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sentations
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Abstract. This paper discusses filtering and parametrization issues involved in the usage
of fractional representations in multivariable, approximate and feedback relevant identifi-
cation of a possibly unstable plant operating under closed loop conditions. The knowledge
of the controller is used to access any stable right coprime factorization of the plant by
measuring and filtering the signals present in the closed loop system. By exploiting a spe-
cific class of parametrizations in the estimation of the stable coprime factorization with
a prespecified McMillan degree, a linear time invariant model having the same McMillan
degree will be obtained. In addition the approximate and feedback relevant estimation
of a fized order linear time invariant model based on coprime factor identification leads
to an additional constraint, which can be written down explicitly as a relation between
the filtering of the signals present in the closed loop system and the coprime factors of
the model being estimated. A possible solution to deal with this constraint based on an

update algorithm is presented.

Keywords.
tion.

1 Introduction

Induced by the fact that dynamical models ob-
tained from system identification are used as a basis
for model based control design, there is a growing
interest in merging the problems of identification
and control. Models found by system identification
techniques are necessarily approximative since ex-
act modelling can be impossible or too costly to
perform. The validity of any approximative model
hinges on the intended use of the model and there-
fore the identification procedure being used, will
be subjected to several requirements to estimate
a model suitable for control design thoughtfully.
This has been the motivation to develop methods
for a feedback relevant identification, which implies
that the feedback relevant dynamical behaviour of a
plant operating in a closed loop configuration has to
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system identification; robust control; coprime factors; filtering; parametriza-

be estimated in order to design enhanced controllers
(Gevers, 1993; Van den Hof and Schrama, 1994).
To perform a feedback relevant identification, ex-
periments from the real plant, denoted with P,,
operating in a closed configuration are needed to
come up with a model, denoted with ]5, suitable
for control design (Lee et al., 1992; Hakvoort et al.,
1994; Hjalmarsson et al., 1994q). Since the con-
troller to create the closed loop configuration can
(yet) be unknown, a simultaneous optimization of
identification and control design has been proposed
in Bayard et al. (1992) or Hjalmarsson et al. (19945).
Furthermore, it has been widely motivated to sepa-
rate the two stages of identification and control de-
sign and to use an iterative scheme of identification
and model based control design (Schrama, 1992q).
One of the first papers using this separation can be
found in Farison et al. (1967) or Schwartz and Stei-
glitz (1971) and more recent examples of iterative
schemes can be found in Zang et al. (1992), Rivera



and Bhatnagar (1993), Bitmead (1993) or Lee ef al.
(1993). In such an iterative scheme the controller of
step ¢—1, 1s used to perform closed loop experiments
with the plant P, and to estimate a feedback rele-
vant model P. The model P is used to design an
improved model based controller, denoted by C'p,
again to perform closed loop experiments with in
step 1.

In this paper the identification stage in such an
iterative scheme will be discussed. The identifica-
tion is based on the algebraic theory of fractional
representations (Vidyasagar, 1985) and involves the
feedback relevant identification of a coprime fac-
tor realization of a model P based on closed-loop
observations of the plant P, using a controller '
from the previous iteration (Hansen, 1989; Schrama,
19926; Van den Hof et al., 1993). In order to con-
trol the McMillan degree of the linear time invariant
model P, a specific class of parametrizations is used
to parametrize the coprime factorization being esti-
mated. Furthermore, the approximate and feedback
relevant estimation of a fized order linear time in-
variant model gives rise to an additional constraint,
which can be written down explicitly in case of the
coprime factor identification.

The outline of this paper is as follows. In section 2
some preliminary notations and definitions used in
the sequel will be given. Section 3 discusses the
relation between identification and control design.
To deal with the closed loop identification problem,
in section 4 the framework of equivalent open-loop
identification of a coprime factor representation of
the plant P, will be summarized. Section 5 contains
the parametrization aspects on the identification of
a coprime factorization itself and the results of per-
forming the identification in a feedback relevant way,
leading to an additional parametrization constraint.
Possible solutions to cope with this parametrization
constraint are summarized. Finally, section 6 con-
tains some concluding remarks.

2 Preliminaries

2.1 Feedback configuration

Throughout this paper the feedback configuration
of a plant P and a controller C' i1s denoted with
T(P,C) and defined as the connection structure de-
picted in Figure 1.

