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1.	Simulation	Details	

1.1	General	Remarks.	In	all	the	simulations	described	in	this	article	
the	following	algorithms	and	software	were	used.	

1) The	 shake	 algorithm	 was	 employed	 to	 constrain	 bonds	
containing	 Hydrogen	 atoms	 to	 fixed	 distances.	 The	
algorithm	 used	 is	 standard	 in	 the	 LAMMPS	 simulation	
package.	

2) The	Velocity	Verlet	algorithm	was	used	for	integrating	the	
equations	of	motion	

3) The	Particle-Particle/Particle-Mesh	(PPPM)	algorithm	was	
used	for	treating	long-range	electrostatic	interactions.	

4) The	molecular	dynamics	simulation	package	LAMMPS	was	
used	for	all	simulations.1		

5) The	 visualization	 package	 OVITO	 was	 used	 for	 all	
visualizations.2	

6) Simulation	 initialization	 and	 post-processing	 was	
performed	using	custom	python	scripts.	

7) All	 uncertainty	 quantification	 was	 performed	 by	 taking	
the	average	and	standard	deviation	from	a	total	of	three	
randomly	 generated	 initial	 configurations	 subjected	 to	
analogous	MD	simulation	protocols.	

1.2	 Melt	 Phase	 System	 Initialization.	 Isolated	 chains	 in	 the	 fully	
extended	 conformation	 were	 first	 subjected	 to	 elevated	
temperature	(800	K)	simulations	using	Langevin	dynamics	(damping	
parameter	=	3800	fs,	time	step	=	2	fs).	Random	conformations	were	

outputted	 on	 nanosecond	 intervals.	 This	 protocol	 resulted	 in	 60	
uncorrelated	 chain	 conformation	 for	 each	 polymer	 simulated.	
These	 chains	were	 next	 assigned	 a	 randomly	 generated	 centre	 of	
mass	 and	 orientation	 with	 respect	 to	 an	 orthorhombic,	 periodic	
simulation	box	at	a	mass	density	of	0.01	g	cm–3.	Placement	of	chains	
was	 constrained	 such	 that	no	 two	atoms	on	different	 chains	were	
within	 20	 Å	 of	 another.	 This	 was	 especially	 important	 for	
simulations	 containing	 PC71BM,	 as	 to	 avoid	 spearing	 the	 fullerene	
cage,	 which	 would	 result	 in	 unstable	 dynamics.	 The	 randomly	
generated	 configurations	 were	 next	 subjected	 to	 a	 conjugate-
gradient	energy	minimization	to	further	ensure	that	there	were	no	
unphysical	interactions	to	make	the	simulation	unstable	in	the	first	
couple	of	time	steps.	Next,	the	temperature	was	ramped	from	0	to	
800	 K	 over	 the	 course	 of	 1	 ns	 using	 Langevin	 dynamics	 (damping	
parameter	=	3800	fs,	dielectric	constant	=	9.8).	Next,	a	Nosé-Hoover	
style	 barostat	 (time	 constant	 =	 1000	 fs)	 was	 used	 to	 relax	 the	
simulation	 box	 at	 1	 atmosphere	 of	 pressure	 until	 the	 density	
converged	to	the	equilibrium	melt-phase	value	at	800	K	and	1	atm	
over	 the	 course	of	 5	 ns.	 For	 all	 bulk	 heterojunction	 simulations,	 a	
mass	fraction	of	1:1.5	polymer:	PCBM	was	used.	This	composition	is	
consistent	with	experimentally	optimized	devices.		

1.3	 Equilibrium	 Sampling	 Parameters.	 A	 Nosé-Hoover	 style	
thermostat	(time	constant	=	100.0	fs)	and	barostat	(time	constant	=	
1000.0	 fs)	 was	 used	 to	 simulate	 the	 NPT	 equilibrium	 dynamics	 of	
the	polymeric	melts	 and	 composites.	 The	dielectric	was	 set	 to	1.0	
and	 a	 Verlet	 neighbour	 list	 was	 employed	 for	MPI	 parallelization.	
Simulations	were	run	using	24	processors.	A	time	step	of	1.5	fs	was	
used	for	the	remaining	simulations.	

