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Abstract

The powerful standard representation for uncertainty descrip-

tions in a basic perturbation model based on a standard plant

representation can be used to attain necessary and su�cient

conditions for stability robustness within various uncertainty de-

scriptions. In this paper these results are employed to formu-

late necessary and su�cient conditions for stability robustness of

several uncertainty sets based on unstructured additive coprime

factor uncertainty, gap-metric uncertainty as well as the recently

introduced �-gap uncertainty.

1 Introduction

In a model-based control design paradigm, the design is
based on a (necessarily) approximative model P̂ of a plant to
be controlled. An apparently successful control design leads
to a controller C , having some desired closed loop properties
for the feedback controlled model P̂ , but due to the mismatch
between the actual plant Po and the model P̂ , a veri�cation
of these desired closed loop properties is preferred before im-
plementing the controller C on the actual plant Po. In this
paper the discussion is directed towards the veri�cation of
one of the most important closed loop properties: stability.

To evaluate stability when the controller C is being ap-
plied to the plant Po, a characterization of the mismatch be-
tween the plant Po and the model P̂ is indispensable. Since
the real plant Po is unknown, the discrepancy in general is
characterized by a so called uncertainty set, denoted with P .
Typically an uncertainty set P is de�ned by the (nominal)
model P̂ , which is found by physical modelling or identi�ca-
tion techniques, and some bounded `area' around it [4]. The
uncertainty set P itself reects all possible perturbations of
the (nominal) model P̂ that may occur.

By de�ning the uncertainty set in such a way that at least
the plant Po 2 P , stability robustness results for the set P
will reect su�cient conditions under which the plant Po will
be stabilized by C , see [4] or [5]. In this perspective, special
attention will be given in this paper to an uncertainty set
PCF which is characterized by additive perturbations on a
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coprime factor description of the nominal model P̂ . The spe-
ci�c application of such an uncertainty set description will be
motivated by the favourable properties it has over a standard
additive or multiplicative uncertainty set description.

Using the simple and powerful stability robustness results
for a basic perturbation model in a standard plant con�gu-
ration, [4, 5, 16], several di�erent uncertainty sets employ-
ing weighted and unstructured additive perturbations on a
coprime factorization, gap-metic based uncertainty sets and
the recently introduced �-gap uncertainty sets will be shown
to be closely related to each other. The contribution of this
paper is in the uni�ed treatment of these di�erent uncer-
tainty sets. While stability robustness results for uncertainty
sets using additive perturbations on normalized (left) co-
prime factorizations [11] and gap-metric based uncertainty
sets [10] have separately been derived before, this paper am-
pli�es their relation, as well as the extension to a less con-
servative �-gap uncertainty set description [1, 2].

The outline of this paper will be as follows. In Section 2
some preliminary notations and de�nitions will be given,
while in Section 3 the basic stability robustness result us-
ing a perturbation model based on a standard plant descrip-
tion [4, 6, 16] will be summarized. This perturbation model
gives rise to an uni�ed approach to handle stability robust-
ness for various uncertainty descriptions, including additive
weighted perturbations on a coprime factorization. Section
4 contains the results of applying this uni�ed approach to
additive uncertainty descriptions on fractional model repre-
sentations and favourable properties are illuminated. The
link with gap and �-gap based stability robustness results is
discussed in sections 5 and 6, the latter one being less con-
servative than the former one, as shown in section 7. The
paper ends with some concluding remarks.

2 Preliminaries

Throughout this paper, the feedback con�guration of a plant
P and a controller C is denoted by T (P ; C ) and de�ned by
the feedback connection structure depicted in Figure 1.

