
PHYSICAL REVIEW E 93, 022501 (2016)

Dynamics of nanoparticle assembly from disjointed images of nanoparticle-polymer composites
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Understanding how nanoparticles (NPs) diffuse, stick, and assemble into larger structures within polymers
is key to the design and fabrication of NP-polymer composites. Here we describe an approach for inferring
the dynamic parameters of NP assembly from spatially and temporally disjointed images of composites. The
approach involves iterative adjustment of the parameters of a kinetic model of assembly until the computed
size statistics of NP clusters match those obtained from high-throughput analysis of the experimental images.
Application of this approach to the assembly of shaped, metal NPs in polymer films suggests that NP structures
grow via a cluster-cluster aggregation mechanism, where NPs and their clusters diffuse with approximately
Stokes-Einstein diffusivity and stick to other NPs or clusters with a probability that depends strongly on the size
and shape of the NPs and the molecular weight of the polymer.
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I. INTRODUCTION

The incorporation of nanoparticles (NPs) into polymers
is a powerful strategy for enhancing their thermomechanical
properties and for introducing new optical, electrical, and mag-
netic functionalities into the polymers [1,2]. Many applications
require the incorporated NPs to be assembled into clusters,
strings, sheets, and percolating networks to take advantage
of their collective properties [3–5]. To achieve control over
NP assembly, a complete understanding of how NPs and their
clusters diffuse, collide, stick, and grow into larger structures is
critical. Several models of colloidal assembly have established
that the growth rate, morphology, and size distribution of
particle assemblies are primarily governed by the diffusivity
of the particles and their clusters as well as the probability
with which they stick to each other upon collision [6,7]. In
nanocomposites, these two parameters strongly depend on
various chemical and physical properties of the NPs, such
as their size, shape, and surface functionalization. Obtaining
experimental information regarding these dynamic parameters
of NP assembly is highly challenging because it requires
real-time imaging and quantitative measurements of the
nanocomposite during assembly. Such observation requires
in situ scanning or transmission electron microscopy [8]
to capture rapid events like NP collisions, which has been
achieved to some extent for NPs in liquid cells [9–11], but is
difficult to achieve for polymer-embedded NPs.

In this paper, we show that it is possible to extract useful
kinetic information about the NP assembly process from
temporally and spatially disjointed images of NP composites,
typically obtained from distinct samples arrested at different
stages of assembly. Our approach involves adjustment of the
parameters of an appropriate kinetic model of NP assembly un-
til the computed size distributions of the NP clusters reproduce
those obtained from quantitative analysis of the experimental
images. We apply this approach to determine the dynamic
parameters—diffusivity scalings and sticking probabilities—
governing the assembly of metal NPs of varying shapes
and sizes within polymer films of varying molecular weight.
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Our results reveal certain universality in the mechanism by
which NPs diffuse and assemble in a polymer film as well as
interesting dependencies on the shapes and sizes of the NPs
and the chain length of the surrounding polymer.

II. ASSEMBLY EXPERIMENTS

To demonstrate our approach, we applied it to five different
sets of experiments involving polymer-grafted metal NPs
undergoing two-dimensional assembly within a polymer thin
film. The experiments differ in the size and shape of the
NP undergoing assembly and in the molecular weight of
the surrounding polymer matrix. Table I provides relevant
properties of the NPs, NP grafts, and matrix polymer used
in the experiments.

Details of NP synthesis, assembly, and imaging are pro-
vided elsewhere [12]; here we provide only the most essential
information. In brief, we used standard wet chemical methods
to synthesize shaped NPs of uniform size and surface func-
tionalized with poly(vinyl pyrrolidone) chains. The colloidal
dispersion of NPs was spread onto an air-water interface to
produce a monolayer of uniformly distributed NPs, which
was then transferred onto the surface of a thin polystyrene
film. Solvent annealing was used for embedding the NPs
into the underlying polymer. This caused the NPs to sink
into the film and begin to diffuse within it and assemble into
larger NP clusters. For each experimental system, we captured
around 100 scanning electron microscopy (SEM) images
spread over multiple time points across the assembly. Figure 1
presents representative SEM images captured at different time
points during experiments involving the assembly of silver
nanocubes.