1.4	Annealing	Protocol.	The	melt-phase	structures	were	subjected	
to	an	annealing	protocol	 in	which	the	temperature	was	ramped	 in	
20	K	 intervals	 from	800	K	to	100K	using	1	ns	for	both	the	ramping	
and	equilibration	runs.	All	of	the	thermodynamic	parameters	were	
outputted	periodically	(0.01	ns	intervals).		This	resulted	in	a	total	of	
70	ns	of	simulation	for	each	system.	The	configurations	obtained	at	
600	K	were	 further	 subjected	 to	5	ns	of	dynamics	 to	generate	 the	
equilibrium	melt-phase	statistics	presented	 in	the	main	document.	
The	 configurations	 obtained	 at	 300	 K	 (in	 the	 glassy	 state)	 are	
denoted	 as	 the	melt-quenched	morphology	 (Figure	 S1)	 and	 were	
used	for	the	uniaxial	tensile	loading	simulations.	
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1.5	 Determination	 of	 Glass	 Transition	 Temperature.	 The	 glass	
transition	temperature	for	each	system	was	computed	by	taking	the	
average	 density	 from	 the	 second	 half	 (0.5	 ns)	 of	 the	 annealing	
simulations	 and	 plotting	 the	 results	 against	 the	 temperature.	 A	
custom	algorithm	was	used	to	perform	a	bilinear	regression	on	the	
data	and	find	the	best	 fit	 to	both	the	melt	and	glassy	regions.	The	
glass	 transition	 temperature	 was	 taken	 as	 the	 intersection	 of	 the	
linear	fits.		The	algorithm	works	by	scanning	through	all	the	possible	
bilinear	 regressions	 and	 finding	 the	 one	 that	 gave	 the	 maximum	
value	for	the	sum	of	the	R2	values	as	shown	in	Figure	S2a.	A	spacing	
of	16	data	points	between	linear	fits	was	used	due	to	the	width	of	
the	 glass	 transition	 region	 that	 results	 from	 the	 rapid	 quenching	
(Figure	S2b).	

	

Figure	S2.	 Schematic	diagram	 illustrating	algorithm	for	predicting	 the	glass	
transition	temperature	from	simulation	data	(TQ1).	(a)	Plot	of	sum	of	R2	of	
the	two	fits	against	the	increment	of	fitting.	(b)	Corresponding	thermal	data	
showing	non-optimal	fits	in	red	and	optimal	fit	in	green.	

1.6	 Isolated	Chain	Simulated	Annealing.	 	Simulated	annealing	was	
performed	 on	 individual	 chains	 in	 the	 implicitly	 solvated	 state.	 A	
dielectric	constant	of	4.8	and	a	damping	parameter	of	3800	fs	was	
used	with	 Langevin	dynamics	 to	mimic	 the	effect	of	dissolution	 in	
chloroform.	 The	 same	 chains	 conformations	 generated	 from	 the	
melt-phase	initialization	were	subjected	to	further	randomization	at	
800	K	for	1	ns	and	then	linearly	cooled	to	300	K	over	the	course	of	5	
ns	to	generate	folded	configurations.	Simulations	were	repeated	60	
times	per	polymer	chain.	

1.7	Self-Aggregated	Morphology	Initialization.	The	self-aggregated	
morphology	 was	 initialized	 using	 the	 60	 independently	 generated	
chain	 conformations,	 outputted	 in	 the	 isolated	 chain	 annealing	
simulations	 described	 in	 the	 previous	 section.	 These	 chain	
conformations	 were	 also	 used	 to	 gather	 the	 statistics	 for	 the	
conformational	class	analysis	 shown	 in	Figure	7a	of	 the	main	 text.	
The	chain	conformations	were	randomly	oriented	and	positioned	in	
an	 orthorhombic,	 periodic	 simulation	 box	 subject	 to	 a	 non-
overlapping	 condition	 at	 a	 mass	 density	 of	 0.01g	 cm–1.	 NPT	
dynamics	 were	 run	 using	 a	 Nosé-Hoover	 style	 thermostat	 (time	
constant	=	100.0	 fs)	and	barostat	 (time	constant	=	1000.0	 fs)	until	
the	 density	 converged	 (5	 ns).	 The	 morphologies	 generated	
contained	 large	voids,	and	were	 far	 from	equilibrium.	A	schematic	
representation	of	the	simulation	protocol	is	given	in	Figure	S1.	