A plant P and a controller C are assumed to be given
by real rational transfer function matrices, and it will be
assumed that the feedback connection is well-posed, i.e. that
det[I + CP ] 6� 0. Then the feedback system T (P ; C) is
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Fig. 1: Feedback connection structure T (P ; C) of a plant P
and a controller C

de�ned to be internally stable if the mapping from col(r2; r1)
to col(uc; u) is BIBO stable, i.e. if the corresponding transfer
function is in IRH1, where IRH1 denotes the Hardy space
of real rational transfer function matrices with bounded H1-
norm [6]:

kGk1 := sup
!2[0;�)

��fG(ei! )g (1)

with �� the maximum singular value. Furthermore, the dy-
namics of the closed loop system T (P ; C) will also be de-
scribed by the mapping from col(r2 ; r1) to col(y; u) which is
given by the transfer function matrix T (P ; C):

T (P ; C) :=

�
P

I

�
[I +CP ]�1

�
C I

�
: (2)

Using the theory of fractional representations, as e.g. pre-
sented in [20], a plant P is expressed as a ratio of two sta-
ble transfer function matrices N and D. For two transfer
functions N;D 2 IRH1, the pair (N;D) is called right co-
prime over IRH1 if there exist X; Y 2 IRH1 such that
XN + YD = I . The pair (N;D) is a right coprime factor-
ization (rcf ) of P if (N;D) is right coprime and P = ND�1.
A right coprime factorization (N;D) is called normalized
(nrcf ) if it satis�es N �N +D�D = I , where � denotes com-
plex conjugate transpose. For (normalized) left coprime fac-
torizations (lcf ) dual de�nitions exist. With respect to in-
ternal stability of the feedback system T (P ; C) as mentioned
above, the following lemma will be used.

Lemma 2.1 Let P have a rcf (N;D) and let C have a lcf
( ~Dc; ~Nc). Then the following statements for internal stability
of the feedback system T (P; C) are equivalent.

i. The feedback system T (P; C) given in Figure 1 is inter-
nally stable.

ii. T (P; C) 2 IRH1, with T (P; C) de�ned in (2).

iii. ��1 2 IRH1, with � := ~DcD + ~NcN

Proof: i, ii : Follows directly from (2), and its direct rela-
tion with the transfer function from col(r2; r1) to col(uc; u).
i , iii: See [20], [2] or [17]. 2

Fractional representations have a close relation with ap-
proximation in the graph topology. The graph topology is
the weakest topology1 in which a variation of the elements
of a stable feedback con�guration around their nominal val-
ues, preserves stability of that closed loop system [21]. The
graph topology is known to be induced by several metrics,
as e.g. the graph metric introduced in [19] or the gap metric
introduced in [23], being expressed in the following way.

1Given two topologies O1 and O2, O1 is said to be weaker than O2

if O1 is a subcollection of O2, see also [21]

De�nition 2.2 [8] Consider two plants P1; P2 with a nrcf
(N1 ; D1), (N2 ; D2) respectively. Then the gap between P1

and P2 is expressed by

�(P 1; P 2) := maxf~�(P 1; P 2); ~�(P 2; P 1)g with

~�(P i; P j) := inf
Q2IRH1
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3 Stability robustness in standard form

For analyzing the stability robustness of several uncertainty
sets based on fractional model representations, standard re-
sults on stability robustness for a rather general interconnec-
tion structure as depicted in Figure 2(a) will be employed.
Here the mismatch between P̂ and Po, an uncertainty on P̂

or a perturbation of Po has been isolated and represented in
the �-block using the arti�cial signals d and z [4, 16].
The internal stability of the feedback system of Figure 2(a)

is reected by the map from col(r2; r1) onto col(uc; u). For
notational convenience, this map will be represented by the
basic perturbation model given in Figure 2(b), to which stan-
dard stability robustness results will be applied. This basic
perturbation model is denoted by the upper linear fractional
transformation F(M;�) := M22 +M21�[I �M11�]�1M12,

where the decomposition of M =

�
M11 M12

M21 M22

�
is in accor-

dance with Figure 2(b).
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Fig. 2: (a) Feedback connection structure of a (perturbed)
plant Po and the controller C . (b) Basic perturbation
model F(M;�).

The elements of the transfer function M in Figure 2(b)
can be expressed in terms of the model P̂ and the controller
C . If the controller C internally stabilizes P̂ , the transfer
function M is BIBO stable and the small gain theorem can
be applied to characterize stability results for the connection
structure of Figure 2(b). This result is summarized in the
following lemma.

