a rcf of the plant Po on the basis of closed
loop signals can be given.

Proposition 4.2 Let the plant Po and a controller C
create an internally stable feedback system T (Po; C), then
(2) can be rewritten as

�
y
u

�
=

�
No;F

Do;F

�
x+

�
I
�C

�
[I + PoC]

�1v

where x is given in (6), F is given in (8) and (No;F ; Do;F )
is the rcf of the plant Po given by

�
No;F

Do;F

�
=

�
Po
I

�
[I +CPo]

�1[I +CPx]Dx (9)

Proof: By use of (7) with No;F := PoSiF
�1 andDo;F :=

SiF
�1 and direct application of (8). 2

Since x in (6) is uncorrelated with v, proposition 4.2
gives rise to an equivalent open loop identi�cation prob-
lem of the rcf (No;F ; Do;F ) of the plant Po, as also been
indicated in [18]. It should be noted that the speci�c rcf
(No;F ; Do;F ) in (9) of the plant Po that can be accessed,
can be inuenced by the rcf (Nx; Dx) of the auxiliary
model Px used to create the �lter F in (8) and their in-
terrelation is mentioned in the following corollary.

Corollary 4.3 The rcf (No;F ; Do;F ) of the plant Po
given in proposition 4.2 satis�es

[Do;F + CNo;F ] = F�1 = [Dx +CNx]: (10)

Proof: With No;F = PoSiF
�1 and Do;F = SiF

�1,
[Do;F +CNo;F ] = [I +CPo]SiF

�1 = F�1 proving equa-
tion (10), where F is given in (8). 2

Note that the transfer functions Do;F and No;F seper-
ately are unknown, but (10) indicates that [Do;F+CNo;F ]
can be replaced by F�1, which is completely known. Fur-
thermore, (9) indicates that (No;F ; Do;F ) can be of high
order, containing redundant dynamics. A sensible choice
for the auxiliary model Px and the corresponding fac-
torization (Nx; Dx) may lead to cancelling of redundant
dynamics, which is used in [20] to access and approximate
a normalized factorization of the plant Po.
For sake of analysis and to maintain generality, it is

presumed here that an identi�cation procedure based on
the data given in proposition 4.2 is able to come up with
an estimate �̂ given by

�̂ = arg min
�

W1

��
No;F

Do;F

�
�

�
N (�)
D(�)

��
W2


X

(11)

where W1, W2 are weighting functions and k � kX is a
norm function to be speci�ed. The role of the weighting
functions W1, W2, the norm function k � kX to be used
and the parametrization of the factorization (N (�); D(�))
will be scrutinized in the following sections.

5 Estimation of coprime factors

5.1 Feedback relevant identi�cation

For the feedback relevant identi�cation problem in-
troduced in section 3, the mismatch Wo[T (Po; C) �
T (P̂ ; C)]Wi given in (5) needs to be minimized for a
model P̂ with a prespeci�ed McMillan degree. Using the
fractional representations introduced in section 4, this
mismatch can be expressed as follows.

Lemma 5.1 Let Po and C create an internally stable

feedback system T (Po; C) and let (No;F ; Do;F ) be the rcf
of Po given by (10) where F is any �lter satisfying (8).
Consider any model P̂ , then

(i) there exists a rcf (N̂ ; D̂) of the model P̂ such that

D̂ + CN̂ = F�1.



(ii) Wo[T (Po; C)� T (P̂ ; C)]Wi equals

Wo

��
No;F

Do;F

�
�

�
N̂

D̂

��
F
�
C I

�
Wi (12)

where (N̂ ; D̂) is a rcf of P̂ that satis�es (i).

Proof: Take (No;F ; Do;F ) in (10) as the rcf of Po and

(N̂ ; D̂) as a rcf of the model P̂ . Using (10) and re-
stricting [D̂+CN̂ ] = F�1, the mismatchWo[T (Po; C)�
T (P̂ ; C)]Wi equals (12). 2

Clearly, lemma 5.1 reects also a restriction on the fac-
torization (N (�); D(�)) to be estimated. If the �lter F is
characterized by (8), the restriction

D(�) +CN (�) = Dx +CNx = F�1 (13)

has to be incorporated in the feedback relevant identi�-
cation of the model P (�) = N (�)D(�)�1.