Uniaxial	Tensile	 Loading.	The	mechanical	deformation	 simulations	
were	run	by	imposing	a	constant	strain	rate	(1x10–6	Å	ps–1)	in	the	x-
dimension	 and	 applying	 a	 stress-free	 boundary	 condition	 in	 both	
transverse	dimensions.	The	stress-strain	curve	was	obtained	using	a	
moving	average	 (window	size	=	1000	 fs,	10	 fs	 increments)	of	axial	
component	of	the	virial	stress	tensor,	as	described	previously.3		

2.	In-Depth	Analysis	of	Simulation	Results	

2.1	 Dihedral	 Statistics.	 The	 dihedral	 probability	 distributions	
obtained	 from	 the	melt-phase	 simulations	 (T=600	K,	p=1	atm)	 can	
be	further	analysed	to	obtain	the	fraction	of	conjugated	unit	pairs	in	
syn	vs.	anti	and	conjugated	vs.	non-conjugated	conformations.	The	
results	of	our	analysis	are	shown	in	Table	1.	Based	on	this	data	we	
see	 that	 TQ1	 has	 the	 highest	 preference	 of	 Syn	 conformations,	
while	PTB7	and	PDTSTPD	have	similar	conformational	preferences.	
Additionally,	we	see	that	PDTSTPD	is	the	most	conjugated	followed	
by	 PTB7	 and	 TQ1.	 These	 conformational	 statistics	 represent	
testable	predictions	by	means	of	NMR	spectroscopy	as	described	by	
Do	and	co-workers.4		

Table	S1.	Quantitative	analysis	of	dihedral	statistics	obtained	at	(T	=	
600K,	p=	1	atm).	

	

	

Figure	S1.	Trajectory	snapshots	illustrating	the	difference	
between	the	two	simulation	protocols	employed	in	this	work.	
While	neither	morphology	is	in	a	state	of	equilibrium,	the	self-
aggregated	morphology	is	further	from	equilibrium	than	the	
melt-quenched	morphology.	
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2.2	 Tangent	 Correlation	 Function	 Fitting.	 One	 of	 the	 most	
interesting	 findings	 that	 resulted	 from	 our	 simulations	 was	 the	
observation	of	oscillatory	tangent	correlation	functions	 in	the	melt	
and	 isolated	 chain	 states.	 For	 typical	 semi-flexible	 polymers,	 the	
tangent	 correlation	 function	 can	be	 fit	 to	 an	exponential	 decay	 to	
find	 the	 persistence	 length.	 As	 shown	 in	 Figure	 3,	 an	 exponential	
decay	 did	 not	 give	 a	 satisfactory	 fit	 to	 the	 simulation	 data.	 The	
tangent	correlation	function	of	a	worm-like	chain	can	be	expressed	
as:	

𝐭𝐢 ∙ 𝐭𝐢!𝐣 𝒋 =  𝒆
! 𝒍𝒋𝑳𝒑          (𝟏)	

where	𝒕𝒊		is	the	unit	tangent	vector	of	i
th	unit,	𝑳𝒑	is	the	persistence	

length,	 and	 𝒍 is	 the	 monomer	 length	 which	 we	 took	 to	 be	 the	
average	of	the	length	of	the	donor	and	the	acceptor.	

	

Figure	S3.	Plots	showing	fits	tangent	correlation	functions	obtained	from	the	
(a)	 melt-phase	 and	 the	 (b)	 isolated	 chain	 annealing	 simulations	 to	 an	
exponentially	 decaying	 function.	 It	 can	 be	 clearly	 seen	 that	 the	worm-like	
chain	model	cannot	be	used	to	adequately	describe	these	chains.		

