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Abstract
The estimation of contact probabilities (CP) from conformations of simulated bead-chain
polymer models is a key step in methods that aim to elucidate the spatial organization of
chromatin from analysis of experimentally determined contacts between different genomic
loci. Although CPs can be estimated simply by counting contacts between beads in a sample
of simulated chain conformations, reliable estimation of small CPs through this approach
requires a large number of conformations, which can be computationally expensive to obtain.
Here we describe an alternative computational method for estimating relatively small CPs
without requiring large samples of chain conformations. In particular, we estimate the CPs
from functional approximations to the cumulative distribution function (cdf) of the inter-bead
distance for each pair of beads. These cdf approximations are obtained by fitting the extended
generalized lambda distribution (EGLD) to inter-bead distances determined from a sample of
chain conformations, which are in turn generated by Monte Carlo simulations. We find that
CPs estimated from fitted EGLD cdfs are significantly more accurate than CPs estimated using
contact counts from samples of limited size, and are more precise with all sample sizes,
permitting as much as a tenfold reduction in conformation sample size for chains of 200 beads
and samples smaller than 105 conformations. This method of CP estimation thus has potential
to accelerate computational efforts to elucidate the spatial organization of chromatin.
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1. Introduction

The tight confinement of chromatin within the cell nucleus and
the presence of regulatory and structural DNA binding proteins
within the same space naturally lead to the existence of con-
tacts between genomically distant segments of the chromatin
fiber [1]. Quantitative information about such contacts can
be experimentally obtained from millions of intact cell nuclei
by employing techniques based on chemical cross-linking of
DNA [2]. For example, high-throughput experiments using the
Hi-C technique or one of its variants produce large amounts of
DNA sequencing data that can be analyzed to detect contacts
across most loci of an entire genome [3–5]. The collection of

such contacts yields contact probability (CP) maps that rep-
resent the frequency of interaction between different genomic
loci, and therefore also contain information about the higher-
order spatial organization of chromatin in the cells under study.

To recover such spatial organization from CP maps, var-
ious computational methods have been proposed [6]. Some
of the most promising among these methods rely on the esti-
mation of CPs from simulated conformations of a bead-chain
polymer model representing chromosomes or the chromatin
fiber. Comparing the estimated CPs to the corresponding ex-
perimental CPs then enables refining the spatial organization
of chromatin inferred from the experimental CPs [5, 7, 8]. To
improve the speed and scalability of these methods it is desir-
able that CPs be estimated efficiently from simulation data sets
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of limited size. One approach is to estimate CPs using contact
counts from a sample of bead-chain conformations, so that the
CP for a given pair of beads is given by the fraction of confor-
mations where those beads are found to make contact [5, 7, 9].
However, to estimate small probabilities, this approach re-
quires a large number of simulated conformations, which in
turn often require substantial computational effort to generate.

Here we describe an alternative CP estimation method that
does not require a large conformation sample to estimate rel-
atively small CPs. Specifically, we estimate the CP for each
pair of beads from a functional approximation to the cumu-
lative probability distribution function (cdf) of the inter-bead
distance. To obtain this approximation we fit the extended
generalized lambda distribution (EGLD) [10, 11] to inter-bead
distances determined from a sample of simulated bead-chain
conformations. The EGLD provides a great variety of distri-
bution shapes by using four adjustable parameters, which can
be determined from sample data using the well known method
of moments. We found that, for chains of up 200 beads, es-
timating CPs from fitted EGLD cdfs yields significantly more
accurate values than estimating CPs from contact counts if the
sample size M is less than about 105 conformations and the CPs
being estimated are less than about 100/M . Thus, the proposed
method of estimating CPs from simulated conformations of a
bead-chain polymer model should be effective in accelerating
other computational methods that use such CPs to deduce the
spatial organization of the genome from experimental data.

2. Methods

2.1. Contact probabilities from inter-bead distance
distributions

Our model system, representing the chromatin fiber, consists
of a single linear chain of N beads in some thermodynamic en-
semble, and our aim is to estimate the probability of contact be-
tween any two beads in the chain. A thermodynamic ensemble
corresponds to a population of chain conformations consistent
with a given set of macroscopic constraints on the system, such
as number of chains, volume, and temperature. In each chain
conformation from such a population, any two beads i and j ,
1 < j−i < N , may or may not be making contact. A contact is
defined by the condition that the spatial distance di,j = |rj −ri |
between the beads is smaller than a predefined contact distance
dc. This condition defines the subset of conformations where
beads i and j make contact. If we know both the size of such
subset and the size of the population, then we can compute the
contact probability (CP) pi,j for beads i and j as the size of the
subset divided by the size of the population. In practice, both
the population and the subset of interest may be too large or
complicated to determine their sizes and perform the division.
Thus, pi,j can often only be approximated from a representa-
tive sample of the population using an appropriate estimation
method. Note that in the present study the term sample denotes
not a single chain conformation, but a representative collection
of conformations extracted from the population.

An obvious way to estimate the contact probability
pi,j for a given bead-chain is to obtain a sample of M

chain conformations from the population, for example by
periodically observing the chain during a sufficiently long
molecular dynamics, Brownian dynamics, or Monte Carlo
simulation in the thermodynamic ensemble of interest. Then,
the conformations in the sample are examined to determine
the number of conformations where di,j ! dc. Dividing this
number by the size of the sample M yields an estimate of the
contact probability [5, 7],

p̃i,j = 1
M

M∑

k=1

Θ
(
dc − dk

i,j

)
, (1)

where dk
i,j is the distance between beads i and j in the kth

conformation, and Θ(x) is the Heaviside step function, which
equals 1 when x > 0 and 0 otherwise. A similar definition
was used to compute looping probabilities in a polymer chain
representing the chromatin fiber [9]. We refer to these contact
probabilities as being estimated from contact counts. As the
sample size increases, the CP estimate approaches the true CP,

lim
M→∞

p̃i,j = pi,j . (2)

However, in applications where the sample size is limited, the
estimation of small CPs with this method may not be reliable or
even possible. In fact, equation (1) cannot be used to estimate
CPs smaller than 1/M from a sample of M conformations.