In Figure 1 the signals u and y reflect respectively
the inputs and outputs of the plant P, where v is
an additive noise on the output y of the plant. The
signals u, and y. are respectively the inputs and out-
puts of the controller €', and r; and ry are external
reference signal that are uncorrelated with the addi-
tive noise v. From an identification point of view the
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Fig. 1: feedback connection structure 7 (P, ')

signals u and y are being measured, v is unknown
and r1, ro (and consequently w,, y.) are possibly at
our disposal.

It is assumed that the feedback connection struc-
ture is well posed, that is det[I + C'P] #Z 0. In this
way the closed loop dynamics of the closed loop sys-
tem 7 (P,C) can be described by the mapping of
[ro r1]7 to [y u]T which is given by the transfer
function matrix T(P,C):

T(P,C) = [f] L+cPtc 1], ()

and describing the data coming from the closed loop
system 7 (P, C) in the following way

[Z] =T(P,C) [ " ] + [ _IC] [I+PC]™ ' (2)

r1

where the additive noise v := He can be mod-
elled by a monic, stable and stably invertible noise
filter H having a white noise input e (Ljung,
1987). In case of an internally stable closed loop
system 7T (P, (), all four transfer function matri-
ces in T(P,C) will be stable (Desoer and Chan,
1975; Schrama, 19926; Bongers, 1994) which implies
T(P,C) € RHoo, where IRH o, denotes the set of all
rational stable transfer functions.

The controller C' will be applied to both the real
plant P, and the model ]5, according to the feedback
connection structure given in Figure 1. The cor-
responding closed loop dynamics of the two differ-
ent feedback configurations will be described respec-
tively by the two transfer function matrices T'(P,, C')
and T(p, ).

2.2 Coprimeness and stability

Using the theory of fractional representations, an
arbitrary plant P is expressed as a ratio of two
stable mappings N and D. Following Vidyasagar
(1985) the following definitions for coprimeness and
coprime factorization will be used, where IRH ., de-
notes the set of all rational stable transfer functions.



Definition 2.1 Let N, D € IRH.,, then the pair
(N, D) is called right coprime over R M if there
exist right Bezout factors XY € IRH o, such that

XN+YD=1.

The pair (N,D) is a right coprime factorization
(rcf) of P if det{D} # 0 and P = ND~' and (N, D)

1s right coprime over IRH .

Based on the theory of fractional representations
and the usage of left and right coprime factoriza-
tions given in definition 2.1 the following result for
internal stability of a closed loop system 7 (P, ()
can be derived.

Theorem 2.2 Let P = ~ND_1 = DTN where
(N,D) is a ref and (D,N) a lef of P. Let C =
NEchl = D[Wc where (Ngy D¢) is a ref and
(D¢, N¢) a lef of C. Now the following statements
are equivalent

i. the feedback system T(P,C) given in Figure 1
1s wnternally stable

ii. T(P,C) € RHq,

iii. AV € RHeo, with A :=[ D, N, ] [ﬁ]

. A" € RHoo, with A:=[ D N | [g]

Proof: Vidyasagar (1985) and Bongers (1994). O

3 Merging identification and control

3.1 Norm based control design

In the analysis of feedback relevant identification,
the characterization of a closed loop performance
criterion plays an important role.  This crite-
rion is usually characterized by an objective func-
tion, which depends on a plant P and the con-
troller C' that assemble the closed loop configuration

(Van den Hof and Schrama, 1994).

Definition 3.1 Let X' denote a complete normed
space, where || - ||x is the norm function defined on
X. Let a plant P and a controller C form a well
posed feedback connection structure T (P, C) accord-
ing to Figure 1, and let J(P,C) be a any function
depending on a plant P and the controller C. Then
V P,C with J(P,C) € X the objective function
1s defined as a map from X onto IRH.o given by
17(P, O)llx
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Unfortunately the plant P, under consideration
is unknown and the control design method will be
based on minimization of a closed loop performance
criterion ||J(P, (|| x using a model P. In this way
the control design will be model based and can be
interpreted by the computation of a so called model
based controller, denoted with C'p, such that

Cp = arg mén||J(P,C)||X. (3)
This minimization gives rise to a value of the ob-
jective function given by ||J(P, Cp)llx and can be
classified as the design cost (Gevers, 1993). Apply-
ing the model based controller 'y to the real plant
P, gives rise to the value ||J(P,,Cp)|lx which is
characterized as the achieved cost. In this perspec-
tive the controller C'p is said to safisfy the design

objective for the corresponding model Pif

17(P,Cp)llx <7, with y >0 (4)

holds, which is a nominal performance specification.
Related examples can for example be found in Bit-
mead (1993), Gevers (1993) or Van den Hof and
Schrama (1994) for oo- or 2-norm based minimiza-
tion.