Lemma 3.1 Let the stable transfer functions M;� 2 IRH1

construct a feedback connection F(M;�). Then



(a) a su�cient condition for BIBO stability of F(M;�) is
given by

kM11�k1 < 1 (3)

(b) provided that for all � with k�k1 <  the transfer func-
tion M21�[I � M11�]

�1M12 does not exhibit unstable
pole/zero cancellations2, F(M;�) is BIBO stable for all
� with k�k1 <  if and only if

kM11k1 � �1 (4)

Proof: Since M 2 IRH1, and thus M11, M12, M21 , M22 2
IRH1, the small gain theorem [22] directly leads to result (a).
Additionally also necessary conditions can be formulated on
the stability of [I �M11�]

�1 for all � with k�k1 < . Pro-
vided that unstable poles of [I �M11�]

�1 are not cancelled
in M , this leads to the necessary condition of (4). For a
complete proof see [11], [13] or [20]. 2

4 Stability robustness for uncertainty

descriptions based on fractional model

representations

The result of Section 3 on stability robustness can be applied
to various H1-norm bounded uncertainty sets by rewriting
the uncertainty description into the basic perturbation model
F(M;�). In this section this is done for uncertainty sets
based on coprime factor uncertainties.
A crucial aspect in the result of Lemma 3.1 is the assump-

tion that � 2 IRH1. In case of an additive or multiplicative
uncertainty set in the basic perturbation model, this assump-
tion implies the condition that the locations of all unstable
poles of the plant Po are assumed to be �xed. Additive per-
turbations on coprime factorizations are more exible and
allow changes in both the number and the locations of poles
and zeros anywhere in C [3]. Moreover, fractional represen-
tations have a close relation with approximation in the graph
topology. Firstly, an uncertainty set based on additive per-
turbations on a coprime factorization will be discussed.

Corollary 4.1 Consider a plant P̂ with rcf (N̂ ; D̂), stabi-
lized by a given controller C , and consider the uncertainty
set

PCF (N̂ ; D̂; VD; VN ;W; ) = fP jP = [N̂ +�N ][D̂ +�D ]
�1

with


�
VD 0

0 VN

� �
�D

�N

�
W


1

< g:

for stable and stably invertible �lters VD; VN ;W . Then the
feedback system T (P; C) is internally stable for all P 2 PCF

if and only ifW�1[D̂ +CN̂ ]�1
�
I C

� � V �1D 0

0 V �1
N

�
1

� �1

Proof: De�ning

� :=

�
VD 0

0 VN

� �
�D

�N

�
W; such that k�k1 < ; (5)

2This additional condition which is often discarded in literature,
excludes trivial situations as e.g. M21 = 0 orM12 = 0. It can be shown
to be satis�ed for the common uncertainty classes based on additive,
multiplicative or coprime factor uncertainty.

where VD , VN andW are stable, the basic perturbation struc-
ture of the uncertainty set PCF can be written into a form
that corresponds to Figure 2(b). A su�cient condition for
the transfer function M to be stable is that C internally sta-
bilizes P̂ and VD , VN and W are also stably invertible. The
map M11 is given by

M 11 = �W�1[D̂ + CN̂ ]�1
�
I C

� � V �1D 0

0 V �1
N

�
(6)

which proves the result by application of Lemma 3.1. 2

Corollary 4.1 can alternatively be proven by employing
stability results directly in terms of coprime factor repre-
sentations of plant and controller. Here we have stressed the
fact that the considered uncertainty set allows a description
in terms of a standard perturbation model as depicted in
Figure 2.
In the next section it will be shown how these results can

be exploited to derive stability robustness conditions for gap-
metric uncertainty sets as well as for uncertainty sets based
on further generalizations of the gap-metric. To this end, the
result on the equivalence between several formulations of the
same uncertainty sets will be presented �rst.

