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The effect of confinement on the phase behavior of lattice homopolymers has been studied using grand canonical
Monte Carlo simulations in conjunction with multihistogram reweighting. The scaling of critical parameters
and chain dimensions with chain length was determined for lattice homopolymers of up to 1024 beads in
strictly 2D and quasi-2D (slab) geometries. The inverse critical temperature scales linearly with the Shultz-
Flory parameter for quasi-2D geometries, as it does for the bulk system. The critical volume fraction scales
as a power law for all systems, with exponents 0.110( 0.024 and 0.129( 0.004 for the strictly 2D and slab
geometries, respectively. The influence of confinement on critical behavior persists even in a thick slab due
to the diverging correlation length of density fluctuations. The scaling of the radius of gyration with chain
length in the quasi-2D system increasingly resembles the scaling in the strictly 2D system as the chain length
increases. At the extrapolated infinite chain critical temperature, the radius of gyration of the 2D system
scales with chain length with exponent 0.56( 0.01 = (4/7), in agreement with theoretical predictions.

1. Introduction

Polymer behavior in confined geometries and on surfaces is
often of interest in biological, thin film, and semiconductor
processes. The structure of polymers near surfaces is relevant
to protein adsorption.1 Much recent effort has concentrated on
understanding bulk polymer behavior, but atomistically detailed
systems are often unable to capture the phase behavior of
polymer solutions. Lattice models of polymers are popular
because they can often describe phase behavior and critical
phenomena without requiring the computational resources of
simulations of complex atomistic models.

Recent studies of the phase behavior of lattice homo-
polymers2-5 focus on the scaling of critical temperature and
critical volume with chain length. The critical temperature,Tc,
generally increases with increasing chain length,r, according
to the Shultz-Flory relationship6

The critical volume fraction,φc, scales as a power law

Many previous studies2,3,7,8 on the bulk behavior of lattice
homopolymers have confirmed that Flory-Huggins theory can
be used to describe the scaling of critical temperature with chain
length for bulk three-dimensional (3D) systems. It was found
in ref 3 that the critical volume fraction does not scale exactly
as a power law but has some degree of curvature. Nonetheless,
a power law fit givesx2 ) 0.39 ( 0.02, which is in good
agreement with experiment9 and other simulations2,4,8 over a
comparable range of chain lengths. Yan and dePablo4 more
recently studied the same simple cubic lattice polymer system
but used a newly developed expanded ensemble grand canonical

simulation that enabled them to study chains up to lengths ofr
) 16 000. They observed curvature in the critical volume vs
chain length plot that suggests that the critical volume, in the
limit of infinite chain length, scales with exponentx2 = 0.5, as
Flory suggested.10 Yelash et al.11 recently completed an exhaus-
tive review of the experimental, theoretical, and simulation
results for the scaling of the critical volume with chain length
and proposed a new correlation.

Two-dimensional lattice homopolymers are less extensively
studied than polymers on a 3D lattice. The structure of strictly
two-dimensional (2D) athermal polymers was recently inves-
tigated by Yethiraj,12 who studied the radius of gyration,Rg,
over a range of densities, confirming thatRg ∼ r0.75 in the limit
of low density, in agreement with the theoretical work of
Nienhuis13 and Flory and Huggins excluded volume theory,
which predicts

whered is the number of dimensions. Flory’s excluded volume
theory, though mean-field in character, gives the exact exponent
for the 2D case, and overestimates only slightly for the 3D case.
Yethiraj also shows that the scaling parameter decreases as
density increases and reviews other studies14-16 of lattice
polymers in 2D systems that have focused on the scaling of the
radius of gyration. Dickman14 and Reiter16 have simulated 2D
chains at theΘ temperature and compared results to theory on
self-avoiding walks,17 which suggest that at theΘ temperature,
Rg ∼ r4/7 = 0.5714. Much more is known about the radius of
gyration (structure) in 2D than about the critical behavior
(thermodynamics), which Binder et al.5 have studied recently.
They examined the configurations of strictly 2D polymer blends
using the bond fluctuation model. They find thatTc ∼ xN
rather thanTc ∼ N, the bulk relationship. They conclude that
the strong screening of interchain interactions that occurs in a
2D geometry causes this effect. They also predict that such
behavior might be observed in films where the thickness is
comparable to the excluded volume correlation length.
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Studies of confined polymers in a geometry periodic inx and
y, but containing some finite dimensionz, sometimes called a
slit, slab, or quasi-2D geometry are even less frequent. Bleha
and Cifra18 have studied the free energy and force experienced
by a polymer chain confined in a slit in equilibrium with a bulk
solution. They also examined the density profile across thez
direction of the quasi-2D geometry. Teraoka and Wang19 studied
polymers in a slab geometry, focusing on the shape of polymers
in various slab widths.