III. KINETIC MODEL

To choose an appropriate kinetic model of NP assembly,
we turned to the various models developed over the years to
describe colloidal aggregation. The cluster-cluster aggregation
(CCA) model [13,14] is one of the simplest but most versatile
of these models; it has been shown to yield qualitatively
correct descriptions of the aggregation dynamics and aggregate
morphologies observed in a wide range of colloidal systems.

2470-0045/2016/93(2)/022501(6) 022501-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.022501


MURTHY, GAO, TAO, AND ARYA PHYSICAL REVIEW E 93, 022501 (2016)

TABLE I. Relevant parameters for the five experimental systems
investigated in this study.

NP type Sizea Graft (Mw)b Matrix (Mw)

Silver (Ag) cubes 80 (e) PVPc (55 k) PSd (11 k)
Gold (Au) rods 40,10 (l,d) PVP (55 k) PS (11 k)
Gold spheres 10 (d) PVP (55 k) PS (11 k)
Silver spheres 30 (d) PVP (55 k) PS (3 k)
Silver spheres 30 (d) PVP (55 k) PS (28 k)

ae: edge length, d: diameter, l: axial length, each in nanometers.
bMw: molecular weight in Daltons (k stands for kilo).
cPVP: poly(vinyl pyrrolidone).
dPS: polystyrene.

In its simplest form, CCA consists of a collection of diffusing
particles that stick together irreversibly upon contact to
form clusters; these clusters continue to diffuse and grow
by colliding with other particles or clusters. The model
can also be easily extended to include additional features
like size-dependent cluster mobilities and variable sticking
probabilities, which have been thoroughly studied [6,15].

Based on this model, a dynamic scaling form for the cluster
size distribution function was introduced [16]:

ns(t) ∼ s−2F(s/tz), (1)

where ns(t) is the number density of clusters containing s

particles at time t , F is a scaling function, and z is a critical

exponent. It was also shown that the mass-average cluster size

S(t) =
∑

s2ns(t)∑
sns(t)

(2)

scales as S(t) ∼ t z as t → ∞. Subsequent experiments
demonstrated and studied this dynamic scaling of the size
distribution in various colloidal systems [17–19]. Both the
CCA model and the arguments leading to the dynamic
scaling form are simple and general, and should therefore
be widely applicable. However, to our knowledge, Eq. (1) has
not previously been tested for the case of NPs assembling
in a polymer matrix, despite the widespread study of such
NP-polymer systems.

To investigate the applicability of this scaling relationship
to NP assembly, we analyzed the different sets of experiments
described earlier involving the assembly of polymer-grafted
metal NPs within a polymer thin film. The size distributions
of the NP clusters were obtained by analyzing SEM images
of the five polymer-NP systems captured at various stages
of assembly. For this purpose, we used an automated image
analysis tool that we recently developed and made publicly
available [12,20]. Though studies frequently employ ns(t) to
quantify cluster size distribution, a more useful measure is the
relative cluster size distribution νs(t) defined as

νs(t) = Ns(t)∑
sNs(t)

, (3)

where Ns(t) is the number of clusters containing s particles at
time t . The quantity νs(t) normalizes Ns(t) by the total number
of particles

∑
sNs(t) across all clusters and therefore allows

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 1. Representative SEM images taken during the assembly of 80 nm PVP-grafted Ag nanocubes within PS thin film at the following
times post solvent annealing: (a) 127 min, (b) 135 min, (c) 143 min, (d) 150 min, (e) 158 min, (f) 165 min, (g) 173 min, (h) 180 min, and
(i) 188 min. Scale bar = 2 μm.
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FIG. 2. Evidence of dynamic scaling in NP assembly in two
dimensions in a polymer matrix. Reduced cluster size distributions
obtained via image analysis of SEM images from five experiments
are plotted versus reduced cluster size. Each set of points includes
data for all recorded time points in that experiment. The entries in
parentheses in the legend indicate the approximate sizes of the NPs
and the molecular weight of the polystyrene (PS) matrix (11 k PS
where not indicated).

comparison of the cluster size distributions at different time
points, from different experiments, and against those obtained
from simulations. Also note that νs(t) is proportional to ns(t)
via νs(t) = ns(t)/�, where � is the overall number density of
particles in the system, assumed to be constant.