In this paper the normed space A’ is chosen to
be the space IR”M . The function J(P,C) € IRH o
is taken to be a weighted form of the closed loop
dynamics described by the transfer function ma-
trix T(P,C) € RHe given in (1). In this way
J(P,C) =W, T(P,CYW; € RHs if W, and W; in
(5) are weighting filters satisfying W,, W; € IRH oo,

making

17(P, C)leo = [[WoT (P, CYWil|oo ()

The objective function given in (5) represents a
large class of oo-norm based control design schemes
and the usage of the weightings is inspired by
the ability to create a trade off between conflict-
ing requirements and constraints always present
(Horowitz, 1963; Boyd and Barrat, 1991). In case of
diagonal weighting filters, the weighting can be seen
as an additional loop-shaping in the control design

(Bongers, 1994).

3.2 A feedback relevant criterion

From an identification point of view, a model P can
only be an approximation of the real plant P,. The
quality of any approximative model depends on the
intended use of the model. In this perspective, the
question wether a model P is good for model based
control design gives rise to a so called feedback rele-
vant identification, since the quality of the model P
should be evaluated under feedback or closed loop
conditions (Schrama, 19925).



A successful controller C'p, found by the norm
based minimization given in (3) and based on a
model P, gives rise to a value of objective func-
tion ||J(p, Cp)lla, which is said to satisfy the con-
trol objective (4) for the nominal model P. From
this perspective, the quality of the model P can be
evaluated by considering the value of the objective
function ||J(P,, C'p)||x when applying the controller
C'p, to the real plant P,.

Unfortunately, the real plant P, i1s unknown
and the following triangular inequalities (Schrama,
19926) can be used to lower and upper bound
17(P. Cp)l.

[17(Po, Cp)llx <
17(P, Cp)llax + 11 (FPo, Cp) = J(P, Cp)llx
)

17(Po, Cp)llx =
17(P, Cp)llx = (1 (Po, Cp) = J(P, Cp)lla

From the first inequality it can be seen that
17(P, Cplla + 1 (Po, Cp) = T (P, Cp)llx <7 (6)

is a sufficient condition in order to have a model
based controller C'p which satisfies the control ob-
jective (4) on the real plant P,. From an iden-
tification point of view the performance degrada-
tion ||J(P,,Cp) — J(p, Cp)llx for the controller
C'p should be minimized in order to find a model
P = P(é) such that (6) holds and can be seen as a
feedback relevant identification of the plant P,.
However, the model P and thus the controller Cp
is not available (yet), which give rise to an iterative
scheme wherein the controller C' (from the previous
iteration) is used to evaluate ||J(P,,C)||lx. With
the choice of the objective function given in (5),
the minimization of the performance degradation

|J(P,,C) — J(P,C)||x then becomes

min [[W, [1(P,, C) — T(P(0), O Willoe. (T
By minimizing (7) such that (6) holds, the current
controller €', applied to the plant P,, is guaranteed
to give a similar performance when applying it to

the model P(6) found by the minimization and the

model P(@) can be used for subsequent control de-
sign.

4 Closed loop identification
Identification of stable factorizations

4.1

Approximate identification on the basis of closed
loop experiments could easily be defective due to
the correlation between noise v and input u, (Ljung,
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1987). Moreover, an explicit expression for the ap-
proximation of the plant P,, independent of the
noise contribution during the experiments, is needed
to tune the bias of the model P in a feedback rele-
vant way (7). Additionally, an unified approach to
handle the identification of both stable and unsta-
ble plants P,, that are stabilized during the closed
loop experiments, is preferred. These demands can
be handled by using the algebraic theory of frac-
tional representations and to estimate stable (co-
prime) factorization of the plant P,. Several authors
have worked on this topic, see for example Hansen
(1989), Van den Hof et al. (1993) or Lee et al. (1993).
To have access to a factorization of the plant
P,, the following approach can be followed. Con-
sider the closed loop data generating system given
in Figure 1 and define r := r1 + C'ry. With (2) this
yields
r=r1+Cra=u+Cy (8)

and (2) reduces to

R e e
where S; := [I + CP,]7! is the input sensitivity
function and S, := [I + P,C]~! is the output sen-
sitivity function. Since the controller C' is used for
the closed loop experiments, the closed loop system
T(P,,C) is assumed to be internally stable. With
theorem 2.2 this yields T(P,, (") € RHo making
both P,S;, S; € RH in (9) but not necessarily co-
prime, which is summarized in the following corol-
lary.