A	 literature	 search	 subsequently	 revealed	 that	 an	 oscillatory	
tangent	 correlation	 function	 has	 been	 derived	 analytically	 for	 a	
ribbon-like	 chain.5	 This	 behaviour	 is	 apparently	 the	 result	 of	 a	
coupling	 between	 torsional	 and	 bending	 degrees	 of	 freedom.	 An	
analytical	 solution	 for	 the	 tangent	 correlation	 function	 of	 a	
“developable	ribbon”	is	given	by	the	following	functional	form:	

𝐭𝐢 ∙ 𝐭𝐢!𝐣 𝒋 =  𝒆
! 𝒍𝒋𝑳𝒑 𝐜𝐨𝐬

𝒍𝒋
𝝀

         (𝟐)	

Here	𝝎	is	the	folding	wavelength.	In	the	limiting	case	of	
𝑳𝒑
𝝀
	à	0,	

this	 equation	 reduces	 to	 (1).	 	 Fits	 of	 this	 functional	 form	 to	 the	
simulation	data	 for	both	morphologies	are	given	 in	Figure	4.	 They	
are	clearly	better	than	a	worm-like	chain,	however,	they	are	still	not	
perfect.	 Especially	 for	 the	 chains	 in	 the	 self-aggregated	
morphology.	

Table	S2.	Coefficients	obtained	from	fitting	tangent	correlation	functions	to	equation	(3).												
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Figure	S4.	Plots	showing	fits	of	tangent	correlation	functions	obtained	from	
the	 (a)	 melt-phase	 and	 the	 (b)	 isolated	 chain	 annealing	 simulations	 to	 an	
exponentially	decaying	cosine	function.		

Even	with	 the	 imperfect	 fit,	 this	model	 enables	 a	 quantitative	
comparison	 of	 the	 stiffness	 and	 folding	 wavelength	 of	 these	
polymers.		We	find	that	in	both	morphologies	TQ1	is	the	stiffest	and	
has	 the	 longest	 folding	 wavelength.	 On	 the	 other	 hand,	 PDTSTPD	
(which	 is	 known	 experimentally	 to	 be	 the	 most	 ordered	 of	 the	
three)	 has	 shortest	 folding	 wavelength	 and	 shortest	 persistence	
length.	PTB7	is	intermediate	in	both	cases.	

The	 imperfect	 fitting	 of	 equation	 (2)	 to	 the	 simulation	 data	
implies	that	there	are	multiple	modes	of	tangent	correlation	decay	
and	folding	in	these	polymers.	We	found	that	a	series	expansion	of	
equation	 (2)	 into	equation	 (3)	gave	excellent	 fits	 to	 the	simulation	

data,	as	shown	in	the	main	text.	

𝐭𝐢 ∙ 𝐭𝐢!𝐣 𝒋 = 𝑨𝒏𝒆!𝒋𝒍/𝑳𝒑𝒏 𝐜𝐨𝐬 𝒍𝒋/𝝀𝒏

𝟑

𝒏!𝟏

             (𝟑)	

All	 fits	were	performed	using	 the	 curve_fit()	 function	available	
in	the	Scipy	module	for	Python.	This	function	performs	a	non-linear	
least	squares	algorithm.	The	quality	of	the	fit	can	be	determined	by	
the	 sum	 of	 the	 residuals	 squared	 (Sum	 R2).	 A	 smaller	 Sum	 R2	
signifies	a	better	fit.	As	shown	in	Table	S2,	fits	of	eq	(3)	to	the	data	

provide	the	best	 fits,	although	eq	(2)	still	provides	a	reasonable	fit	
(Figure	S4).	

2.3	 Ramachandran	 Plots.	 To	 investigate	 the	 handedness	 of	 the	
helical	 polymer	 structure,	 we	 borrowed	 a	 technique	 commonly	
used	in	the	analysis	of	protein	structures.	A	Ramachandran	plot	is	a	
2D	 correlation	 map	 of	 two	 consecutive	 dihedral	 angles	 along	 the	
contour	of	the	polymer	back	bone.6	The	presense	of	asymetry	in	the	
correlation	map	 indicates	 the	 handedness	 (or	 lack	 thereof)	 of	 the	
helical	 pitch.	 Ramachandran	 plots	 obtained	 from	 the	 	melt	 phase	
are	 shown	 in	 Figure	 S5.	 We	 used	 a	 bin	 size	 of	 10	 degrees	 to	
compute	 the	 2D	 histogram.	 	We	 found	 that	 the	 plots	 exhibited	
symetric	correlations,	 indicating	that	the	helices	have	no	preferred	
handedness.		