The present study focuses on the thermodynamics of confined
lattice homopolymer systems. These can be thought of as a one-
component polymeric system in an incompressible solvent of
varying quality confined in narrow slits. The critical parameters
are obtained through mixed-field finite-size scaling methods as
functions of chain length and gap width. In contrast to many
prior studies, the structure (radius of gyration) is examined in
relationship to the thermodynamics. This connection is made
through two definitions of theΘ temperature, which is found
by extrapolation to the infinite chain length critical temperature
and by examination of the scaling ofRg. The overarching aim
of this study is to delineate more clearly the difference between
strictly 2D, “nearly” 2D, and 3D systems.

The paper is organized as follows. First, the computer
simulation methods used in this work are introduced. Next, the
scaling of critical properties with chain length is discussed. The
scaling of the radius of gyration with chain length is presented
next. The paper ends with conclusions regarding the qualitative
effects of confinement on structure and thermodynamics.

2. Model and Simulation Methods

2.1. Grand Canonical Monte Carlo.All simulations were
carried out in the grand canonical ensemble, at fixed chemical
potential,µ, volume,V, and temperature,T. Chain lengths of
powers of 2 were studied, fromr ) 1 to r ) 1024. Polymer
chains were generated with the configurational bias method of
Rosenbluth and Rosenbluth.20 Microstates were generated with
creation or annihilation, reptation, and cluster moves. Chains
of r ) 1 were simulated with only creation and annihilation
moves, and chains ofr ) 2 with 99.9% creation and annihilation
and 0.1% cluster moves. Chains of 4e r e 128 were simulated
with a mix of moves that was 70% creation or annihilation,
29.9% reptation, and 0.1% cluster moves;21 For r ) 256 we
used a 60%/39.9%/0.1% mix. Chains ofr ) 512 andr ) 1024
were simulated with the expanded ensemble method and are
discussed in section 2.2. Moves were accepted or rejected
according to Metropolis criteria.21 Acceptance rates for the
creation/annihilation moves for the slab geometry and near the
critical point were roughly inversely proportional to chain length
and fell from 30% to 3% at the longest chain length ofr ) 256
studied using “standard” grand canonical Monte Carlo (GCMC).
Acceptance rates for the strictly 2D geometry were lower, falling
to 1.5% atr ) 256. The number of Monte Carlo (MC) steps
after equilibrium in the quasi-2D system ranged between 2×
108 and 2.5× 109, depending on chain length. Because of lower
acceptance, the number of MC steps used in strictly 2D systems
ranged from 5× 108 to 4 × 109. The longest simulations of
ther ) 256 chains took 3 days on Pentium 4 processors running
at 2 GHz.

2.2. Expanded Grand Canonical Monte Carlo.For polymer
chains with r ) 512 and 1024 beads, the standard GCMC
simulation method becomes inefficient due to increased dif-
ficulties in inserting and deleting these long chains. To increase
efficiency, we adopted the expanded ensemble formalism of
Escobedo and de Pablo22 for insertions and deletions. The basic

idea of this approach is to maintain a system composed of a
number of full chains plus a single tagged chain of an
intermediate length. The Monte Carlo steps then involve
inserting/deleting polymer segments of size∆ beads to/from
the tagged chain at a time, as opposed to the entire chain in the
regular GCMC simulations. The different states corresponding
to varying lengths of the tagged molecule form the expanded
states of the expanded GCMC partition function (a total number
of r/∆ states). The corresponding preweighting factors associated
with different states were chosen to be equal to the incremental
chemical potentialµ′ ) µ∆/r, whereµ is the chemical potential
corresponding to a full chain insertion or deletion. This was
done so as to maintain a uniform frequency of sampling between
the various states.23 For our systems, we find that∆ ) 64 beads
result in the most efficient simulations for both ther ) 512
and 1024 chains near their respective critical points. For
simulations ofr ) 1024 in the quasi-2D geometry, acceptance
rates increased by a factor of 6 over the rates observed in
standard GCMC simulations. However, in the strictly 2D
geometry, we obtain computational savings of factors of 10 and
400 for chains ofr ) 512 andr ) 1024, respectively.

