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Abstract. This paper discusses the control relevant parametric identification of a servo
system present in a Compact Disc player. In this application an approximate closed
loop identification problem is solved in order to come up with a linear multivariable
discrete time model, suitable for control design. This identification problem is handled
by a recently introduced two stage method. It yields an explicit and tunable expression
for the bias distribution of the model being estimated, clearly showing the dynamics of
the closed loop system in the (asymptotic) approximation criterion. This result will be
exploited to identify the model in a control relevant way by additional data filtering. The
recently introduced method in de Vries and Van den Hof (1993) for model uncertainty
quantification is used to construct an upper bound for the corresponding model error.

Keywords. compact disc player; closed loop identification; two stage method; control
relevant identification; model uncertainty.

1 Introduction

Compact Disc players use an optical decoding de-
vice to reproduce high quality audio from a dig-
itally coded signal, recorded as a spiral track on
a reflective disc, see also Bouwhuis et al. (1985).
An increasing amount of equivalent optical devices
will be used in portable applications, having severe
shock disturbances. The track following proper-
ties of a CD player, operating in these conditions,
could be improved by designing an enhanced mul-
tivariable controller. The intention of this paper is
to estimate a (nominal) multivariable FDLTI (Fi-
nite Dimensional Linear Time Invariant) dynami-
cal model, obtained from closed loop experiments,
which can be used for control design. Addition-
ally, the procedure presented in de Vries and Van
den Hof (1993) is used for a quantification of the re-
sulting model error by estimating a non–parametric
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additive model uncertainty.

There is a growing interest in merging the prob-
lems of control design and identification. On the
one hand this is caused by the fact that from a ro-
bust control design point of view we require expres-
sions for model uncertainty that have to be used
in robust control design procedures. On the other
hand the (nominal) models used to design control
systems very often will have to be gathered by ex-
perimental methods.

Practically it is impossible to exactly character-
ize all phenomena that describe the dynamical be-
haviour of a physical system and the corresponding
models will necessarily be approximative. Further-
more, control design methods can get unmanage-
able if they are applied to models of high complex-
ity. Since the validity of any approximate model
hinges on its intended use, the identification pro-
cedure being applied will be subjected to several
requirements, in order to provide estimated models
that are suitable for control design. These consider-
ations have resulted in the statement that the best
model for control design cannot be derived from



open loop experiments alone, Bitmead et al. (1990),
Schrama (1990).

A control relevant identification requires that the
relevant dynamical behaviour of the system is esti-
mated while it operates in a closed loop configura-
tion with the controller to be designed. Since the
controller obtained from the control design is (yet)
unknown, this will generally lead to an iterative
scheme of identification and control design, using
the controller of step i − 1 to estimate a model for
step i. This has led to study several different types
of iterative schemes of identification and control de-
sign, see Hakvoort et al. (1992), Lee et al. (1992),
Liu and Skelton (1990), Schrama (1992), Schrama
and Van den Hof (1992), Zang et al. (1991).

In this paper we concentrate on one identifica-
tion step in such an iterative procedure. Within the
framework of prediction error identification (Ljung
(1987)) we will identify a multivariable control rel-
evant approximate model, employing a number of
recently introduced methods. An indirect (two-
stage) method (Van den Hof and Schrama (1993))
will be employed to perform the approximate closed
loop identification. The basic advantage of this ap-
proach is that an overall approximate identification
results, in which the asymptotic bias distribution
of the identified model becomes an explicit and
tunable expression that is independent of the (un-
known) noise disturbance on the data. Additional
data filtering is applied to tune the approximation
criterion to become a control relevant criterion.

The outline of this paper is as follows. First a
concise description of the Compact Disc pick–up
mechanism and the experimental set up is given in
section 2. Next some preliminary notation is dis-
cussed. In section 4 we pay attention to the specific
two-stage identification procedure, while in section
5 we discuss the use of orthonormal basis functions
that are employed in the first stage of the proce-
dure. Next, the control relevance of the identifica-
tion approach is given attention and in section 6 we
will present the experimental results.