2.4	 Pair	 Distribution	 Functions.	 	 The	 pair	 distribution	 functions	
shown	 in	Figure	4	of	 the	main	text	were	calculated	by	 first	 finding	
the	centre	of	mass	of	each	donor,	acceptor,	and	C70	fullerene	unit.	
Next	all	of	 the	pairwise	distances	were	binned	using	an	 increment	
of	 𝜹	 =0.5Å	 into	 a	 histogram	 of	 intermolecular	 separations,	 𝑪𝒊.	
Finally	 we	 applied	 equation	 (4)	 to	 average	 and	 normalize	𝑪𝒊 over	
each	simulation	snapshot	to	calculate	the	pair	distribution	function:		

𝑔!" 𝑖𝛿 =
𝐶!

𝜏𝑁!𝑁!
 ×

𝑉
4𝜋
3 𝛿!( 𝑖 + 1 ! − 𝑖!)

     (4)   	

Here	 𝑁! ,𝑁!	 are	 the	 number	 of	 particles	 of	 type	 𝛼,𝛽	 in	 the	
system	(for	the	case	𝛼 = 𝛽, 𝑁! →  (𝑁! − 1)/2 ),	𝜏	is	the	number	of	

frames	 that	 were	 averaged	 over,	 and	 𝑉	 is	 the	 volume	 of	 the	
simulation	 box.	 Pair	 distribution	 functions	 shown	 were	 averaged	
over	 three	 independent	 initial	 configurations	 to	 obtain	 smooth	
distributions.	We	note,	 however,	 that	 the	 features	were	observed	
to	 be	 consistent	 between	 these	 runs	 indicating	 that	 the	 systems	
were	well-equilibrated	in	the	melt	phase	at	600K	and	1atm.		

For	the	acceptor	unit	of	both	PTB7	and	PDTSTPD	we	observed	a	
broad	peak	in	the	pair	distribution	function	at	a	distance	of	13	and	
14	Å	 respectively.	We	have	 rationalized	 these	peaks	 geometrically	
as	 evidence	 of	 inter-digitation	 of	 side	 chains.	 As	 can	 be	 seen	 in	

	

Figure	S5.	Ramachandran	plots	showing	correlation	maps	for	consecutive	dihedral	angles	along	the	polymer	backbones.	a)	PDTSTPD,	b)	PTB7	and	
c)	TQ1.	
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Figure	S6,	when	the	side	chains	of	the	acceptor	unit	of	PDTSTPD	are	
stacked,	the	acceptor	units	are	separated	by	~14Å.		

	

Figure	S6.	Diagram	illustrating	argument	ascribing	the	broad	peak	in	the	pair	
distribution	 function	 for	 PDTSTPD	 to	 side	 chains	 interdigitating.	 A	 similar	
argument	can	be	made	for	PTB7.	

2.	 5	 Classification	 of	 Chain	 Conformations.	 	 The	 chain	
conformations	 produced	 from	 the	 isolated	 chain	 annealing	
simulations	 were	 classified	 as	 either	 globular,	 toroidal,	 folded,	 or	
extended	according	 to	an	analysis	of	 their	 size,	order,	and	pattern	
of	 the	 orientational	 contact	 maps	 (shown	 in	 the	 main	 text).	 We	
employed	 the	 Landau-De	 Gennes	 Q-tensor	 to	 characterize	 the	
conformational	order	present	in	the	isolated	chain	aggregates.7	This	
generalized	order	parameter	can	be	written	as:	

𝑄!" =  
3
2
𝐭𝐢𝛂𝐭𝐢𝛃 −  

1
2
𝛿!"             (5)	

	 Here	𝐭𝐢𝛂	represents	the	tangent	vector	of	the	i
th	unit	along	the	

backbone	of	the	polymer,	𝛿	is	the	Kronecker	delta,		and	𝛼,𝛽	denote	
Cartesian	dimensions.	The	bracket	signifies	an	average	over	all	the	
conjugated	units	in	the	polymer	backbone.	To	compare	the	degree	
of	ordering	across	chains,	the	maximum	eigenvalue	of	this	tensor,	S,	
was	 computed.	 By	 construction,	 S	 =	 1	 corresponds	 to	 a	 perfectly	
straight	 chain	 and	 S	 =	 0	 corresponds	 to	 a	 completely	 random	
globule.	