2.3. Determination of Critical Parameters. The critical
point is the state point where density fluctuations become infinite
at the thermodynamic limit and the phase boundary disappears.
This unique point characterizes the thermodynamics of a system
and the scaling of critical properties with chain length at that
point is of primary interest for this study. Through cycles of
conducting a series of simulations, histogram reweighting, and
then narrowing in on the critical point, as explained later in
this section, the critical temperature and density for each chain
length were found.

For both standard and expanded GCMC simulations, after
equilibrium was reached, histograms were collected. Each
histogram records the number of times the simulation visits a
state with N particles and an energy within a small range.
Multihistogram reweighting was used to combine the histograms
according to the method of Ferrenberg and Swendsen.24,25Near
the critical point, the simulation visits many different states
because of large density fluctuations. The combined histograms
provide a self-consistent estimate of the probability distribution
function Pµ,â(N,E) which can be used to extrapolate to a new
state point.

The finite-size scaling concepts of Wilding et al.26,27 were
used for locating the critical points of both strictly 2D and quasi-
2D systems. Finite-size scaling theory defines an ordering
operator,M, as a combination of the number of particles,N,
and the energy,E, M ) N - sE, wheres is a field mixing
parameter that controls the strength of the coupling betweenN
and the fluctuations inE near the critical point. At the critical
point the probability distribution for a given system,PL(x), where
the scaling parameter is given byx ) a(L,r)(M - Mc), assumes
the universal shape corresponding to Ising-type criticality for
short-range interactions. The nonuniversal parametera(L,r),
wherer is a system-specific quantity controlling the degree of
field mixing, is chosen so that unit variance is observed in the
scaling parameter. The distribution is reweighted to find the
chemical potential and temperature that result in the best match
of the observed data and the universalPL(x) for the two-
dimensional Ising distribution. Data for the quasi-2D system
were also matched to the two-dimensional Ising distribution.
Attempts at matching the 3D distribution were also made, but
the shape of the distribution for the quasi-2D data did not match
with the 3D distribution. An example of matching data forr )
64 to the 2D universal curve is shown in Figure 1.
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2.4. Model System.Homopolymers of lengthr were studied
on a cubic lattice of coordination numberZ ) 26. The possible
relative position vectors between successive beads are (0,0,1),
(0,1,1), (1,1,1), and their equivalents resulting from symmetry
operations. Polymer beads interact using nearest neighbor
pairwise interactions with an energy parameter ofε ) -1.
Interactions with the solvent are defined to be zero. Reduced
temperature is defined as

wherek is Boltzmann’s constant. The GCMC simulations were
carried out in strictly 2D and slab geometries. In all cases,
periodic boundary conditions were applied in thex and y
directions. To study the effect of confinement, we have
constrained the simulation box between two impenetrable walls
in thezdirection, creating a slab geometry. This geometry, finite
in thez direction, will be referred to as the “quasi-2D” or slab
geometry. The thickness of a slab is characterized in this study
by the number of lattice spaces in thez direction,h. The length
in thex andy directions isL lattice spacings. Reduced density
is defined as

where the volume is given byV ) L2h, r is the number of beads,
and N the number of polymers molecules. The strictly 2D
geometry is the special case of the quasi-2D geometry whereh
) 1 lattice spacing. Schematic depictions of two typical
configurations of a polymer ofr ) 16 in strictly 2D and quasi-
2D geometries are shown in Figure 2. The slab geometryh )
3 was studied extensively because its phase behavior was
sufficiently different from the 2D and 3D geometries to be of
interest.