2 Compact Disc Mechanism

The CD mechanism consists of a turn table DC–
motor for the rotation of the Compact Disc and
a radial arm in order to follow the track of the
disc. Furthermore, an OPU (Optical Pick–up Unit)
is mounted on the end of the balanced radial arm
to read the digitally coded signal, recorded on the
disc. Schematically the CD mechanism is given in
figure 1.

A diode generates a laser beam that passes
through a series of optical lenses in the OPU to give
a spot on the disc surface. The light reflected from
the disc is measured on an array of photo diodes,
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Fig. 1: Schematic view of CD mechanism

mounted in the bottom of the OPU, yielding the
signals required for position error information of
the laser spot on the Compact Disc, see also Draijer
et al. (1992).

Following the track on the Compact Disc involves
basically two control loops. First a radial con-
trol loop using a permanent magnet/coil system
mounted on the radial arm, in order to position
the laser spot in the direction orthogonal to the
track. Secondly a focus control loop using an ob-
jective lens suspended by two parallel leaf springs
and a permanent magnet/coil system, with the coil
mounted in the top of the OPU to focus the laser
spot on the disc. In the present configuration, both
the radial and focus control loops have been real-
ized by a SISO (Single Input Single Output) con-
troller, which consists of a lead–lag element and
a proportional and integrating action. The closed
loop bandwidth is approximately 500 Hz, which is a
compromise between several conflicting factors, see
Draijer et al. (1992) and Steinbuch et al. (1992).

In figure 2 a block diagram of the two control
loops is shown. In here Pa(q) denotes the trans-
fer function of radial and focus actuator, Copu the
OPU, C(q) the controller and P0(q) = −CopuPa(q).
The variable q is the forward shift operator, yield-
ing x(t + 1) = qx(t).
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Fig. 2: Block diagram of the Compact Disc mech-
anism

The signals have the following interpretation.
The spot position error δ(t), which is the difference
between the track position �(t) and actuator posi-



tion x(t) in radial and focus direction, generates a
(disturbed) error signal y(t) via Copu. This error
signal y(t) is led into the controller C(q) and feeds
the system Pa(q) with the input u(t). The signal
v(t) reflects the disturbance on the error signal y(t).

The absolute track position �(t) and actuator po-
sition x(t) cannot be measured directly and used for
identification. Only the error signal y(t) and the in-
put u(t) are available. Therefore an additional and
known reference signal r(t), uncorrelated with the
additive noise v(t) will be injected into the control
loops, as illustrated in figure 2.

3 Preliminaries

Given figure 2, the system P0(q) will be described
by the following FDLTI data generating system S
throughout this paper.

S : y(t) = P0(q)u(t) + H0(q)e(t)
u(t) = r(t) + C(q)y(t)

(1)

In (1) the disturbance v(t) + Copu�(t) is described
by a filtered white noise signal H0(q)e(t). Using the
input sensitivity S0(q) and output sensitivity W0(q)
of the closed loop system

S0(q) = [I − C(q)P0(q)]
−1

W0(q) = [I − P0(q)C(q)]−1 (2)

we can rewrite (1) into the following equations.

u(t) = S0(q)r(t) + C(q)W0(q)H0(q)e(t) (3)

y(t) = P0(q)S0(q)r(t) + W0(q)H0(q)e(t) (4)

Throughout this paper we will consider model
sets M that are parametrized in an OE (Output
Error) structure, Ljung (1987). For a general in-
put/output system with input u and output y this
model structure is reflected by the equation:

M : y(t) = P (q, ρ)u(t) + ε(t), ρ ∈ DM (5)

where ε(t) is the one step ahead prediction error.
The parameter ρ will be estimated by employing a
least squares criterion, see also Ljung (1987),

ρ̂ = arg min
ρ

VN (ρ, ZN), ρ ∈ DM

VN (ρ, ZN) =
1

2N

N−1∑
t=0

tr
{
εT

l (t, ρ)Q εl(t, ρ)
}

εl(t, ρ) = L(q)ε(t, ρ)

(6)

where Q is a symmetric weighting matrix, ZN re-
flects the observed data of length N and L(q) is an
additional filter on the prediction error ε(t, ρ).