Proposition 4.2 The set PCF (N̂ ; D̂; VD; VN ;W; ) as de-
�ned in Corollary 4.1 can alternatively be written in the fol-
lowing equivalent forms:

(a) PCF (N̂ ; D̂; VN ; VD ;W; ) =

fP j P = (N̂W + V �1N �N )(D̂W + V �1
D �D)

�1

with


�
�N

�D

�
1

< g
(7)

(b) PCF (N̂ ; D̂; VN ; VD ;W; ) =

fP j P = NnD
�1
n ; (Nn; Dn) a nrcf and

9 Q 2 IRH1 such that
�
VN 0

0 VD

� ""
N̂

D̂

#
W �

�
Nn

Dn

�
Q

#
1

< g:

(8)

Proof: Part (a) follows by simple calculation. The proof of
part (b) is more involved and is based on the fact that any
right, but not necessarily coprime, fractional representation
(N;D) can be written as a right fractional representation
(NnQ;DnQ) with Q 2 IRH1 and (Nn; Dn) a nrcf . In this
way the right, but not necessarily coprime, fractional repre-
sentation of P in (7) can be written as (N̂W + V �1N �N ) =

NnQ and (D̂W +V �1D �D) = DnQ with (Nn; Dn) a nrcf and

Q 2 IRH1. It follows then that �N = VN [NnQ� N̂W ] and
�D = VD [DnQ � D̂W ] which proves the result. Note that
the factor Q cancels in the representation of P . 2

5 Stability robustness based on distance

measures

In this section stability robustness results for gap-metric un-
certainty sets are formulated. The main result of this section
is not new, but already proven separately in [10]. The close
relation of the stability robustness result here with the for-
mulation in the previous section concerning general coprime



factor uncertainty sets will be illuminated. This relation will
be employed in the next section to formulate similar results
for uncertainty sets based on the so-called �-gap, as recently
introduced in [1] and [2].

The following uncertainty sets are being considered

P~�
(P̂ ; ) := fP j ~�(P̂ ; P ) < g

P�(P̂ ; ) := fP j �(P̂ ; P ) < g;

for which the following relation with the coprime factor un-
certainty sets can be shown, as presented before.

Lemma 5.1 Let a plant P̂ and a controller C constitute an
internally stable feedback system T (P̂ ; C). Consider the un-
certainty set PCF (N̂ ; D̂; VN ; VD ;W; ) under the additional
conditions that (N̂ ; D̂) is a nrcf of P̂ , and VD = I, VN = I,
and W = I. Then

(a) PCF (N̂ ; D̂; VN ; VD ;W; ) = P~�
(P̂ ; )

(b) For  < 1, P~�
(P̂ ; ) = P�(P̂ ; ).

Proof: Part (a). According to Proposition 4.2(b) and tak-
ing into account the speci�c choice of weighting functions in
the lemma, it follows that

PCF (N̂ ; D̂; VN ; VD ;W; ) =

fP j P = NnD
�1
n ; (Nn; Dn) a nrcf and 9 Q 2 IRH1

such that


"
N̂

D̂

#
�

�
Nn

Dn

�
Q


1

< g:

Since (N̂ ; D̂) is chosen to be a nrcf of P̂ it is straightforward
to verify that PCF = P~�

.
Part (b). This is proven in [10]. The restriction to  < 1

is caused by the fact that these sets with  � 1 can not be
stabilized by a single controller. 2

Lemma 5.1 relates the set de�ned by a gap metric bound
with the set of coprime factor perturbations by a special
choice of the weighting functions VD, VN , W and the coprime
factorization (N̂ ; D̂) of the model P̂ . This gives rise to an
uni�ed approach to handle sets of plants that are bounded
by a gap metric, and the stability robustness result for these
sets follows now directly from Corollary 4.1.