9)

Corollary 4.1 Let a plant P and a controller C
create an internally stable feedback system T (P, ()
then (PS;, S;) is a ref of P if and only if C' € RH .

Proof: See de Callafon (1994). O

Hence P,S;, S; can be considered to be a sta-
ble right, but not necessarily coprime, factorization
(No, D,) of the plant P,, with N, := P,S; and
Do = Sz

4.2 Identification of coprime factorizations

To avoid the presence and estimation of unstable ze-
ros in the factorization (P.S;, S;), which gives rise to
hidden unstable modes in the representation of the
plant P,, the factorization needs to be coprime. For
an unstable controller C', the factorization (PS;, S;)
1s not coprime, as mentioned in corollary 4.1, while
the operation given in (8) yields an unbounded sig-
nal. Furthermore, a rcf is not unique and access
to factorizations different from (P,S;, S;) would be
preferable. In order to fulfil these requirements, an



additional filtering of the signal r is introduced with
x := F'r, similar as in Van den Hof ef al. (1993) or
de Callafon et al. (1994). With (2) and (8) this
yields

r=F[C I] [”]:F[C I][Z] (10)

1
J+]
where (PS; F~1,5; F~1) again is a (right) factoriza-
tion of the plant P,.

In Van den Hof et al. (1993) the freedom in choos-
ing the filter F is found by restricting both the fac-
torization (PS; F=1, S; FF~1) and the map F[C I] in
(10) to be stable. However, stability of the map
F[C I] is not necessary in general. In the case that
ro(t) = 0 Vt, @ = F'ry, hence stability of F' is re-
quired only. By restricting (PS;F~1,S;F~1) to be
a ref, stability of F[C I] is implied directly and is
summarized in the following lemma.

and (2) now reduces to

vy POSZ'F_l
u | SZ'F_l

So

s, ] He (11

Lemma 4.2 Let a plant P and a controller C' :=

lN)c_lNc, where (DC,NC) is a lcf of C, form an in-
ternally stable feedback system T (P, C') then the fol-

lowing conditions are equivalent

(i) (PS;F~L,5,F~Y) is a rcf.

(i) FF= WD, with W, W=! € RHoo
and imply F [ C I] e RH.

Proof: See Van den Hof et al. (1993) or de Callafon
(1994). O

Lemma 4.2 1s a generalisation of corollary 4.1 and
characterizes the freedom in choosing the filter F' by
the choice of any stable and stably invertible filter
W. The choice of W however can be related to the
choice of an auxiliary model P, and an auxiliary
controller Cy with T(Py, Cy) € RHo (de Callafon,
1994). Since C; can be any controller, it can be
chosen to be equal to the controller C' that the con-
trols the plant P, under consideration. In this way
the filter F' in lemma 4.2 can be characterized as
follows.

Corollary 4.3 Let a plant P and a controller C
create an internally stable feedback system T (P, ()
and let (Ny, Dy) be any ref of any auziliary model
P, then

(12)

satisfies the conditions of lemma 4.2 if and only of
T(Pr,C) e RHo.

F=[Dy+CN, ]!
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Proof: See Van den Hof et al. (1993). O

With the result of lemma 4.2 the following propo-
sition for the open loop identification of a right co-
prime factor can be given.

Proposition 4.4 Let the plant P, and a controller
C' create a stable feedback system T (P,, (), then the
closed loop data [y u]T in (2) can be rewritten into

y| _ | No
wl| | D,
where x is given in (10), F is any filter satisfying
lemma 4.2 and (N,, D,) is a rcf of the plant P, given

y[&][i
|

o+ [ L]

<

:|SZ'F_1 =

P,
I

] [I+CP,) I+ CP]D,
(13)

Proof: By use of (11) with N, := P,S;F~! and
D, := S;F~! and direct application of corollary 4.3.
Equation (13) is found by substituting (12). a

The specific ref (N,, D,) in (13) of the plant
P, to be identified is related to the filter F' since
N, = P,S;F~'and D, = S;F~'. With F given by
(12) in corollary 4.3, the rcf (N,, D,) is related to
the ref (Ny, Dy) of the auxiliary model Py, used to
create the filter F' and is summarized in the follow-
ing corollary.