4 Two Stage Method

The major problem arising from an approximate
identification using closed loop experiments, is the
correlation of the additive noise with the input of
the system, see also figure 2. Most important in
identification for control design is to estimate P0(q)
given in (1). Furthermore, an explicit expression
of the approximation of P0(q) is needed, to tune
the bias distribution of the model P (q, ρ̂N) being
estimated in a feedback relevant way. The method
to handle the closed loop situation in this paper, is
based on the two stage identification method given
in Van den Hof and Schrama (1993). The two steps
are recapitulated in the following.

The external reference signal r(t) given in (3) is
uncorrelated with the additive noise v(t) acting on
the closed loop system. By using an OE model
structure, similar as in (5)

u(t) = S(q, α)r(t) + ε(t) (7)

and the least squares criterion given in (6) to es-
timate α, it is possible to identify the input sensi-
tivity S0(q) in an open loop way. In this step we
take L(q) = 1. This is the first step in the two
stage identification strategy. It is even possible to
consistently estimate S0(q), provided a sufficiently
high model order has been selected.

Given the estimate S(q, α̂N) of the input sensi-
tivity S0(q), a noise free input signal ûr(t) can be
simulated from the observations of the reference sig-
nal r(t).

ûr(t) = S(q, α̂N)r(t) (8)

which in the second step of the procedure is em-
ployed, again using an OE model structure

y(t) = P (q, ρ)ûr(t) + ε(t) (9)

and the least squares criterion given in (6) to esti-
mate the parameter ρ̂N in P (q, ρ̂N).

A result for the asymptotic bias distribution of
the estimate P (q, ρ̂N) in the SISO case is given in
the following theorem (Van den Hof and Schrama
(1993)):

Theorem 4.1 Consider the two-stage identifica-
tion discussed above, resulting in a parameter es-
timate ρ̂N . Then, under weak conditions,

ρ̂N → ρ� = arg min
ρ

1

4π

∫ π

−π

∣∣∣[P0(e
iω) − P (eiω, ρ)]·

·S0(e
iω) + P (eiω, ρ)[S0(e

iω) − S(eiω, α�)]
∣∣∣2 ·

·Φr(ω)|L(eiω)|2 dω, w.p. 1 as N → ∞
(10)



and

α� = arg min
α

1

4π

∫ π

−π

|S0(e
iω) − S(eiω, α)|2Φr(ω) dω

(11)
where L(q) denotes the filter on the prediction error
ε(t), used in the second step and Φr(ω) denotes the
(auto)spectrum of the reference signal r(t).

The frequency representation (10) in theorem 4.1
shows the influence of a model error in the esti-
mated sensitivity function on the final result of the
identification. If in the first step of the procedure a
very accurate (high order) model of the sensitivity
function is identified, then the second term in the
integrand expression in (10) will vanish. For the
multivariable case, this will result in the following
expression, where ∆P (eiω, ρ) is used to denote the
difference P0(e

iω) − P (eiω, ρ).

ρ� = arg min
ρ

1

4π

∫ π

−π

tr{L(e−iω)T QL(eiω)·
·∆P (eiω, ρ)S0(e

iω)Φr(ω)·
·S0(e

−iω)T ∆P (e−iω, ρ)T} dω

(12)

Clearly, (12) is an explicit and tunable expression
for the bias distribution of the asymptotic model
P (q, ρ∗). In this expression the prediction error fil-
ter L(q), the input spectrum Φr(ω) and the weight-
ing matrix Q can been seen as design variables, see
also Hakvoort et al. (1992) and Wahlberg and Ljung
(1986). Therefore, we define the design variables Dc

to be:
Dc

def
= {L(q), Φr(ω), Q}. (13)

The usage of the design variables Dc will be scruti-
nized in section 6.

5 Linear Regression using Ortho-
normal Basis Functions

In the first step of the identification procedure we
need an output error type algorithm in order to
arrive at the results as presented in theorem 4.1.
Moreover the identified sensitivity S(q, α̂N) has to
be very accurate, which asks for high model orders
to be applied. Since OE model structures in gen-
eral require non-linear optimization algorithms to
solve the least squares identification problem given
in (6), high model orders are very unattractive from
a computational point of view. Moreover the oc-
currence of local minima in the optimization may
heavily influence the parameter estimate that is ob-
tained.