3. Results and Discussion

3.1. Scaling of Critical Parameters.The apparent critical
parameters of the 2D and quasi-2D systems studied herein are
listed in Table 1. Critical data for 3D systems has been
previously reported in ref 3. Throughout this work, critical data
for the bulk (3D) systems are included in figures for facilitation

of discussion, but only the radius of gyration calculations for
the bulk were performed in the present study. From data away
from the critical point, phase coexistence was determined by
matching the area under the liquid and gas portions of the
density distributions. For data very near the critical point, data
were fit to scaling relationships as explained in section 2.3. The

Figure 1. Matching of the probability distribution,PL(x), where the
scaling parameter is given byx ) a(L,r)(M - Mc) to the universal 2D
Ising curve, indicated by the continuous line. Data points (+) are for
chains of lengthr ) 64 in a slab of widthh ) 3.

T* ) kT
|ε| (4)

φ ) rN
V

(5)

Figure 2. Typical configurations of a strictly 2D system (h ) 1) and
a “quasi-2D” system (h ) 3). The first bead of each polymer is shaded
differently to aid identification of each polymer.

TABLE 1: Critical Temperature, Tc
/, Density, Oc, and

Chemical Potential, µc, as a Function of Chain Length,r,
and System Size,L, for Strictly 2D and Quasi-2D
Geometriesa

h r L Tc
/

φc µc

1 1 32 1.314(3) 0.500(3) -4.000(2)
2 32 1.655(3) 0.468(1) -4.805(4)
4 64 1.972(2) 0.445(2) -3.532(8)
8 64 2.269(3) 0.423(1) 3.31(3)

16 64 2.533(1) 0.393(2) 23.06(3)
16 128 2.533(2) 0.394(1) 23.06(4)
32 128 2.758(1) 0.368(1) 71.10(3)
64 256 2.942(2) 0.341(5) 178.7(1)

128 128 3.088(3) 0.316(7) 409.4(7)
256 256 3.197(7) 0.291(1) 891(3)
512 512 3.289(-) 0.274(-) 1891(-)

1024 512 3.358(-) 0.250(-) 3934(-)
3 1 32 3.998(2) 0.462(1) -10.246(1)

2 32 5.196(8) 0.406(3) -17.53(1)
4 48 6.40(2) 0.365(4) -26.24(1)
8 64 7.522(6) 0.327(3) -33.97(2)

16 64 8.498(3) 0.295(1) -36.19(2)
16 96 8.503(4) 0.295(2) -36.15(2)
32 96 9.325(5) 0.267(2) -23.39(8)
64 128 9.99(2) 0.243(5) 23.5(8)

128 128 10.50(1) 0.222(1) 143.3(7)
256 256 10.90(2) 0.203(1) 415(4)
512 512 11.20(-) 0.186(-) 1004(-)

1024 512 11.40(-) 0.169(-) 2219(-)
5 16 64 10.452(2) 0.245(1) -59.318(8)

10 16 64 12.137(3) 0.202(1) -75.803(7)

a The error in the last digit is shown in parentheses. Error was not
calculated for those simulations completed using the expanded ensemble
method,r ) 512 andr ) 1024.

Phase Transitions of Confined Lattice Homopolymers J. Phys. Chem. B, Vol. 108, No. 21, 20046811



temperature-density phase diagram for the quasi-2D systems
with h ) 3 is shown in Figure 3.

Figure 4 shows a plot of inverse critical temperature vs the
Shultz-Flory10 parameter for each of the three geometries. The
relationship between 1/Tc

/ and (1/xr + 1/2r) is increasingly
linear as chain length increases. A linear least-squares fit was
made using data forr g 64 for all three geometries. Fits give
slopes of 0.41( 0.04, 0.123( 0.001, and 0.090( 0.001 for
strictly 2D, slab, and 3D geometries, respectively. For the strictly
2D geometry (filled circles in Figure 4), the relationship between
the Shultz-Flory parameter and 1/Tc