Figure 2 plots the reduced cluster size distributions s2νs(t)
versus reduced cluster size s/S(t) obtained from the five
experiments. Most of the data points are found to collapse onto
a single master curve, with slight deviations at low cluster sizes
and/or long times for the data corresponding to 13 nm spheres
and to 30 nm spheres in 3 k polystyrene film. Some deviations
from absolute universality are expected due to the approximate
nature of the dynamic scaling and its obvious failing at very
short times, where only single NPs exist, and at very long times,
where only a single, large cluster exists [16]. Other plausible
reasons include statistical uncertainties in the extracted νs(t)
due to the limited number of SEM images available for analysis
and the actual assembly being more complex than the CCA
model. Nevertheless, the NP assembly systems studied here
still follow reasonably well the cluster size distribution scalings
predicted by the CCA model, suggesting some degree of
universality in the mechanism by which NPs assemble.

Based on these results, we contend that the CCA model
should be able to simulate many important aspects of the
assembly process of the different NP-polymer systems studied
here and that it would be an appropriate model in our approach
for recovering the dynamic parameters of NP assembly.
The CCA model takes as input the initial number density
of particles along with dynamic parameters that describe
the diffusion and sticking of the particles and clusters. By
quantitatively comparing cluster size distributions obtained
in CCA simulations to those obtained in experiments, we
should be able to predict these dynamic parameters. This

method is representative of a simple and general framework
for gaining quantitative information about the microscopic
behavior of NPs in a polymer by analyzing static snapshots
taken during their aggregation process and comparing the data
with a suitable model.

IV. LATTICE CCA SIMULATIONS

We simulate CCA on a two-dimensional square lattice, in
accordance with the thin-film geometry of the experimental
system, and implement periodic boundary conditions to
prevent boundary effects. A simulation begins with N0 < L2

particles randomly placed at N0 sites of an L × L lattice (no
two particles ever occupy the same position). The diffusion
of particles and their clusters is treated as a random walk
on the lattice. The self-diffusivity Ds of a cluster containing s

particles is assumed to scale with the cluster size in a power-law
manner [15]:

Ds(γ ) = D0s
γ , (4)

where D0 is a constant denoting the self-diffusivity of single
particles and γ is a parameter embodying the size dependence
of the diffusivity of clusters. The case γ = 0 corresponds to a
size-independent diffusivity, whereas for γ < 0, larger clusters
diffuse slower. Scalings with γ > 0, where larger clusters
diffuse faster, were not considered.

Previous studies on colloidal aggregation [7] have shown
that particles can collide unproductively when the interparticle
interaction potentials exhibit an energy barrier that prevents
particles from sticking within the residence time of their
contact. For the NPs analyzed here, such barriers could arise
from steric repulsion between particles due to the polymer
chains grafted on the particle surfaces [4,21]. To this end, we
implement a sticking probability Pstick between clusters that
may be smaller than 1. Following previous work [6,22], we
assign a probability P that two particles arriving at neighboring
sites on the lattice stick to form a two-particle cluster. The
sticking probability between clusters exhibiting one or more
than one contact point—one or more of its particles occupy
lattice sites adjacent (modulo L) to those occupied by particles
belonging to other clusters—is then given by [23]

Pstick = 1 − (1 − P )c, (5)

where we have assumed that two clusters will stick to each
other if any one of the c contacts stick independently with the
probability P .