In our procedure we will apply a linear regression
identification that also has an output error struc-
ture, and that exploits the recently obtained re-
sults on system-based orthonormal basis functions

as presented in Heuberger (1990) and Heuberger
et al. (1992). This model structure is given by:

ε(t, α) = u(t) −
n∑

k=0

Lk(α)Vk(q)r(t − 1) (14)

where {Lk(α)}k=1,···,n is a sequence of expansion co-
efficients of the parametrized model of the sensitiv-
ity function S(q, α) with respect to the basis func-
tions {Vk(z)}k=1,···,∞. It is based on the fact that
any stable, strictly proper FDLTI system S(z) has
a unique expansion

S(z) =

∞∑
k=0

LkVk(z) (15)

In the case Vk(z) = z−k, this model structure
matches a Finite Impulse Representation (FIR),
while in that case Lk represent the impulse response
coefficients of the model.

By choosing appropriate basis functions Vk(z),
the convergence rate of a series expansion as in (15)
can become very fast, which means that a very ac-
curate model can be identified by only incorporat-
ing a restricted number of coefficients Lk(α).

In Heuberger (1990), Heuberger et al. (1992) it
is shown how dynamical systems themselves can in-
duce orthonormal basis functions Vk(z), pointing to
an iterative scheme of identifying expansion coeffi-
cients and rebuilding basis functions. In our ap-
plication we have iteratively constructed such basis
functions that were found from the estimated model
in the previous iteration step. For more details the
reader is referred to the references.

6 Control Relevant Identification

6.1 Finding the right weight

The validity of any approximate model hinges on its
intended use and therefore the identification proce-
dure being applied will be subjected to several re-
quirements to estimate a model suitable for control
design. Since the ”quality” of a model actually is
dependent on the controller that is designed on the
basis of the model, this future controller actually
should be incorporated in a control relevant identi-
fication criterion.

Since the controller obtained from the control de-
sign is (yet) unknown, a minimization of the model
error using the current feedback, provided by the
present controller, is generally used to estimate a
model for subsequent control design. In the liter-
ature a number of many techniques can be found
to perform such an identification, see for example
Bitmead et al. (1990), Hakvoort et al. (1992), Liu



and Skelton (1990), Schrama (1992). In this pa-
per a 2–norm minimization will be used, see (6),
which is related to a LQG control paradigm, see
also Hakvoort et al. (1992), Zang et al. (1991).

The (input) sensitivity S0(q) given in (2) is found
to be of considerable importance in posing perfor-
mance requirements of the closed loop system. The
sensitivity, based on the (nominal) model P (q, ρ̂N)
being estimated will be denoted as

S(q, ρ̂N) = [I − C(q)P (q, ρ̂N)]−1 (16)

Clearly, the difference between the sensitivities
S0(q) and S(q, ρ̂N) reflects a feedback–relevant mis-
match, caused by the difference between the nomi-
nal model P (q, ρ̂N) and the system P0(q). Consider-
ing any norm or distance function ‖·‖ and applying
the triangle inequality to ‖S0(q)−S(q, ρ̂N)‖ yields:

‖S0(q)‖ ≤ ‖S(q, ρ̂N )‖ + ‖S0(q) − S(q, ρ̂N)‖ (17)

‖S0(q)‖ ≥
∣∣∣‖S(q, ρ̂N)‖ − ‖S0(q) − S(q, ρ̂N)‖

∣∣∣ (18)

From (17) and (18) we see that by posing the fol-
lowing requirement

‖S0(q) − S(q, ρ̂N)‖ � ‖S(q, ρ̂N)‖ (19)

similar performances of the controller C(q) applied
to the model P (q, ρ̂N) and the system P0(q) can
be derived, see also (Schrama (1992)). Therefore,
minimizing the difference ‖S0(q) − S(q, ρ)‖ on the
basis of measurement data can be seen as a control
relevant identification. By rewriting the difference
between S0(q) and S(q, ρ̂N), omitting the use of the
forward shift operator q for ease of notation, we may
write