/ is not linear but shows
curvature even at the longest chain lengths studied. In the quasi-
2D and 3D geometries, the relationship is highly linear, with a
correlation coefficient ofR2 > 0.9998. The critical temperature

behavior of the slab geometry appears more similar to the
behavior of the 3D geometry than to the strictly 2D geometry,
whose critical temperature rises more rapidly with the Shultz-
Flory parameter. Extrapolation to infinite chain length gives
Tc
/(∞) ) 11.94( 0.01 for the slab geometry. Similarly, for the

strictly 2D system,Tc
/(∞) ) 3.51 ( 0.03. The choice of the

chain length cutoff does not affect the infinite chain length
extrapolation. The estimated uncertainties in the infinite-chain
length values were obtained from a combination of simulation
statistical errors and the uncertainty over the linear range of
extrapolation. In addition to the Shultz-Flory parameter, the
1/Tc

/ data were also fit to the more general form, 1/xr + A/r.
The extrapolated infinite chain length critical temperatures
obtained from the fit are not statistically significantly different
from the fit with the Shultz-Flory parameter withr g 64.

It is hypothesized3,7,28 that this extrapolation gives theΘ
temperature, the temperature at which the attractive and
repulsive forces between polymer segments exactly balance. The
Θ temperature for bulk 3D systems is also defined to be the
temperature where the second virial coefficient vanishes or the
point where the polymer chain behaves as a random coil,
meaning the mean end-to-end distance is directly proportional
to the number of beads. Bruns28 demonstrated the equivalence
of these later two definitions for a 3D system with coordination
numberZ ) 6. For this same 3D system, Panagiotopoulos and
Wong3 later showed that the extrapolation of the critical
temperature to infinite chain length also provided the same
estimate of theΘ temperature as these two earlier definitions.
We discuss theΘ temperature in the context of confined systems
in section 3.2.

The critical volume scales with chain length in a linear fashion
when plotted on a log-log scale, as shown in Figure 5. The
slope of the 3D best fit line was previously established to bex2

) 0.39( 0.02.3 Fitting only data withr g 64, the slope of the
strictly 2D curve givesx2 ) 0.110( 0.024, and for the slab
geometry,x2 ) 0.129( 0.004. Unlike the critical temperature,
the critical volume for the slab geometry scales more similarly
to the strictly 2D geometry. At long chain lengths we expect
these slopes to become the same, and they are already within
the error bounds of one another. The slab geometry appears
closer to 2D from the perspective of the scaling of the critical
temperature, but closer to 3D from the standpoint of critical
density. To answer the question of whether the slab geometry
should rightfully be called a quasi-2D or a quasi-3D geometry,

Figure 3. Reduced temperature,T*, versus volume fraction for system
with h ) 3. From bottom to top the curves are forr ) 16, 32, 64, 128,
256, 512, and 1024, respectively. The circles denote those portions of
the coexistence curve found through histogram reweighing. The center
circle is the critical point. Lines are guides to the eye obtained from
fitting the data to scaling relationships near the critical point.

Figure 4. Inverse critical temperature, 1/Tc
/, versus the Shultz-Flory

parameter (r is chain length) for strictly 2D (circles),h ) 3 (triangles),
and 3D geometries (squares). Lines are linear least-squares fit to data
for r g 64. Statistical uncertainties are smaller than symbol size. Data
for the 3D geometry are from Wong and Panagiotopoulos.3

Figure 5. Critical volume fraction,φc, as a function of chain length,
r, for strictly 2D (circles), slab ofh ) 3 (triangles), and 3D geometries
(squares). Statistical uncertainties are smaller than symbol size. Data
for the 3D geometry are from Wong and Panagiotopoulos.3
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it is instructive to examine the phase diagram of a typical
homopolymer.

Chains of lengthr ) 16 were studied in several different
slab geometries of increasing thickness. In addition to systems
of h ) 1 andh ) 3, simulations in systems ofh ) 5 andh )
10 were also completed. As in the studies of theh ) 1 andh
) 3 geometries, the critical temperature and critical density were
found, and a phase diagram in the temperature-density plane
was constructed, shown here in Figure 6. As the thickness
increases, the critical temperature and density increase, moving
closer to the bulk value. However, even ath ) 10, roughly 4
times the radius of gyration, it is clear the critical temperature
and density of the quasi-2D system do not reach the bulk value.
This is because the density fluctuations at the critical point are
of infinite correlation length. Thus, any finiteness in thez
direction will cause a large discrepancy between the slab
geometry and the bulk geometry, whatever the thickness of the
slab. The trend seen in the simulation data suggest that the
location of the critical points of the confined systems will not
converge smoothly to that of the 3D system as the wall
separation is increased. Other works, including the work of
Fischer and Nakanishi29 suggest otherwise. Interested readers
should consult the review of Binder, Landau, and Mu¨ller30 for
a comprehensive discussion of the effects of finiteness on
criticality.