Corollary 5.2 The identi�cation problem of (5) and the

estimate (11) can be made compatible, by taking W1 =
Wo, W2 = F [C I]Wi, k � kX = k � k1 and the restriction

of (13), yielding

min
�

D(�)+CN(�)=F�1

Wo

�
No;F � N (�)
Do;F �D(�)

�
F
�
C I

�
Wi


X

Proof: With W1 = Wo, W2 = F [C I]Wi the argument
of k � kX in (11) equals the argument of k � k1 in (5), by
substituting the results of lemma 5.1. 2

5.2 Minimization with restriction

In order to deal with the restriction (13) in the minimiza-
tion, basically two approaches can be followed. The �rst
approach is to parametrize N (�) and D(�) in such a way
that (13) is always satis�ed.

Proposition 5.3 Let Px with a rcf (Nx; Dx) and C with

a rcf (Nc; Dc) satisfy T (Px; C) 2 IRH1, then the para-

metrization

N (�) = Nx +DcR(�)
D(�) = Dx �NcR(�)

(14)

with R(�) 2 IRH1 complies with the restriction (13).

Proof: Substitution of (14) in (13). R(�) 2 IRH1 is
needed to ensure (N (�); D(�)) 2 IRH1. 2

The parametrization in (14) (or a dual form based
on lcf 's) is known as the (dual) Youla parametrization
[18, 19]. It is used extensively in the literature by esti-
mating the stable factor R(�) directly [10, 12] but lacks
the ability to prespecify the McMillan degree of the model
P̂ being estimated. Hence the minimization (5) cannot be

achieved for a �xed ordermodel. An alternative approach
to deal with the restriction (13) is to reverse the problem
by parametrizing the �lter F such that it satis�es (13).
As a result, the feedback relevant identi�cation prob-

lem can be formulated as

min
�

Wo

�
No;F (�) � N(�)
Do;F (�) �D(�)

�
F (�)

�
C I

�
Wi


X

(15)
with F (�) = [D(�) + CN (�)]�1.
With the parametrization of the �lter F , the optimiza-

tion problem clearly becomes essentially di�erent from
the criterion (11) that can be handled by a \standard"
identi�cation procedure. This is caused by the fact that
the signal x can not be constructed prior to identi�cation
now. However, the above criterion gives rise to an itera-
tive scheme where in iteration step i, parameter estimate
�̂i is obtained by applying (15) with F (�) replaced by

Fi = F (�̂i�1).
Furthermore, it follows directly from (5) that the ob-

jective function to be minimized does not distinguish be-
tween di�erent rcf 's of the plant model P (�). In other
words, a rcf of a model P (�) is not unique which leads
to a non-unique parametrization of the �lter F (�) and
di�erent rcf 's of P (�) give the same value of the objec-
tive function. This gives us an additional freedom in
the construction of the \�xed" �lter F , characterized by:
Fi = [D(�̂i�1)Q + CN (�̂i�1)Q]�1, where Q is just any
stable transfer function.
In order to reduce this additional freedom, which is re-

quired for obtaining convergence of the iterative scheme,
the �lter F will be updated by restricting the rcf of the
model to be normalized. In this way

Fi = ( �Di�1 + C �Ni�1)
�1

where ( �Ni�1; �Di�1) is a normalized rcf of the model

P (�̂i�1) with P (�̂i�1) = N (�̂i�1)D(�̂i�1)�1, which is
unique upto a post multiplication with a unitairy matrix.
Starting o� from an initial model estimate with nor-

malized rcf ( �N; �D) by setting �Ni�1 = �N and �Di�1 = �D,
the iterative scheme reads as follows.

1. In step i, create Fi = ( �Di�1+C �Ni�1)�1 and simulate
the input x.

2. Estimate (N (�̂i); D(�̂i)) by the minimization given
in corollary 5.2 discarding the parameter restriction
(13).

3. Compute a normalized rcf ( �Ni; �Di) for the model

P (�̂i) := N (�̂i)D
�1(�̂i),

and go back to step 1.

If the iteration converges then ( �Di+C �N i)�1 = Fi is inde-
pendent of i. According to corollary 5.2, the restriction
(13) has been satis�ed, thus a feedback relevant estimate
P̂ of the plant Po has been obtained. A rigorous proof
of the convergence of the iteration is not available (yet)



but extensive simulations, using a 2-norm in the mini-
mization reveal promising results and will be illustrated
in the example of section 6.

5.3 Parametrization

To control the McMillan degree of the model be-
ing estimated, the factorization (N (�); D(�)) can be
parametrized in state space form as follows.

Theorem 5.4 Let (N̂ ; D̂) 2 IRH1 be given by a stable

and minimal state space representation

�
�A; �B;

�
�CN

�CD

�
;

�
�EN

�ED

��

with detf �EDg 6= 0, then

(i) detfD̂g 6� 0

(ii) P̂ = N̂D̂�1 is given by the state space representation

[A;B;C;E] with A = �A � �B �E�1D
�CD, B = �B �E�1D ,

C = �CN � �EN
�E�1D

�CD, E = �EN
�E�1D

(iii) (N̂ ; D̂) is a rcf of P̂ .