‖[I − CP0]
−1 − [I − CP (ρ)]−1‖ =

‖[I − CP (ρ)]−1C [P0 − P (ρ)] [I − CP0]
−1‖ (20)

From (20) it can been seen that minimizing the
difference between S0(q) and S(q, ρ̂N) is equal to a
weighted norm applied to [P0(q) − P (q, ρ)], where
S0(q) is used as input weighting and S(q, ρ)C(q)
as an output weighting. By replacing the norm
operator ‖ · ‖ in (20) by the H2–norm, see (Ma-
ciejowski (1989), pp. 99), the difference term in (20)
matches the following closed loop performance cri-
terion Jc(λ)

Jc(λ)
def
=

1

4π

∫ π

−π

tr{[S(e−iω, ρ)C(e−iω)]T ·
·[S(eiω, ρ)C(eiω)][P0(e

iω) − P (eiω, ρ)]·
·S0(e

iω)S0(e
−iω)T [P0(e

−iω) − P (e−iω, ρ)]T} dω
(21)

The way this minimization will be carried out for
the identification of the Compact Disc pick–up
mechanism, is discussed in the following section.

6.2 Prefiltering

The weighted minimization of ‖P0(q) − P (q, ρ)‖2

given in (21) can be accomplished during the identi-
fication, by modifying the design variables Dc given
in (13). The prediction error filter L(q), the sym-
metric weighting matrix Q and the spectrum Φr

can be exploited to ‘shape’ the model P (q, ρ̂N) be-
ing estimated in the approximate identification. To
achieve a minimization of the closed loop perfor-
mance criterion given in (21) the design variables
have to be chosen as follows.

Proposition 6.1 Given a consistent estimate of
the input sensitivity S0(q) = [I −C(q)P0(q)]

−1 used
to simulate the noise free input ûr(t) given in (8),
then with the choice of the design variables,

Dc =

⎧⎨
⎩

L(q, ρ) = [I − C(q)P (q, ρ)]−1C(q)
Φr(ω) = c1I

Q = c2I

where c1, c2 are arbitrarily chosen real constants,
the least squares criterion given in (6) will converge
to the closed loop performance criterion defined in
(21), under weak conditions as N → ∞.

A proof of proposition 6.1 can be found in
Hakvoort et al. (1992), since basically an equiv-
alent closed loop performance criterion is used in
this paper. The choice of the design variables given
in proposition 6.1 can also be seen directly, by com-
paring a constant c1c2 times the closed loop perfor-
mance criterion defined in (21) with the equivalent
frequency domain representation of the least square
identification algorithm given in (12).

Clearly, the consistent estimate of the input sen-
sitivity used to simulate the noise free input signal
ûr(t), given in (8) can be a strong requirement. An
approximate identification of S0(q) can lead to a
biased closed loop performance criterion, see theo-
rem 4.1. As stated before, linear regression models
using system based orthonormal functions are used
to model the input sensitivity and can be used to
substantially reduce this effect.

Furthermore, the following notes on proposi-
tion 6.1 should be given.

• Firstly, it should be noted that the input
weighting with the ‘real’ sensitivity S0(q) can
only be achieved when performing closed loop
experiments. Note that this weighting factor
is already present in the asymptotic identifica-
tion criterion (12).

• Instead of L(q, ρ) = [I − C(q)P (q, ρ)]C(q)−1

given in proposition 6.1, a fixed filter will gen-
erally be used to filter the prediction error,



as to avoid very complicatedly parametrized
nonlinear optimization problems. An iterative
scheme using the model P (q, ρ̂N) from step
i − 1, for constructing a filter L(q, ρ̂N ) used
in step i to filter the prediction error can be
used to overcome this problem. The control
relevant model P (q, ρ̂N) and the matching fil-
ter L(q, ρ̂N) will be found when the iterative
scheme converges.

• Finally it should be noted that the iterative
scheme mentioned above, is performed in a
SISO configuration. In this way the filtering
of the prediction error ε(t) can be replaced by
filtering the input and output of the system to
be identified.