Corollary 4.5 The rcf (N,, D,) of the plant P,
given in proposition 4.4 and based on the realization
of F' qiven in corollary 4.3, satisfies

[D, +CN,] = F ' =[D,+CN,]. (14)
Proof: With N, = P,S;F~ ! and D, = S;F 1,
[D, +CN,] =[I+CP,)S;F~t = F~! proving equa-
tion (14), where F' is given in (12). O

The transfer function matrix [D, + C'N,] is un-
known, since it contains the specific ref (N,, D,) of
the unknown plant P,, but (14) indicates that this
can be replaced by the filter operation F~1, which is
completely known. From corollary 4.5 it can also be
seen that (N,, D,) can be of high order, containing
redundant dynamics. A sensible choice of the model
P, may lead to cancelling of redundant dynamics,
which is used in Van den Hof et al. (1993) to esti-
mate possibly low order (normalized) factorizations
of the plant P,.

The same approach of filtering signals present
during the closed loop experiments is also being used



in the two stage method described in Van den Hof
and Schrama (1993). In this method the filter F
is given by an accurate estimate of the input sen-
sitivity function S; = [I + CP,]=t. The specific
factorization (N,, D,) to be identified becomes ap-
proximately (P,, ) and an estimate of P, is found
by estimating N, only. It should be noted that
F = [I + CP,]7! does not satisfy the conditions
mentioned in lemma 4.2 and clearly, the factoriza-
tion (P,, I) is not coprime over IRH o, for an unsta-
ble plant P,. Moreover, if the filter F' 1s given by
an approrimation of the input sensitivity function
[I + CP,]7!, the situation can become even worse
since both N, := P,S;F~' and D, = S;F~! can
become unstable. This is due to the fact that F~1,
which is the inverse of the estimated input sensi-
tivity function, can be unstable and the unstable
modes will not be cancelled completely in the oper-
ation P,S; F~1 or S;F~1.

The estimate of the right coprime factorization
(No, D,) in Van den Hof et al. (1993) and de Calla-
fon et al. (1994) is found by a 2-norm minimiza-
tion based on a prediction error method with an OE
(output error) model structure (Ljung, 1987). How-
ever, for sake of analysis and to maintain generality,
it 1s assumed here that an identification procedure
based on the data given in proposition 4.4 is able to
come up with an estimate 6 given by

R CAREOIE

D(0)
where Wy, Wy are arbitrary weighting functions and
[|-||x is a norm function to be specified. The role of
the weighting functions Wy, Ws, the norm function
[| - [|x to be used and the parametrization of the
factorization (N (6), D(6)) will be scrutinized in the
following section.

(15)

f = arg min
9

X

5 Estimation of coprime factors

5.1 Feedback relevant identification

In order to perform a feedback relevant identifica-
tion, the norm of the difference AT(PO,P,C’) =
W, [T(P,, C’)—T(P, C")]W; introduced in section 3.2,
needs to be minimized for a fired order model P.
Using the filter F' of corollary 4.3 the mismatch
AT(PO,p,C) can be expressed in terms of the
weighted difference between the ref (N,, D,) and
(]\7, 15) respectively of the plant P, and the model
]5, along with an additional constraint, depending
on the filter F' being used. This is summarized in
the following lemma.

Lemma 5.1 Let the plant P, with ref (No, D,)
gwen n corollary 4.5 and a controller C' create an
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internally stable feedback system T(P,,C). Con-
sider a model P with ref (N, D) and any filter F
satisfying lemma 4.2 then

AT(P,, P,C) = W,[T(P,,C) = T(P,C)]W;
equals

w([5]- |5

Proof: With (N,, D,) as ref of P, the matrix
T(P,,C) can be rewritten as

)F[C 1w

DycN=F-1

No

T(P,,C) = [ D

] [Do+CN, ™ [ C 1]

and using the fact [D, + CN,] = F~! from (14) in
corollary 4.5, this can be rewritten into

No

T(PO,C):[D]F[C 1.