Another illustration of finiteness-induced effects is seen by
examining the density profile of chains of lengthr ) 16 across
the simulation box. Figure 7 shows density profiles for a range
of densities, both above and below the critical density. The
profiles were computed across a lattice ofh ) 30 so effects at
several multiples of the radius of gyration could be examined.
Profiles were computed atT* ) 13.5, near the estimated critical
temperature. The critical density,φc, of a system of widthh )
30 is estimated to be about 0.15 from extrapolation of the studied
systems. The profile is flat for low densities, rising and
becoming more pointed near the critical density, and then falling
again and becoming flat as the density increases further. The
divergence of the boundary layer thickness atφc is related to
the divergence of the correlation length of the density fluctua-
tions as φ f φc. Away from the critical density, these
fluctuations are finite and smaller than the width of the
simulation box.

The critical points of the quasi-2D systems were found by
matching the 2D Ising curve to the histogram data. Matching

to the 3D curve was also attempted, but the data did not fit the
3D Ising curve as well as it did the 2D curve. Nonetheless,
minimizing the error between the data and the 3D curve as best
as possible, we find that the apparent critical temperature
increased by 1.2% and the critical density decreased by 1.9%,
which still does not put the critical parameters for quasi-2D
systems on a trend toward the bulk value.

3.2. Scaling of the Radius of Gyration.The radius of
gyration is strongly affected by temperature and, to a lesser
degree, density. The radius of gyration was calculated for each
length chain at a variety of low densities. Density was lowered
until the radius of gyration showed no meaningful changes. The
data shown were computed at very low densities, always much
less than the crossover density from dilute to semidilute
solutions:

The crossover density was computed and compared toφ, and it
was found thatφ < φ* for the studied systems. Even at the
longest chain lengths studied,φ was less than 1% for all
geometries. Density tended to have a stronger effect on the
longer chains because the crossover density decreases with
increasing chain length. For this reason,φ/φ* was computed
and was less than 0.1 for the longest chains studied.

Radii of gyration for selected systems at the athermal limit
are shown in Figure 8 as a function of chain length. The data
shown were computed at a temperature that was high enough
to be effectively in the athermal limit in which only excluded
volume interactions are relevant. A linear least-squares fit of
the data in Figure 8 was made for chain lengthsr g 16. The
scaling exponents were found to beν ) 0.58 ( 0.02, 0.69(
0.03, and 0.74( 0.02 for the 3D, slab, and 2D geometries,
respectively. The scaling ofRg for the 3D geometry is expected
to be 0.59 from earlier work,31 which compares well with our
value. Flory estimated the scaling exponent for the 3D case to
be 0.6 using eq 3, and applying it to the 2D case the scaling is
estimated to be 0.75. Our scaling of 0.74( 0.02 compares well
with this value. Unlike the 2D and 3D cases, the value of the
quasi-2D scaling exponent increases as the chain length cutoff

Figure 6. Reduced temperature,T*, versus volume fraction for chains
of length r ) 16. From bottom to top the curves are for strictly 2D,
slabs ofh ) 3, 5, 10, and 3D (h f ∞) geometries. Symbols and lines
are as in Figure 3.

Figure 7. Density profile of chains of lengthr ) 16 in thez direction
across a lattice ofh ) 30. The distance parameter,d, is the distance in
lattice units from one wall normalized by the width of the lattice. The
probability parameter,P, is the likelihood of finding a bead in the lattice
space atd normalized by the likelihood if all beads were distributed
evenly. Profiles shown are forφ of 0.07 (dash), 0.16 (dot-dash), and
0.39 (solid), respectively, at a temperature ofT* ) 13.5.