The standard approach for simulating the dynamical evo-
lution of such a system uses a fixed time step of �t = 1. At
each simulation time step ti , an attempt is made to move each
and every cluster by one lattice unit in a randomly chosen
direction with probability Dsk

(γ )/D0, where sk is the size
of the cluster k being moved and Dsk

(γ ) is its diffusivity
given by Eq. (4). Alternatively, the attempts may involve
moving only a single, randomly picked cluster per time step
with the above probability. In this case, the simulation time
should be incremented by �ti = 1/N (ti), where N (ti) is the
number of clusters present at the beginning of the time step,
to yield the same overall dynamics as the earlier approach.
Both these approaches become increasingly inefficient with
time for systems with γ < 0 as clusters grow in size and their
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diffusivities Dsk
(γ ) decrease, leading to diminishing move

probabilities. However, significant computational savings may
be achieved by a simple modification [15]: multiplying the
above move probability by the factor D0/Dmax (�1), where
Dmax is the largest diffusion coefficient for any cluster present
in the system at the start of the time step. Concurrently, the time
step needs to be multiplied by the same factor to achieve similar
dynamics as those obtained from the standard approach.

The simulation protocol then proceeds as follows: At each
simulation time step ti , a cluster k is selected at random and
moved with probability Dsk

(γ )/Dmax by one lattice unit in a
randomly chosen direction. If an attempted move results in
double occupancy of a lattice site, the move is rejected and
the cluster remains in its old position. If a move results in
cluster k being left in contact with other clusters, then cluster
k is merged with each contacting cluster l with probability
given by Eq. (5), where c = ckl is the number of contact points
between clusters k and l. Regardless of what has occurred
during the time step, the time is incremented by

�ti = D0

Dmax

1

N (ti)
. (6)

At the end of this process, we are left with N (ti+1) � N (ti)
clusters with average size S(ti+1) � S(ti). This completes one
time step of the simulation. The above process is repeated
until the average cluster size exceeds the largest cluster size
achieved in the experiments.

The results of the simulations are expected to depend on
three parameters:

(1) The particle number density � = N0/L
2 (the fraction of

lattice sites that are occupied). All simulations were performed
with � = 0.07, the approximate number density of particles
observed in the experiments. We assume that the N0 and L

values used (our smallest simulations used N0 = 11 200 and
L = 400) are large enough that the results presented will not
change with increasing system size, keeping � constant.

(2) The diffusion exponent γ , which determines the size
dependence of cluster diffusivity via Eq. (4). Values of γ

between 0 and −1 were considered.
(3) The sticking probability P per contact point. Values of

P between 1 and 10−3 were considered.
Simulation results for each set of parameters were averaged

over NR � 100 independent simulation runs.

V. RESULTS AND DISCUSSION

We aim to quantitatively compare the cluster size distri-
butions obtained from the CCA simulations (performed using
different combinations of γ and P values) with those measured
from each of the five experiments to determine the underlying
dynamic parameters associated with each experiment. The
cluster size distribution in our simulations is computed as
ν̂s(ti) = Ns(ti)/N0, where Ns(ti) is the number of clusters of
size s present at time step ti , and N0 is the initial number
of particles placed on the lattice; note that N0 is equivalent
to

∑
sNs(t) in Eq. (3). In order to compare simulation to

experiment, we define

Qν = 1

N
∑
t,s

|νs(t) − ν̂s(t∗)|√[
σνs

(t)
]2 + [

σν̂s
(t∗)

]2
, (7)

which measures the fit quality or degree of overlap between
the experimental and simulation cluster size distributions. The
numerator of each term is the absolute difference between
νs(t), the experiment cluster size distribution at time t , and
ν̂s(t∗), the corresponding simulation cluster size distribution
(at simulation time t∗); the method by which this correspon-
dence is chosen is described below. The quantities σνs

(t) and
σν̂s

(t∗) in the denominator are the standard deviations of νs(t)
and of ν̂s(t∗), respectively. The former deviation is calculated
as described in Ref. [12], while the latter is obtained using
the NR independent simulation runs. The sum runs over all
experiment times and cluster sizes for which experiment data
was collected, and N is the total number of terms in the sum.

Ideally, the simulation time would be related to the
experiment time by a constant multiplicative factor τ equal
to the time scale for diffusion of the NPs being modeled.
In this situation, we could simply fix t/t∗ = τ in Eq. (7), and
then determine the value of τ as that which minimizes Qν for a
given experiment/simulation pair. Unfortunately, experimental
conditions render this approach infeasible: NPs are initially
deposited on a glassy polymer film, and the polymer is then
made mobile by exposure to solvent vapor, allowing the
NPs to sink in and begin lateral diffusion. This process is
not instantaneous, and we observe a long “dormant” period
(∼1–2 h) after solvent exposure begins, before the onset of NP
aggregation [12]. It is reasonable to assume that the polymer
will continue to swell after this point, and that the NP mobility
will therefore continue to rise with time.