o

With (N, D) as rcf of P, the matrix T(P, (') equals

E

and under the constraint [D+CN] = F~! this yields

[D+CN]7H[C T

N

T(P,C)= 5

FlC 1]

making T'(P,,C') — T(P, C) equal to
Ny | N
D, D

Clearly, lemma 5.1 reflects an additional con-
straint on the parametrized coprime factorization
(N(8), D(8)) of the model P to be identified. In
case the choice of the filter F' i1s replaced by the
choice of a rcf (N, Dy) of an auxiliary model P, as
in corollary 4.3, the constraint equals

)F[C 7]

D+CN=F-1

O

[D(@) +CN(@)] = F ' =[D, +CN;]  (16)
which has to be incorporated in the feedback rele-
vant identification of a model P.

With the result of lemma 5.1 the following obser-
vations can be made for the weightings Wy, W, and
the norm function ||-]|x in (15), in order to minimize
the feedback relevant criterion given in (7).



Proposition 5.2 The feedback relevant criterion of
(7) and the estimation problem of (15) can be made
compatible by taking W, = W,, Wy = F[C I|W,

[||lx = ||l and satisfying the constraint given in

(16), which yields

é:arg ming W()([g] [ z;])
(17)
Flo 1w
oo lD+CN=F-1
Proof: With Wy = W,, Wy = F[C I|W; the argu-

ment of ||-||x in (15) equals the argument of ||-||co in
(7), by substituting the results of lemma 5.1. Since
the argument AT(P, P,C) € IRH.,, the norm
function || - [|x in (15) can be chosen to be || - ||

and both (7) and (15) are equal. a

5.2 Minimization with constraint
According to proposition 5.2, the minimization of

T(P(8), C)Wil|x

for any norm function || - ||x can be replaced by
the minimization given in (17) and involves basically
a non-linear minimization for a model P(#) with
a specified McMillan degree, even if the model is
parametrized linearly.

To avoid the use of the constraint (16) in the min-
imization, an iterative scheme of minimization with-
out the constraint in step :—1 and updating the con-
straint in step ¢ was proposed in de Callafon et al.
(1994) and was based on the estimation of normal-
ized coprime factors. However, updating the con-
straint involves only the update of the filter F', used
to create the signal z in (10). In case the filter F
is defined via a rcf (Ng, Dy) of any auxiliary model
P, as in corollary 4.3, (Ng, D) can be computed
directly and is given in the following proposition.

mein||Wo[T(Po, C)—

Proposition 5.3 Let the filter F' in (10) be given
by corollary 4.3 then the ref (Ny, Dy) given by

N | N(9)
o] =m0 [0
satisfies the constraint given in (16).

Proof: Similar as in corollary 4.5. a

Clearly, the estimate of the ref (N(#), D(6)) in
proposition 5.3 is not available (yet). Taking any
ref (Ng, Dy) such that P, = N,.D,~ ' satisfies
T(P;,C) € RH o, this gives rise to an update algo-
rithm to handle the minimization given in (17) for
performing a feedback relevant identification of the
plant P, as indicated in proposition 5.2 and can be
summarized as follows.
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1. In step ¢, create F; from corollary 4.3.

2. Estimate a rcf (N(él), D(él)) based on a para-
metrization given in theorem 5.4 and the min-
imization given in proposition 5.2 without the
constraint (16).

3. Update the ref (N, D;) with proposition 5.3
according to
N(0:)
D(6;)

[ Nm’+1
sz’+1

making D( )+CN( i) = Dagip1+CNgiyq and
P, = xz+1sz+1 with T'(Py,C) € RHeo re-
mains fixed for all <.

] =T(P,,C)

4. 1:=1+ 1 and go to 1.

If the iteration converges then D(6;) + C'N(6;) =
Dg; + CNyg; is independent of ¢ and the constraint
(16) has been satisfied, thus a feedback relevant esti-
mate P of the plant P, has been obtained according
to proposition 5.2. A rigorous proof of the conver-
gence of the iteration is not available (yet) but ex-
tensive simulations reveal promising results.

5.3 Parametrization

To control the McMillan degree of the model P =
P(0) = N(0)D(0)~! being estimated, the factor-
ization (N (), D(6)) has to be parametrized in a
special way and boils down to the fact that both
N(0) and D(#) should have common stable modes.
Furthermore, any common unstable zeros should be
avolided to ensure coprimeness of the factorization
(N (), D(#)). The result has been stated in the fol-

lowing theorem.