Corollary 5.2 Consider the situation of Lemma 5.1 with
 < 1. Then for each of the three sets of plants PCF , P~�

and P�, T (P; C) is internally stable for all P 2 P if and
only if

kT (P̂ ; C)k1 � �1: (9)

Proof: The proof follows simply by substituting the speci�c
weightings in the result of Corollary 4.1, employing the fact
that premultiplication of the expression within the norm by

[N̂
T
D̂

T
]T leaves the norm invariant, due to the normaliza-

tion of the rcf . 2

Note that the result of Corollary 5.2 is not new. It was
shown already in [10], where a complete proof of the stability
robustness result is given. Similar results on the interrela-
tion between uncertainty sets based on distance measures
and based on additive perturbations on coprime factor de-
scriptions can also be found in [18]. It has been shown here

that the stability robustness results in the standard form can
simply be exploited, as formulated in section Section 3. Re-
stricting attention to the situation that  < 1 is natural, as
kT (P̂ ; C)k1 � k[I +CP̂ ]�1k1 > 1, according to Bode's sen-
sitivity integral, showing that stability robustness can only
be achieved for sets with  < 1.
Finally it should be noted that the gap and graph metric

are induced by the same topology and are uniformly equiv-
alent [8]. Therefore stability robustness in the graph metric
yields a similar result as mentioned in Corollary 5.2 and their
interrelation is discussed in [14].

6 Stability robustness in the �-gap

The results obtained in the previous section for gap-based
stability robustness can be further extended for uncertainty
sets based on the recently introduced �-gap, [1, 2]. This �-
gap is a distance measure that adds an additional frequency
weighting in the expression that is utilized in the gap-metric,
while the frequency weighting is controller-dependent.

De�nition 6.1 Let two plants P1, P2 have nrcf 's (N1; D1),
(N2 ; D2) respectively. Let C be a controller with nlcf ( ~Dc; ~Nc)
such that T (P1; C) is internally stable. Then the �-gap be-
tween the plants P1, P2 is de�ned to be expressed by

~��(P1; P2) = inf
�Q2IRH1


�
D1

N 1

�
��1 �

�
D2

N 2

�
�Q


1

with � = [ ~DcD1 + ~NcN 1].

The di�erence between ~�(P 1; P 2) and ~��(P 1; P 2) is the
additional shaping of the nrcf of P 1 with ��1 into a rcf
( �N; �D). In this way �� := ~Dc

�D+ ~Nc
�N = I , with �N = N 1�

�1,
�D = D1�

�1, which is used to consider the closed loop op-
eration of P 1 induced by the controller C being employed.
This makes the distance between P 1 and P 2 dependent on
the nrcf of the controller C. Note that the distance measure
~��(P 1; P 2) is not a metric since ~��(P 1; P 2) 6= ~��(P 2; P 1) due
to the inuence of the controller C [2].
Accordingly, an uncertainty set based on �-gap uncer-

tainty can be de�ned as:

P~��
(P̂ ; ) := fP j ~��(P̂ ; P ) < g:

This uncertainty set can also be shown to be equivalent to
an uncertainty set of coprime factor uncertainties, provided
appropriate weighting functions are chosen.

Lemma 6.2 Let a plant P̂ and a controller C with a
nlcf ( ~Dc; ~Nc) constitute an internally stable feedback system
T (P̂ ; C). Consider the set PCF (N̂ ; D̂; VN ; VD;W; ) under
the additional conditions that (N̂ ; D̂) is a nrcf of P̂ , and
VD = I , VN = I, and W = ��1 with � = [ ~DcD̂ + ~NcN̂ ].
Then

(a) PCF (N̂ ; D̂; VN ; VD ;W; ) = P~��
(P̂ ; );

(b) T (P; C) is internally stable for all P 2 PCF if and only
if  � 1.

Proof: The proof of (a) is straightforward, along the same
lines as the proof of Lemma 5.1(a). Result (b) then follows
directly from Corollary 4.1, employing the fact that �[D̂ +
CN̂ ]�1 [I C ] = [ ~Dc

~Nc] having an 1-norm of 1 due to the
fact that it is a normalized left coprime factorization. 2