To address this problem, we assume that changes in
the polymer cause the diffusion constant D0 to become
some arbitrary function of time D0(t), but that the sticking
probability P remains time independent. According to Eq. (4),
this imposition of a time-dependent D0(t) should affect
the diffusion coefficients of all clusters equally, which is
equivalent to simply rescaling each simulation time step �ti by
an appropriate factor. Therefore, the simulation results remain
valid, but with each simulation time ti now mapped in some
unknown, nontrivial way to an experiment time t . In applying
Eq. (7), we choose each simulation time t∗ so as to minimize
the difference between the experimental mass-average cluster
size, S(t), and the corresponding simulation value, Ŝ(t∗).

Figure 3 presents the results of our comparative study. We
find that the analysis immediately rules out large sections of
the simulation parameter space for each experiment [red and
yellow zones in Fig. 3(a)]. The remaining (blue) regions, where
Qν is relatively small, represent parameter combinations that
yield a reasonable match between experiment and simulation.
These regions are somewhat broad and run diagonally across
the parameter space, likely related to the qualitatively similar
effects of γ and P on the time-independent size distributions.
Specifically, the shape of the size distribution is determined by
the relative rates of successful collisions between clusters at
different sizes. When the magnitude of γ is large, larger clus-
ters are less mobile and hence collide less frequently. However,
collisions between larger clusters typically involve multiple
contact points, and therefore have a high rate of success, when
P is small, relative to collisions between smaller clusters.
These competing factors cause size distributions obtained at
large magnitudes of γ and small P to exhibit similar shapes
as those obtained at small γ and large P . Note that this
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FIG. 3. Results of comparison between experiments and simulations, where each column is for the indicated experiment. (a) Qν values
for all simulations performed, organized by parameter values (diffusivity scaling γ and sticking probability P ). (b) Experimental cluster size
distributions (solid lines with error bounds) overlaid with the corresponding simulation size distributions (dashed lines) taken from simulations
with the indicated parameters—these are also marked in (a) with black squares. The νs(t) curves are colored from red to blue (purple) in order
of increasing time. The colored triangles above (below) the top of each plot mark the experimental (simulation) mass-average cluster sizes,
respectively, for each plotted time.

shape similarity only applies when comparing distributions
at comparable mean cluster sizes and not comparable times, as
the assembly dynamics are wildly different across the two
sets of parameter combinations. As alluded to earlier, the
shallowness in Qν may also result from the uncertainties
in experimental νs(t) and from the CCA model being an
oversimplification of the actual assembly process.

Despite the shallow concavity of the Qν landscape, we are
able to identify unique P -γ combinations that yield the closest
overlap between simulation and experiment; these “predicted”
values are marked by black boxes in Fig. 3(a). The simulated
cluster size distributions corresponding to these parameter
values and those obtained from experiments are provided
in Fig. 3(b). In particular, our approach predicts diffusivity
scalings between γ = −0.6 and γ = −0.8 for all experiments
except the one involving 30 nm spheres in 28 k PS, where
γ = −0.9 is predicted; even in this case, simulations with
γ = −0.8 (and with the predicted P ) yield a Qν value that
is only marginally different (0.78 instead of 0.76) from that
obtained with γ = −0.9. The predicted diffusivity scalings are
mostly consistent with the Stokes-Einstein (SE) relationship,
that is, D ∼ 1/r , where r is the cluster radius. Taking into
account the fractal structure of the clusters, we have the
relation s ∼ rdf between cluster size and radius, where df

is the fractal dimension. In our analysis of the experiment
results, we found that df ≈ 1.4 [12]; using this in the SE law
yields D ∼ s−1/df ≈ s−0.7, consistent with our predicted γ .
The SE relationship is generally applicable for particles that
are much larger than the characteristic size of the surrounding
polymer chains. Our calculations indicate that, indeed, our