Proof: Due to the non-singular matrix �ED, D̂ is
invertible having a state space representation ( �A �
�B �E�1

D
�CD; �B �E�1

D ;� �E�1
D

�CD; �E
�1
D ) which proves (i). From

the state space representation of the operation P̂ =

N̂D̂
�1

n = dim( �A) uncontrollable states can be omitted,
leading to [A;B;C;E], which proves (ii). The matrices
�A, �B, �CN , �CD and �EN can be rewriten as �A = A�BK,
�B = B �ED , �CN = C � EK, �CD = �K �EN = E �ED, In
this way N̂(z) = ([C � EK][zI � A + BK]�1B + E) �ED

and D̂(z) = (�K[zI � A + BK]�1B + I) �ED , which is
proven to be a rcf in [14]. 2

The result of theorem 5.4 gives rise to a wide class of
parametrizations in the estimation of a rcf (N (�̂); D̂(�̂)).
Restricting the estimate to be stable, minimal (and bal-
anced) can be enforced by using the parametrizations
given in [15] and further elaborated in [6]. However, a sta-
ble and minimal state space estimate with non-singular
feedthrough matrix �ED will be found in the generic case.
This due to the fact that the map form x onto [y u]T

is stable according to proposition 4.2. Furthermore, the
map from x onto u is given by [I + CPo]

�1[I + CPx]Dx

according to (9), which is non-singular by de�nition.

6 Example

For the simulation example, consider a �fth order plant
Po(q

�1) = b(q�1)=a(q�1). The denominator a(q�1) is a
monic polynominal having roots at 0:75�0:4i, 0:99�0:06i
and 1. The �rst element in the numerator b(q�1) equals
0:1 and the roots are given by 0:98�0:04i and 0:5�0:4i.
The controller is taken to be C(q�1) = 1 and white noise

reference signals r1, r2 with variance 1, white noise input
v with variance 0:1 are used to generate the signals u, y
from (2). The initial model �N �D�1 is a simple integrator
0:1

1�q�1
.

The aim is to estimate a third order model P̂ that
approximates the plant Po by minimizing (5) on the
basis of a 2-norm criterion. Starting with a normal-
ized rcf of the initial model, the update algorithm men-
tioned in section 5.2 is invoked. The minimization given
in corollary 5.2 without the restriction (13) is performed
by a least squares estimate using an output error model
structure [13]. The state space model of the factorization
(N (�); D(�)) mentioned in theorem 5.4 is parametrized
by pseudo canonical overlapping form with observability
indices 1; 2 [13].
The update algorithm was invoked 6 times. To inspect

the restriction (13) during the update algorithm, a plot of

kD(�̂i) + CN (�̂i) � F�1i k1 is plotted in Figure 2. From
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kD(�̂i) +CN (�̂i) � F�1i k1

# iterations

Fig. 2: Evaluation of restriction

Figure 2 can be seen that indeed the restiction (13) is
(almost) ful�lled after 4 iterations and that the update
algorithm seems to converge.
The factorization (N̂ ; D̂) of the third order factoriza-

tion (N̂ ; D̂) obtained after the 6 iterations along with the
third order model P̂ = N̂D̂�1 is plotted in Figure 3. The
third order (unstable) model P̂ (q�1) obtained is given by

10�2
�0:1256 + 7:9494q�1 � 5:3788q�2+ 0:1403q�3

1� 2:5412q�1+ 2:2564q�2� 0:7182q�3

and is stabilized by the controller C. Note that the min-
imization of (5) induces a weighting on the open loop
mismatch between Po and P̂ , which is high around the
bandwith of 0.2 Hz of the closed loop system.

7 Conclusions

It has been shown that any stable right coprime factor-
ization of the plant can be accessed by a �ltering of sig-
nals present in the closed loop system and the freedom
in the �ltering has been characterized by employing the
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Fig. 3: Bode plot of identi�ed 3rd order coprime fac-
tors (N̂ ; D̂) and model P̂ (solid) and factorization
(No;F ; Do;F ) of the plant Po (dashed)

knowledge of the controller present during the closed loop
experiments.

The feedback relevant estimation of a �xed ordermodel
based on the fractional approach leads to a restriction on
the stable factors to be estimated. This restriction is
intrinsic in many schemes on feedback relevant identi�-
cation but can be written down explicitly in case of the
coprime factor identi�cation and boils down to a rela-
tion between the �lter used to gain access to the coprime
factors of the plant and model being estimated. A possi-
ble solution to deal with the restriction by updating the
�ltering is presented and illustrated by an example.

