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We suggest a method for the a priori determination of the electrical percolation threshold in carbon
nanotube �CNT� networks, of relevance in electronic devices, polymer composites, etc. The
variability in the CNT lengths, commonly observed in practical processing and dispersion, was also
considered and the resulting probability distribution function determined to be of the Weibull type.
Subsequently, the predicted percolation threshold volume fractions for single-walled CNTs,
�0.000 73 and multiwalled CNTs, �0.0193, were found to be in close correspondence to the
experimentally determined values of 0.0011 and 0.0147, respectively. © 2010 American Institute of
Physics. �doi:10.1063/1.3452361�

It is of scientific and technological interest to analyze the
minimal concentration of carbon nanotubes �CNTs� neces-
sary to form a percolating network. From a practical perspec-
tive, CNT networks have been proposed as constituents of
thin film transistors1 for electronics and biosensors,2 polymer
composites for electromagnetic interference shielding,3 etc.
While variability in device characteristics was considered,4

the widespread unpredictability in the intrinsic geometry,
e.g., the length �L� of the CNTs, has not yet been modeled.
Such issues with predictability of the geometry are typical of
nanostructure synthesis processes and could strongly influ-
ence the electrical characteristics and device properties. The
prediction of a threshold is also pertinent in the synthesis of
CNT based composites, where the cost of the nanostructures
is a major factor.

In this paper, we first use an excluded volume percola-
tion theory based model5,6 to estimate the theoretical critical
volume percolation threshold, �c of the CNTs, as a function
of L. For this, we assume that the ith CNT has a volume, vi,
in a polymer/insulating matrix of unit volume. Now, if the
percolation threshold corresponds to the connectivity of Nc

CNTs, then the odds of not selecting any CNT �correspond-
ing to a point in the matrix� would be:

�1 − �c� = �1 − v1��1 − v1 − v2

1 − v1
�

��1 − v1 − v2 − v3

1 − v1 − v2
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�
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,

implying that

�c = NcE�v� , �1�

E�v� denotes the expected value or ensemble average of the
CNT volume. It is to be noted that Eq. �1� is distinct com-

pared to the critical percolation threshold extant in literature,
which assumes that the percolating objects are penetrable,
i.e., hitherto applied to pores in rock, etc. In deriving Eq. �1�,
we have assumed that the CNTs were impenetrable. We then
use the identity, E�v�= �E�Vex�Nc /E�Vex���E�v� /Nc�, where
Vex is defined as the excluded volume:7 the space circum-
scribed around the CNT by the center of another CNT,
whereby both CNTs contact each other but do not overlap.
For isotropically oriented, spherically capped stick like ob-
jects of diameter “D” and random length “L,” which we
take to be akin to CNTs, E�Vex�= �4� /3�D3+2�D2E�L�
+ �� /2�DE�L2�. Also, for the CNT modeled as a capped cyl-
inder, E�v�= �� /6�D3+ �� /4�D2E�L�. Note that the CNT di-
ameter is assumed to be constant. For infinitely thin cylin-
ders of deterministic length, Monte Carlo simulations were
used6 to estimate E�Vex�Nc as �1.4. This is an upper bound
when the lengths vary randomly, as E�Vex� should be
weighted to favor the longer CNTs. For a given D, the the-
oretical �c would be:

�c�L� =
E�Vex�Nc

4�

3
D3 + 2�D2E�L� +

�

2
DE�L2�

���

6
D3 +

�

4
D2E�L�� . �2�

For a deterministic L, the variation in �c as a function of the
aspect ratio �=L /D� is shown in Fig. 1. Such a depiction
necessarily implies that a definitive �c is obtained at a given
L. However, it is commonly observed both in our
experiments3 and in other examples from literature8 that L is
not a deterministic constant but should properly be consid-
ered a random variable, i.e., as L� , that could have consider-
able variation. For example, we have measured subsequent
to ultrasonication—a procedure necessary3 for dispersion of
the CNTs into polymer matrices, that single-walled CNTs
�SWNTs� have lengths ranging from 2.2–7.8 �m while
multiwalled CNTs �MWNTs� vary in length from
3.0–8.4 �m. In another instance,9 a batch of SWNTs syn-a�Electronic mail: pbandaru@ucsd.edu
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thesized through arc-based methods had L in the
0.7–4.3 �m range. Such large variability clearly makes �c a
function of L� and would lead to uncertainties in obtaining an
accurate percolation threshold.

The above issues also imply that a suitable stochastic
model is necessary to evaluate the �c, e.g., for a CNT/
polymer composite10 or a CNT network transistor,11 as �c�L� �
is not equal to the �c evaluated at the average CNT ensemble
length, i.e., �c �E�L��. A proper expression for �c would
account for variations in L� and could be expressed through
the correlation, i.e., E�L� 2�. The stochastic approach would
then provide a theoretical value, i.e., a �c�L� � that accounts
for the mean and variance of L� . A theoretical value for �c

can be found from Eq. �2� where the average CNT length is
now E�L� � with a variance, VAR�L� �=E��L� −E�L� ��2�=E�L� 2�
− �E�L� ��2. Both E�L� � and E�L� 2� can be evaluated by fitting
empirical CNT length data to a probability density function
�pdf�. As the pdf cannot be a priori determined, we use the
sample mean length �L and sample variance sL