NPs, even the smallest ones (13 nm), are much larger than
the radius of gyration Rg of the polymer chains (Rg � 3 nm).
To estimate Rg, we assumed that the PS matrix chains of
Mw = 11 k exhibit ideal chain conformations, and therefore
Rg � b

√
N/6, where b ≈ 20 Å is the Kuhn length of PS

and N ≈ 13.2 is the number of such Kuhn segments in an
11 k Mw PS chain [24]. That the diffusivity scaling exponent
γ may be approximated as −1/df was recently verified by
molecular dynamics simulations of particle aggregates in a
good solvent [25].

The predicted sticking probabilities P , on the other hand,
vary dramatically across the experiments, ranging from P =
0.001 to P = 0.4. Remarkably, all five predicted values seem
reasonable. Large 80 nm silver cubes should experience
strong attractive interparticle van der Waals forces, and we
predict a sticking probability of P = 0.4 approaching unity
for this species. Conversely, for the smallest particles studied
(13 nm spheres) we obtain P = 0.001, the lowest value
simulated. In the case of 10 × 40 nm rods and 30 nm spheres,
sticking probabilities intermediate between these extremes are
predicted, in keeping with the relative sizes of these particles.
Among the two experiments with 30 nm spheres, the ones
dispersed in longer matrix polymers exhibit a slightly higher
sticking probability. This result is also reasonable, given that
previous studies observe increased dewetting of individual
polymer-grafted NPs as well as increased attraction between
two such NPs with increasing length of the polymer matrix
chains relative to the grafted chains [26]. It is also noted that
the NP systems yielding relatively large P values (cubes, rods,
and 30 nm spheres in 28 k PS) yield cluster size distributions
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that develop a peak at large times, characteristic of diffusion-
limited aggregation, whereas the remaining two systems with
small P yield monotonically decreasing distributions at all
times, consistent with reaction-limited aggregation [27].

While these extracted parameters paint a qualitative picture
of the forces governing the assembly process and are also
consistent with measured cluster size distributions, further
work is required to quantitatively verify these results and to
more rigorously validate our approach for extracting dynamic
parameters. The former would require performing in situ SEM
studies of the above systems to observe the diffusion, collision,
and sticking of NPs in real time. The latter would require
application of the approach to other self-assembling particulate
systems for which the dynamic parameters are either known
a priori or can be obtained from real-time visualization. Both
these efforts are currently underway in our laboratories.

VI. CONCLUSIONS

The results presented here demonstrate a simple and
powerful approach for predicting dynamic parameters of NP
assembly with several potential applications. First, the kinetic
model, complete with its parameters, that emerges from the
application of our approach should provide a comprehensive
picture of the NP assembly process being studied. The
predicted parameters could be used to explain experimental
results in terms of dynamic processes and mechanisms. For
instance, here we used the approach to provide evidence for the
validity of the SE law in the polymer-NP systems examined and
to determine whether they assembled via diffusion- or reaction-
limited mechanisms. Second, the predicted parameters could

inform researchers on how to modify aspects of the NP
building blocks (e.g., length and density of polymer grafting
that affect the stickiness P of the NPs) or the annealing
conditions (e.g., time modulation of temperature that affects
diffusivity D) to achieve specific higher-order structures.
Third, the approach could be used to dissect the dynamical
and mechanistic impact of the various experimental variables
related to the NPs, the surrounding matrix, and the assembly
conditions.

Our approach currently examines two-dimensional as-
sembly of metal NPs within a polymer film and utilizes a
CCA model to recover the dynamic parameters. However,
the approach could be easily extended to other systems,
including three-dimensional systems, and other kinetic models
of assembly. Additional parameters accounting for effects like
anisotropic interactions between NPs may also be incorporated
within the CCA model. Also, we currently estimate the
optimal dynamical parameters through brute-force comparison
of experimental cluster properties with those obtained from
a model simulated at hundreds of parameter combinations
across the large parameter space. It should be possible to
speed up the approach by automating the process of locating
the global minimum in the Qν landscape via optimization
algorithms [28].
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