References

[1] D.S. Bayard, Y. Yam, and E. Mettler. A criterion for
joint optimization of identi�cation and robust con-
trol. IEEE Trans. on Automatic Control, AC-37,
pp. 986{991, 1992.

[2] P.M.M. Bongers. Modeling and Identi�cation of

Flexible Wind Turbines and a Factorizational Ap-

proach to Robust Control. PhD thesis, Delft Univ. of
Techn., 1994.

[3] S.P. Boyd and C.H. Barrat. Linear Controller design
{ Limits of Performance. Englewood Cli�s, Prentice
Hall, 1991.

[4] R.A. de Callafon. Filtering and Parametrization

Issues in Feedback Relevant Identi�cation based on

Fractional Model Representations. Internal Report
N{478, Delft University of Technology, 1994.

[5] R.A. de Callafon, P.M.J. Van den Hof, and D.K.
de Vries. Identi�cation and control of a compact
disc mechanism using fractional representations. In
Prepr. 10th IFAC Symp. on System Identi�cation,

Vol. 2, pp. 121{126, Copenhagen, Denmark, 1994.
[6] C.T. Chou. Geometry of Linear Systems and Iden-

ti�cation. PhD thesis, University of Cambridge, De-
partment of Engineering, 1994.

[7] C.A. Desoer and W.S. Chan. The feedback intercon-

nection of linear time invariant systems. Journal of
the Franklin Institute, pp. 335{351, 1975.

[8] M. Gevers. Towards a joint design of identi�cation
and control? Essays on Control: Perspectives in the

Theory and its Applications, pp. 111{151, 1993.
[9] R.G. Hakvoort, R.J.P. Schrama, and P.M.J. Van den

Hof. Approximate identi�cation with closed{loop
performance criterion and application to LQG feed-
back design. Automatica, Vol. 30, pp. 679{690, 1994.

[10] F.R. Hansen. A Fractional Representation Approach

to Closed Loop System Identi�cation and Experiment

Design. PhD thesis, Stanford University, 1989.
[11] H. Hjalmarsson, S. Gunnarsson, and M. Gevers.

A convergent iterative restricted complexity control
design scheme. In Proc. 33rd IEEE Conference on

Decision and Control, pp. 1735{1740, Lake Buena
Vista, USA, 1994.

[12] W.S. Lee, B.D.O. Anderson, R.L. Kosut, and I.M.Y.
Mareels. A new approach to adaptive control. Int. J.
Adaptive Contr. Signal Proc., Vol. 7, pp. 183{211,
1993.

[13] L. Ljung. System Identi�cation: Theory for the

User. Prentice Hall Inc., Information and System
Sciences Series, Englewood Cli�s, 1987.

[14] C.N. Nett, C.A. Jacobson, and M.J. Balas. A con-
nection between state{space and doubly coprime
fractional representations. IEEE Trans. on Auto-

matic Control, AC-29, pp. 831{832, 1984.
[15] R. Ober. Balanced parametrizations of classes of

linear systems. SIAM Journal on Control and Opti-

mization, Vol. 29, No. 6, pp. 1251{1287, 1991.
[16] D.E. Rivera and S. Bhatnagar. Closed{loop system

identi�cation of restricted complexity models using
iterative re�nement. In Proc. Amer. Control Conf.,
pp. 1993{1994, San Francisco, USA, 1993.

[17] R.J.P. Schrama. Accurate identi�cation for control
design: the necessity of an iterative scheme. IEEE

Trans. Autom. Control, AC-37, pp. 991{994, 1992.
[18] R.J.P. Schrama. Approximate Identi�cation and

Control Design with Application to a Mechanical

System. PhD thesis, Delft Univ. Techn., 1992.
[19] P.M.J. Van den Hof and R.J.P. Schrama. Identi�ca-

tion and control { closed loop issues. In Prepr. 10th

IFAC Symp. on System Identi�cation, Vol. 2, pp.
1{13, Copenhagen, Denmark, 1994.

[20] P.M.J. Van den Hof, R.J.P. Schrama, R.A. de Calla-
fon, and O.H. Bosgra. Identi�cation of normalized
coprime plant factors from closed loop experimental
data. European J. Control, Vol. 1, No. 1, 1995.

[21] M. Vidyasagar. Control System Synthesis: A Fac-

torization Approach. Cambridge, MIT Press, 1985.
[22] Z. Zang, R.R. Bitmead, and M. Gevers. Disturbance

rejection: on{line re�nement of controllers by closed
loop modelling. In Proc. American Control Confer-

ence, pp. 2829{2833, Chicago, USA, 1992.