As said before, in case of the �-gap, the uncertainty set
de�ned accordingly considers perturbations of the nominal
plant P̂ that are controller dependent.
The introduction of weightings in the gap metric has also

been studied in [7], [9] or [15]. In [7] a multiplicative un-
certainty description on the nrcf (N̂ ; D̂) of the model P̂ is
being used, leading to an uncertainty structure � having a
diagonal form. Due to the diagonal form only necessary and
su�cient conditions based on the structured singular value
�f�g can be obtained. The weightings in the weighted gap
of [9] have to be de�ned a posteriori which makes the choice
of the weighting functions, to access robustness issues on the
basis of a weighted gap, not a trivial task. Information on
the size of the coprime factor perturbations can be used in
the weighted pointwise gap metric de�ned in [15], but still
an e�cient computational method for pointwise gap metric
is not available yet. The �-gap can simply be calculated.
Controller synthesis in the �-gap however is more compli-
cated and is a problem that is not solved yet.

7 Conservatism issues

All stability robustness results in this paper reect necessary
and su�cient conditions of an uncertainty set to be stabilized
by a single controller. As such no conservatism is introduced
in the test for checking stability robustness itself. However,
for a single given controller, di�erent of such uncertainty sets
contain a di�erent portion of the set of all systems that is
stabilized by the controller. In this perspective the concept
of conservatism is an intrinsic property of the uncertainty
set being used. As a result an uncertainty set will be called
more conservative than another if one controller stabilizes
both sets, while the former set is contained in the latter.

Theorem 7.1 ([1]) Consider a plant P̂ and a stabilizing
controller C with nlcf ( ~Dc; ~Nc). Consider the following two
uncertainty sets resulting from the stability robustness results
in the previous sections:

S�(P̂ ; C) := f[ P�(P̂ ; b); b < kT (P̂ ; C)k�1
1
g

S~�� (P̂ ; C) := f[ P~�� (P̂ ; c); c < 1g

then
S�(P̂ ; C) � S~��(P̂ ; C): (10)

Proof: The following implication will be proven:

�P 2 S�(P̂ ; C)) �P 2 S~��(P̂ ; C): (11)

As �P 2 S�(P̂ ; C) there exists a �U 2 IRH1 such that

k

"
D̂n

N̂n

#
�

�
�D
�N

�
�Uk1 �

1

kT (P̂ ; C)k1
: (12)

This implies that

k

"
D̂n

N̂n

#
�

�
�D
�N

�
�Uk1 � k��1k1 �

k��1k1

kT (P̂ ; C)k1
: (13)

As kT (P̂ ; C)k1 = k��1k1, this implies that

k

"
D̂n

N̂n

#
�

�
�D
�N

�
�Uk1 � k��1k1 � 1: (14)

Lower bounding the left hand term of this expression implies
that

k

"
D̂n

N̂n

#
��1 �

�
�D
�N

�
�U��1k1 � 1 (15)

which proves the result. 2

The gap-metric uncertainty set can exhibit severe conser-
vatism, as very well illustrated in e.g. [12]. As the gap-
metric does not take into account the closed loop operation
of the plant P in the set, induced by the controller C being
used, this conservatism can intuitively be understood. The
above result shows that in almost all cases the �-gap uncer-
tainty set is less conservative; the proof of the above Theorem
shows that the two sets in (10) are equal only in the situation
that � = �V , with � 2 IR and V a unitary matrix. In all
other cases, the �-gap set is strictly less conservative. The
controller-relevant weighting within the �-gap is the basic
reason for this.

Conclusions

The powerful standard representation for uncertainty de-
scriptions in a basic perturbation model based on a standard
plant con�guration can be used to attain necessary and suf-
�cient conditions for stability robustness within various un-
certainty descriptions. In this paper these results are applied
to uncertainty descriptions based on fractional model repre-
sentations, leading to necessary and su�cient conditions for
stability robustness in case of additive coprime factor uncer-
tainties.
In this way a uni�ed approach to handle additive coprime

factor perturbations can be derived which yields a manage-
able and comprehensive way to relate gap and �-gap based
uncertainty sets to (weighted) additive coprime factor per-
turbations. Based on this framework necessary and su�cient
conditions for gap and �-gap based uncertainty sets are pre-
sented and it is shown that in terms of stability robustness,
the �-gap uncertainty set is less conservative than the gap
uncertainty set.
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