7 Application to the CD Player

7.1 Data acquisition

Measurements of the CD mechanism have been
obtained from an experimental set up of a Com-
pact Disc player at Philips’ Research Laboratories.
This experimental set up is used to gather time se-
quences of r(t), u(t) and y(t), see figure 2, in radial
and focus control loops simultaneously. Matching
software is used to control the sample frequency,
anti aliasing filter, data storage and input genera-
tion.

The signals have been sampled at 25 kHz and
the reference signal r(t) injected in the closed loop
was chosen to be a white noise signal, to fulfil the
choice of the second design variable Φr(ω) given
in proposition 6.1. The white noise reference sig-
nal was chosen to be bandlimited in the frequency
domain of interest (100 Hz – 10 kHz). A 5th or-
der Butterworth filter, with a cut off frequency at
9.5 kHz was used to reduce the effects of aliasing.

The two-stage identification procedure previ-
ously discussed is applied to this experimental data.
Furthermore, a non parametric estimate of the in-
put sensitivity S0(ω) and the system P0(ω) is ob-
tained by a spectral analysis (Priestly (1981)) and
given by

ŜT (ω) = Φ̂r(ω)−1Φ̂ru(ω), det{Φ̂r(ω)} �≡ 0 (22)

P̂
T
(ω) = Φ̂ru(ω)−1Φ̂ry(ω), det{Φ̂ru(ω)} �≡ 0. (23)

The estimates of the spectra in (22) and (23) have
been carried out by using 100 averages over 409600
time samples. The results will be used only as a
(additional) validation tool for the parametric mod-
els S(q, α̂N) and P (q, ρ̂N) being estimated, which is
based only on 2000 time samples.

7.2 Estimate of sensitivity function

As mentioned in section 5, a linear regression
scheme based on orthonormal functions has been
used. Firstly, a relatively rough (low order) esti-
mate is computed by a multivariable Output Er-
ror minimization using the DUMSI1–package. Sec-
ondly, an iterative scheme using the model from
step i−1 for constructing a set of orthonormal func-
tions Vk(z) used in step i will be utilized. The re-
sults of this identification procedure can be found in
figure 3 and 4. The model S(q, α̂N) is constructed
by estimating 4 coefficients Lk(α) based on an 12-
th order model inducing the basis functions. This
results in a model with state space dimension 48.
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Fig. 3: Amplitude of spectral estimate Ŝ(ω) (—)
and parametric model S(eiω, α̂N) (- -)

Figure 3 presents the amplitude plots of the
spectral estimate Ŝ(ω) and the parametric model
S(eiω, α̂N). The input sensitivity has been esti-
mated reasonably well, which has been emphasized
by comparing a part of the simulation of the input
ûr(t) and the actual input u(t) measured in closed
loop, given in figure 4. This data is taken from a
data set, not used for identification. Furthermore,
it can been seen from figure 4 that the amount of
noise on the input u(t) in closed loop is relatively
small.

7.3 Towards a low order model

This section discusses the second step of the two
stage identification algorithm, where an approxi-
mate identification will be performed, using the re-
constructed input ûr(t) and output y(t). For the
sake of completeness it should be mentioned that
the input ûr(t) cannot be used directly. This is

1Delft University Multivariable System Identification
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Fig. 4: Measured input u(t) (—) and simulated in-
put ûr(t) (- -) of rad ial and focus loop

caused by the fact that the radial and focus actu-
ators act like double integrators in the frequency
domain of interest.

The properties of the prediction error methods,
like the results given in proposition 6.1, are valid
only for a stable prediction error mapping, see
Ljung (1987), Van den Hof and Schrama (1993).
Hence, identifying a double integrator will in-
evitably lead to undesirable results. In order to
omit the identification of the (known) double inte-
grator, the input ûr(t) will be put through a zero
order hold equivalent of a continues time double
integrator. In this way the remaining dynamics of
the system P0(q) has to be identified only.