Theorem 5.4 Let (N,f)) € RHoo be given by a
minimal and stable state space representation

(a[a] [5])
such that det{Ep} # 0 and

0= [G e 5]
then

(i) det{D} #0

(ii) P=ND s given by the state space repre-
sentation [A, B, C, E] with
A = A-BER'Cp
B = BEBl
- - 18
C = Cy— ENEf)lCD ( )
E = ENEE)l



(iii) (]\7, 15) is a ref of P.

Proof: The factor D has a state space represen-
tation (A, B,Cp, Ep) and due to the non-singular
feedthrough matrix Ep, D is always invertible hav-
ing a state space representation given by (A —
BEE)lC'D, BEE)l, —EE)lC'D, El_)l) which proves (i).
N has a state space representation (A, B,Cn, EN).
Performing the series connection of D~ and N in
P = Nﬁ_l, basic matrix manipulation yields an
extended state space representation, wherein n un-
controllable states can be omitted, where n is the
dimension of A. This leads to the state space rep-
resentation given in (18), which proves (ii). From
this, the matrices A, B, Cy, Cp and Ey can be
found from (18) leading to

A = A-BK
B = BEp
Cny = C—FEK
Cp = —K
Ex = EEp
making
N(z) = ([C - EK][zI — A+ BK]"'B+ E)Ep
= N(Z)ED € IRH
D(z) = (=K[z:I — A+ BK]™'B+1)Ep

D(Z)ED €ERH.

(19)
The factorization (N(z), D(z)) is proven to be a
right coprime factorization in Nett et al (1984).
Since the factorization (N(z), D(z)) is post multi-
plied by a constant non-singular matrix Ep only,

the factorization (N (z), ﬁ(z)) Is a also a rcf, which
proves (iii). a

The result of theorem 5.4 gives rise to a wide
class of parametrizations needed to estimate a rcf
(N(é), E(é)), since it involves the parametrization
of a stable, minimal state space representation
[4, B,C] with CT = [CT CT], wherein the direct
feedthrough matrix of the factor D is restricted to be
non-singular. Restricting the estimate to be stable
and minimal can be enforced by using the specific
parametrization of asymptotically stable systems as
given in Ober (1991) and further elaborated in Chou
(1994). This gives rise to an estimate of the fac-
torization (N (), D(6)) which is guaranteed to be
stable, minimal and balanced.

Using prediction error methods (Ljung, 1987) to
estimate the state space matrices in theorem 5.4, a
stable and minimal state space estimate with non-
singular feedthrough matrix Ep is found in the
generic case, which is due to the following facts.
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Firstly, the map from z onto [y u]” is defined
to be stable, according to proposition 4.4. Sec-
ondly, the map from z onto w is given by [I +
CP,)7 I+ CP;]D, according to (13), which is non-
singular by definition. In this way the matrices are
parametrized by standard pseudo canonical (over-
lapping) forms (Gevers and Wertz, 1984) without
stability or non-singularity condition. Finally it
should be noted that the matrix operations given
in (18) leads to model P with McMillan degree less
than or equal to n, where n is simply the McMillan
degree of the factorization (N, D) being estimated.

6 Conclusions

In this paper the filtering and parametrization issues
involved in the usage of fractional representations
in multivariable, approximate and feedback relevant
identification of a possibly unstable plant operating
under closed loop conditions have been discussed. It
has been shown that any stable right coprime factor-
ization of the plant can be accessed by the filtering
of signals present in the closed loop system. The
freedom in choosing the filter has been character-
ized by employing the knowledge of the controller
present during the closed loop experiments.

Consequently, a stable right coprime fractional
representation generated by the closed loop system
and the filtering being used, can be estimated. In
order to have a model with a prefixed McMillan de-
gree, a specific class of parametrizations with the
same McMillan degree can be used to estimate a
stable right coprime factorization of the model.

Finally, the approximate and feedback relevant
estimation of a fixed order linear time invariant
model based on coprime factor identification leads to
an additional constraint. This constraint is intrinsic
in many schemes on feedback relevant identification
but can be written down explicitly in case of the
coprime factor identification. The constraint boils
down to a relation between the filter used to gain ac-
cess to the coprime factors of the plant and model
being estimated. A possible solution to deal with
the constraint by updating the filtering i1s presented
here.
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