φ* ) r

Rg
d

(6)

Phase Transitions of Confined Lattice Homopolymers J. Phys. Chem. B, Vol. 108, No. 21, 20046813



of the fit is increased, meaning the data are not linear. At longer
chain lengths the true scaling exponent is higher, and trends
toward the value of the 2D case because the polymer sees the
geometry as increasingly 2D as chain length increases. For a
small polymer,r ) 8, there is ample space in a geometry ofh
) 3 to coil into a roughly spherical shape because the width is
greater than the radius of gyration. For a long chain polymer,
significant extension takes place because the radius of gyration
is much greater than the width of the slab.

The scaling of the radius of gyration at the extrapolated
infinite chain length critical temperature,Tc

/(∞), was found for
strictly 2D, quasi-2D, and 3D systems of coordination number
Z ) 26. Figure 9 shows the radii of gyration for these systems
as a function of chain length. The radius of gyration scales as
Rg ∝ r0.505(0.006 at a temperature ofTc

/(∞) ) 20.58, the
extrapolatedΘ temperature of a 3D system with coordination
numberZ ) 26, as determined in previous study.3 This scaling
is in agreement with the premise that the chain should behave
as a random coil,Rg ∝ r0.50, which lends further credence to
the conjecture that these definitions really do provide the same
estimate of theΘ temperature. For the 2D system, the scaling
is Rg ∝ r0.56(0.01 at Tc

/(∞) ) 3.51. This is consistent with the
scaling theory ofRg at theΘ temperature,14,17 which predicts
Rg ∝ r4/7. Thus, for 2D systems, the extrapolated infinite chain
length critical temperature corresponds to theΘ temperature.

In the quasi-2D system, the scaling isRg ∝ r0.52(0.01 at Tc
/(∞) )

11.94, but the exponent trends slightly higher with longer chain
length cutoff. It is expected that for much longer chains than
those studied here, the quasi-2D system’s scaling will converge
to that of the strictly 2D system.

Finally, a connection exists betweenφc and the just discussed
scaling ofRg. By substitutingRg ∼ rν into eq 6, the scaling of
the radius of gyration can be related to the crossover density:31

The critical density,φc, must scale asx2 e dν - 1 because the
crossover density would be larger than the critical density and
the chains would not interact ifx2 were greater. Ford ) 3 and
ν ) 1/2,x2 ) 1/2, the correct scaling within mean field theory.
Applying the 2D simulation data from our study,dν - 1 ≈ 2
× 0.56 - 1 ) 0.12, which is very close tox2 ≈ 0.11. Some
radius of gyration calculations atT* ) Tc

/ for each chain length
were also performed, and these additional data are available
from the authors.

4. Conclusions

We have investigated the phase behavior and structure of
lattice homopolymers confined to a surface and between two
hard walls using regular and expanded ensemble GCMC
simulation. Chain lengths ranging fromr ) 1 to r ) 1024 were
investigated in a strictly 2D geometry (h ) 1) and a slab
geometryh ) 3 lattice units thick. Confinement alters critical
behavior substantially from the behavior of polymers in bulk.
The scaling of critical volume with chain length for a 2D
geometry was found to bex2 ) 0.110( 0.024, and for a quasi-
2D geometry,x2 ) 0.129 ( 0.004. Both differ substantially
from the slope of the 3D best fit line,x2 ) 0.39 ( 0.02. The
relationship between the critical temperature and the Shultz-
Flory parameter was found to be highly linear for a quasi-2D
geometry, but curvature was observed for the strictly 2D
geometry. A chain of lengthr ) 16 was studied in slabs ofh
) 1, 3, 5, and 10. Forr ) 16, the critical behavior remains
substantially different from the bulk behavior even at large wall
separations. The radius of gyration was also studied in the
athermal limit, and the scaling of the 2D and 3D systems
compares well with literature results. The scaling of the quasi-
2D system trends toward that of the 2D system but did not reach
it for the highest chain lengths studied. TheΘ temperature was
found by extrapolation to infinite chain length. The radius of
gyration was calculated for chains at this temperature and found
to conform to theoretical predictions for all geometries. For the
strictly 2D geometry in particular, we find an exponent of 0.56
( 0.01, close to the theoretical prediction14,17 of Rg ∝ r4/7.
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