As mentioned before, the iterative scheme of fil-
tering and identification, discussed in section 6.2, is
performed on the radial P 0,11(q) and focus P 0,22(q)
transfer functions in a SISO configuration. In this
way filtering of the prediction error ε(t) now can be
replaced by filtering of input ûr(t) and output y(t)
of the system to be identified.

Finally, the filters L11(q) and L22(q) arising from
the iterative scheme mentioned above, are used to
estimate a multivariable Output Error model, us-
ing the DUMSI–package. This multivariable model
has a 16th order (without the double integrators)
and is parametrized using a pseudo canonical (ob-
servability) form (Ljung (1987), pp. 119–123), with
structure indices (7,9). It should be mentioned that
the multivariable model being estimated now, will
not be optimal in the sense of the closed loop cri-
terion given in (21), since the choice of the filter
L(q, ρ) does not exactly meet the requirements of
proposition 6.1. However, the results of this con-
trol relevant scheme can be quite illuminating. The
results of the multivariable model being estimated

can be found in figure 5 and 6.
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Fig. 5: Amplitude of spectral estimate P̂ (ω) (—)
and parametric model P (eiω, ρ̂N) (- -)

Figure 5 presents the amplitude Bode plots of the
spectral estimate P̂ (ω), see (23), and the model
P (eiω, ρ̂N) being estimated. It can be seen from
this figure that there is some parasitic dynamics in
the radial transfer function P0,11(e

iω), around 0.9,
1.7, 4 and 6 kHz. Some of these parasitic dynamics
only have a small contribution in the open loop be-
haviour of the system and therefore should not have
to be estimated. On the other hand, in the closed
loop behaviour of the system these parasitic dy-
namics play an significant role. This is illustrated
in figure 3, where one can recognize peaks in the
sensitivity function. Clearly, this discussion illus-
trates the use of a control relevant identification
scheme. A part of the simulations, based on closed
loop data that has not been used for identification,
has been depicted in figure 6. It illustrates that the
model P (eiω, ρ̂N) predicts the closed loop data very
well.

Given the nominal model P (q, ρ̂N), the proce-
dure presented in de Vries and Van den Hof (1993)
can be used to quantify an additive model error.
Using a partly periodic input signal ûr(t) and addi-
tional information about the decay rate of the im-
pulse response of the system under consideration,
an additive model error can be estimated using an
Empirical Transfer Function Estimate, see de Vries
and Van den Hof (1993) for further details. The re-
sults of this procedure, applied to the radial transfer
function only, can be found in figure 7.

In figure 7 a part of the Nyquist contour of
C11(q)P 11(q, ρ̂N) is depicted, based on the given
controller C11(q) of the radial servo loop and the
nominal model P 11(q, ρ̂N) of the radial transfer
function being estimated. Furthermore, the addi-



-1

-0.5

0

0.5

1

0.008 0.009 0.01 0.011 0.012 0.013 0.014 0.015 0.016

-2

-1

0

1

2

0.008 0.009 0.01 0.011 0.012 0.013 0.014 0.015 0.016

yrad(t), ŷrad(t)
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[sec]

[sec]

Fig. 6: Measured output y(t) (—) and simulated
output ŷ(t) (- -) of rad ial and focus loop

tive error bounds on the nominal model are char-
acterized by circles in the complex plane for sev-
eral frequency points. From figure 7 it can also be
seen that the additive model error has been kept
small in the closed loop frequency domain of inter-
est (around the bandwidth).

8 Conclusions

In this paper a control relevant parametric iden-
tification scheme is applied to a Compact Disc
servo system, using the well known Prediction Er-
ror methods, wherein the problems of approximate
and closed loop identification have been merged.
This is done by using a two stage identification al-
gorithm, wherein a simulation of the input signal
is used to estimate the system. The two stage al-
gorithm requires an accurate estimate of the input
sensitivity of the closed loop system. This can be
achieved by employing a linear regression scheme
using system based orthonormal functions. The re-
sulting expression for the bias distribution of the
model being estimated, is tuned in a control rele-
vant way by choosing appropriate design variables.
Using closed loop time domain observations of a
Compact Disc pick–up mechanism, this has led to a
multivariable discrete time model that can be used
for designing an enhanced controller.
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