	 The	sizes	of	 the	chains	were	compared	using	 two	metrics.	The	
radius	 of	 gyration,	 and	 the	 length	 of	 the	 end-to-end	 vector,	 𝑅 .		
The	 end-to-end	 vector	 was	 important	 for	 distinguishing	 between	
self-aggregated	 and	 extended	 chains.	 We	 defined	 the	 normalized	

end-to-end	 vector	 as	 !
!
	 in	 order	 to	make	 systematic	 comparisons	

across	 the	 three	materials.	Recall	 that	 𝑙 is	 the	 length	of	 the	donor	
and	acceptor	units	averaged.		

Extended	 Chains:	 	 Chains	 were	 classified	 as	 extended	 if	 !
!
	 was	

greater	 than	 6.	 	 Extended	 chains	 could	 be	 either	 ordered	
(completely	straight)	or	disordered.	The	key	distinguishing	factor	for	
this	 class	 of	 conformations	 was	 the	 lack	 of	 self-aggregated	 π-
stacking.	

Globular	Chains:	 Chains	were	 classified	as	globular	 if	 	 !
!
	 	was	 less	

than	6	and	if	the	maximum	eigenvalue	of	their	Q-tensor	was	greater	

than	0.20.		If	these	two	conditions	were	met,	the	contact	map	and	
the	3D	structure	of	the	chain	looked	disordered.	

Folded	Chains:	Chains	were	classified	as	folded	if	 !
!
		was	less	than	6	

and	if	the	maximum	eigenvalue	of	their	Q-tensor	was	less	than	0.20	
and	if	the	orientational	contact	maps	exhibited	a	blocky	structure.	

Toroidal	 Chains:	Chains	were	 classified	 as	 toroidal	 if	 	 !
!
	 	was	 less	

than	6	and	if	the	maximum	eigenvalue	of	their	Q-tensor	was	greater	
than	0.20	and	if	the	orientational	contact	maps	exhibited	a	diagonal	
structure.	

In	all	cases	the	chains	were	visually	inspected	to	ensure	correct	
classification.	 We	 found	 that	 the	 most	 difficult	 conformations	 to	
distinguish	were	the	toroidal	and	the	folded.	Threshold	values	could	
not	 be	 set,	 and	 we	 had	 to	 rely	 on	 visual	 inspection	 of	 the	
orientational	contact	maps	and	the	3-dimensional	structure.	

2.6	 Self-Aggregated	 Morphology	 Statistics.	 Although	 the	 self-
aggregated	morphology	 is	 far	 from	equilibrium	and	not	amenable	
to	 efficient	 sampling,	 the	 large	 system	 size	 simulated	 allows	us	 to	
obtain	 a	 quantitative	 picture	 of	 the	 nanoscale	 morphology.	 The	
results	 of	 for	 the	 intermolecular	 pair	 distribution	 functions	 and	
dihedral	distributions	are	shown	in	Figure	S7.	It	can	be	seen	clearly	
that	 intermolecular	 coupling	 between	donor	 and	 acceptor	 units	 is	
severely	 diminished.	 This	 intuitively	 makes	 sense	 as	 the	 self-
aggregated	 chains	 have	 less	 “free”	 conjugated	 units	 to	 form	
intermolecular	 aggregates.	 Comparing	 across	 the	 three	 materials,	
we	 see	 that	 TQ1	 retains	 the	 most	 intermolecular	 aggregates,	
followed	by	PTB7	and	then	PDTSPTD.	This	makes	sense,	as	TQ1	had	
the	highest	fraction	of	globular	chains	and	PTB7	and	TQ1	both	had	
similar	 fractions	 of	 extended	 chains.	 PDTSTPD	 on	 the	 other	 hand	
formed	almost	exclusively	toroidal	and	folded	chain	structures.	