2 as unbiased
estimates of the population mean and variance.12

For the practical application of the above principles and
experimental verification, we first dispersed carboxyl
�–COOH� group functionalized SWNTs and MWNTs into a
polymer. A reactive ethylene terpolymer ��RET�, Elvaloy
4170� constituted of an epoxide functional group was chosen
for a polymer/insulating matrix, with the underlying ratio-
nale that the epoxide ring rupture13 on the RET would be
facilitated by the –COOH groups on the functionalized
CNTs. The bonding between the –COOH and the epoxide
group could help in the uniform dispersion. The exact loca-
tion of the functional groups would depend on the defect
density on the CNTs and can be manipulated.14 However, if
the defects are considered to be randomly dispersed, isotro-
pic bonding of the CNTs with the polymer matrix is implied
and yields uniform mixing. More details regarding the fabri-
cation procedure and characterization of the composites have
been reported elsewhere.3,10

The lengths of the CNTs in several composite samples
were first measured using a scanning electron microscope
�Phillips XL30�. In the case of SWNTs, while the bundle
diameters �D� were noted to be �4.8 nm using atomic force

microscopy, the length variation did not fit Gaussian, expo-
nential, Rayleigh, log-normal, or Weibull—Fig. 2�a�, distri-
butions. The poor fit is attributed to a mixture of different
pdfs of the SWNT lengths within the composite. We then
used our mean sample SWNT length ��L�4.28 �m� as an
estimate of E�L� � and the sample variance of sL

2

�1.364 �m2 for estimating E�L� 2� �=VAR�L� �+E�L� �2�sL
2

+�L
2�. Using the upper bound of NcE�Vex�, �1.4, and substi-

tuting sample statistics, �L and sL
2 in Eqs. �1� and �2� yields a

theoretical percolation threshold of �c�L� �=0.000 73.
On the other hand, for the case of MWNT bundles �with

D�188 nm� the lengths were fit very satisfactorily to a
Weibull distribution—Fig. 2�b�. For example, the value of

FIG. 1. �Color online� The theoretical variation in the critical percolation
threshold ��c� plotted as a function of the CNT aspect ratio �=L /D� assum-
ing a deterministic length and diameter.

FIG. 2. �Color online� The lengths of �a� SWNTs, �b� MWNTs dispersed
into the polymer matrix in the present study, and �c� MWNTs from another
study in literature �Ref. 8�, plotted on Weibull probability paper. Nonlineari-
ties in �a� indicate a poor fit to a Weibull pdf while excellent fits were
obtained for �b� and �c�.
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the correlation coefficient for the MWNT lengths, r2

�=0.9833�, exceeds the tenth percentile of r2 �=0.85� estab-
lished from Monte Carlo simulations using random numbers
known to fit a Weibull distribution.15 We also considered
published literature from other groups on MWNT length
data,8 where again a satisfactory fit to a Weibull distribution
was obtained—Fig. 2�c�.

Generally, the nth moment for a Weibull distribution is
given by E�L� n�, where

E�L� n� = �n�� n

�
+ 1� , �3�

� denotes the Gamma function. A two parameter Weibull pdf
is then completely described by a shape parameter, � and the
scale parameter �. For Fig. 2�b�, �=3.97 and �=6.3525 were
calculated from the slope and intercept and were then used to
find the statistical moments, e.g., mean, correlation, skew-
ness, kurtosis, etc., of the Weibull distribution.15 To interpret
these numbers, it is noted that for �=3.6, the distribution of
lengths would be symmetrical about the mean. A �	3.6
implies a left-hand skewness of the MWNT length pdf, i.e.,
more CNTs are shorter rather than longer, while a �
3.6
suggests the MWNT lengths have a right-hand skewed dis-
tribution. Furthermore, � denotes the value below which
�63% of the NT lengths are smaller, i.e., �63% of the CNT
lengths are less than 6.3525 �m. Additionally, a high r2 on a
Weibull plot suggests that the length distributions arise from
a single pdf instead of a mixture of different pdfs. An r2 of
�0.9833, in Fig. 2�b�, then suggests that a single, particular
mechanism could determine the length distribution, e.g., a
uniform mode of fracture at particular defects, due to the
CNT processing. A poor fit, as with the SWNT lengths in
Fig. 2�a�, would indicate that the length distribution arises
from a mixture of two or more distributions where each dis-
tribution is the outcome or consequence of a different event,
e.g., CNT fracture could occur at both defect-prone and
defect-free sites, or could be mediated through multiple va-
rieties of defects.

From the calculation of the moments, we determined for
the case of Fig. 2�b� with MWNTs, that �L=5.756 �m and
sL

2 =2.643 �m2. The substitution of these �L and sL
2 values

into Eq. �2� then yields a theoretical �c�L� �=0.0193.

To experimentally analyze and correlate the influence of
statistical variation on electrical percolation thresholds, we
measured the electrical conductivity; �. A four-point probe
was used to measure the electrical resistance, R, for compos-
ites with R
1 G�, using the Keithley 487 picoammeter
and the Keithley 2400 Sourcemeter. For higher resistance
�	1 G�� composites, two point measurements using the
Agilent B1500A semiconductor device analyzer with triaxial
probes were employed. For these measurements, samples
with sputtered gold contacts were used. The experimental �c

for electrical percolation was then determined by fitting the
measured � of the CNT dispersed composites to the conduc-
tivity power law equation,16 �=�0 ��−�c�t. Subsequently,
for the SWNT samples—Fig. 3�a�, we obtained from the fit
to the � variation, a �c of 0.0011 which is quite close to the
theoretical mean ��0.000 73�. In the case of MWNT dis-
persed polymers, the �c was found to be 0.0147 which, is
again close to the theoretical mean of �0.0193, predicted
from stochastic theory.

We conclude by positing that statistical analysis using a
stochastic approach can be used to describe the impact of
random CNT lengths on the electrical percolation thresholds.
Such modeling could be used to a priori determine the
thresholds while accounting for realistic process variability.
The proposed methodology can be extended to other mutable
CNT characteristics such as diameter, agglomeration, curva-
ture, etc.
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