	Figure	 S7.	 Results	 for	 the	 pair	 distribution	 functions	 and	 dihedral	
distributions	 obtained	 from	 the	 self-aggregated	 morphology	 of	 each	
polymer.	
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Additionally,	 there	 is	 an	 apparent	 sharpening	 of	 the	 dihedral	
distributions	 as	 the	 chains	 aggregate	 into	 minimum	 energy	
configurations	 without	 the	 topological	 constraints	 imposed	 by	
intermolecular	 interactions	 in	 the	melt.	 It	 can	 be	 seen	 in	 Table	 3	
that	 the	 fraction	 of	 conjugated	dihedral	 angles	 is	 increased	 in	 the	
self-aggregated	 morphology	 when	 compared	 to	 the	 melt-phase	
statistics	 of	 Table	 1.	 Specifically,	 we	 see	 that	 TQ1	 has	 the	 largest	
shift	towards	syn	conformations.	This	effect	is	further	manifested	in	
the	average	conjugation	length	of	the	self-aggregated	morphology,	
when	compared	to	the	melt.	We	calculated	an	average	conjugation	
length	of	3.6,	3.2,	and	3.4	for	PDTSTPD,	PTB7,	and	TQ1	respectively.		

Table	S3.	Quantitative	analysis	of	dihedral	statistics	obtained	from	
the	self-aggregated	morphology	(T	=	300K,	p=	1atm).	

	

2.8	Bulk	Heterojunction	Statistics.	We	 found	 that	 the	presence	of	
PC71BM	 served	 to	 significantly	 alter	 the	 structure	 of	 the	 polymer	
chains.	This	effect	 is	 apparent	 in	 the	 tangent	 correlation	 functions	
(Figure	 S8)	 obtained	 from	 the	 melt-phase	 bulk	 heterojunction	
simulations.	We	see	both	a	decrease	in	the	folding	wavelength	and	
an	 increase	 in	 the	 persistence	 length	 for	 all	 three	materials	when	
compared	to	the	pure	melt.	

Figure	 S8.	 Tangent	 correlation	 functions	 obtained	 from	 melt-phase	
simulations	of	the	bulk	heterojunction	composite.	(T=600K,	p	=	1atm).	

3.	Code	

	 The	code	used	for	running	these	simulations	is	available	on	the	
following	 Git	 repository:	 https://github.com/seroot/AROMODEL.	
This	 python-based	 software,	 is	 designed	 specifically	 to	 work	 on	
XSEDE	 supercomputing	 resources	 and	 is	 currently	 under	 active	
development.	We	encourage	any	researcher	interested	in	using	this	
software	 to	 perform	 similar	 simulations	 to	 email	 Samuel	 Root	
(seroot@eng.ucsd.edu)	 for	 the	 latest	 release	 as	 well	 as	 detailed	
instructions	and	eager	collaboration.	

4.	Models	

	 The	models	 employed	 in	 this	 paper	were	 originally	 developed	
and	 published	 by	 Jackson	 and	 coworkers.8	 They	 fall	 within	 the	
general	classification	of	class2	atomistic	force-fields	and	follow	the	
functional	 form	 of	 the	 OPLS-AA	 force-field	 of	 Jorgensen	 and	 co-
workers.9	 LAMMPS	 data	 files	 containing	 the	 topology	 and	 force-
field	parameters	for	the	three	polymers	(12-mers)	and	PC71BM	are	
available	as	Supporting	Information.	

5.	Computational	Resources	

	 The	 large-scale	 simulations	presented	 in	 this	work	 represent	 a	
significant	 investment	 in	 high-performance	 computing	 resources.	
Single	 chain	 simulations	 were	 all	 run	 on	 single	 processors.	 Multi-
chain	 simulations	 were	 all	 run	 on	 24	 processors	 using	 the	 MPI	
implementation	 of	 LAMMPS	 on	 the	 Comet	 supercomputer	 at	 the	
San	Diego	Supercomputer	Center.	 	The	simulations	proceeded	at	a	
rate	 1-3	 ns/day.	 Therefore,	 these	 simulations	 took	 >1	 month	 to	
perform.	 In	 total,	 three	 polymers	 were	 simulated	 in	 three	
conditions,	 and	 each	 one	 was	 repeated	 three	 times	 for	 error	
quantification.	 This	 resulted	 in	 a	 total	 of	 27	 simulations	 running	
concurrently	on	24	processors	each.	
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