Another way to estimate pi,j is suggested by defining the
true CP not through equation (2), but through the cumulative
distribution function (cdf) of inter-bead distances, i.e.

pi,j = Fi,j (dc) =
∫ dc

0
fi,j (x) dx, (3)

where fi,j (x) = P(x < di,j ! x + dx) is the probability
density function of the distance di,j between beads i and j ,
and Fi,j (x) = P(di,j ! x) is the corresponding cdf. An
analogous formulation in terms of radial distribution functions
was used to compute the average number of pairwise contacts
per monomer across cluster formations in a linear multiblock
copolymer chain under poor solvent conditions [12, 13].

However, for realistic polymer models, an analytical ex-
pression of Fi,j (x) is generally not available or practical to
compute [14, 15], especially when the chain is subjected to ar-
bitrary additional restraints [7]. In this case, if an approxima-
tion f̂i,j (x) for fi,j (x), or F̂i,j (x) for Fi,j (x), can be obtained
from the available sample of conformations, then a suitable
estimate of the CP for beads i and j may be obtained from

p̂i,j = F̂i,j (dc) =
∫ dc

0
f̂i,j (x) dx. (4)

We therefore propose an alternative method for estimating
inter-bead CPs from samples of bead-chain conformations
(figure 1). This method consists of fitting an appropriate
functional form for F̂i,j (x) to sampled distance data and then
obtaining p̂i,j from equation (4).

2.2. Extended generalized lambda distribution

To obtain F̂i,j (x), we use either the generalized lambda
distribution (GLD) [16] or the generalized beta distribution
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Figure 1. Using a fitted cumulative probability distribution function
(cdf) to estimate contact probabilities (CPs) from simulated
conformations of a bead-chain polymer model. The spatial distance
between beads i and j is observed in a sample of M conformations,
and an appropriate functional form F̂i,j (x) for the cdf is fitted to the
inter-bead distance observations. The CP for beads i and j can then
be estimated as p̂i,j = F̂i,j (dc), where dc is the contact distance. The
black curve represents an approximation f̂i,j (x) of the actual
probability density function.

(GBD) [10] depending on the shape of the sampled inter-
bead distance distribution. Together, the GLD and GBD are
referred to as the extended generalized lambda distribution
(EGLD) [10, 11].

The GLD is defined by its quantile function, which is the
inverse of the cdf and is also known as percentile function,

Q(GLD)(x) = λ1 +
xλ3 − (1 − x)λ4

λ2
, (5)

where λ1, λ2, λ3, and λ4 are adjustable parameters. The
parameters λ1 and λ2 control the location and scale of the
distribution, respectively, while λ3 and λ4 control its shape,
and are thus referred to as shape parameters.

The GBD is defined by its probability density function
(pdf), and also contains four adjustable parameters,

f (GBD)(x)

=






(x − β1)
β3(β1 + β2 − x)β4

β(β3 + 1,β4 + 1)β
(β3+β4+1)
2

, for β1 ! x ! β1 + β2,

0, otherwise,
(6)

where β(a, b) is the beta function,

β(a, b) =
∫ 1

0
x(a−1)(1 − x)(b−1) dx. (7)

Here again the parameters β1 and β2 control the location and
scale of the distribution, respectively, while β3 and β4 are the
shape parameters.

The four adjustable parameters available in both the GLD
and the GBD allow a wide variety of distributions to be
represented analytically and, therefore, concisely by each
family of distributions. Also, using the EGLD allows a greater
range of distribution shapes to be fitted than using only the
GLD or only the GBD. Neither the GLD nor the GBD, however,
offer an explicit expression for the cdf, which must therefore be
evaluated with numerical methods. But before the cdf F̂i,j (x)
can be evaluated, its four parameters must be estimated from
the available data.

2.3. Method of moments

To estimate the parameters of F̂i,j (x) from a given sample of M
bead-chain conformations, we fit the EGLD to the distribution
of inter-bead distances di,j using the method of moments [11].
The first four moments of a random variable X are known as the
mean, variance, skewness, and kurtosis of X and are defined as

α1 = E(X), (8)

α2 = σ 2 = E[(X − α1)
2], (9)

α3 = E[(X − α1)
3]

σ 3
, (10)

α4 = E[(X − α1)
4]

σ 4
, (11)

where E(·) is the expectation operator. The corresponding
sample moments are given by

α̂1 = m̂1, α̂2 = ĉ2, α̂3 = ĉ3

ĉ
3/2
2

, α̂4 = ĉ4

ĉ2
2

, (12)

where the sample moments about the mean [17]

ĉk = 1
M

M∑

i=1

(xi − m̂1)
k =

k∑

j=0

(
k

j

)
(−1)j m̂k−j m̂

j
1, (13)

can be computed from the sample non-central moments m̂k ,
which in turn are computed from a sample of M observations
x1, x2, . . . , xM of the random variable X,

m̂k = 1
M

M∑

i=1

xk
i . (14)

To fit the EGLD using the method of moments with data
from a sample of M bead-chain conformations, we first collect
the first four sample non-central moments m̂k of the random
variable X ≡ di,j from the given conformations. Then we
compute the sample moments ĉk and solve the system of four
non-linear equations obtained by equating each moment to the
corresponding sample moment,

αk = α̂k, for k = 1, 2, 3, 4, (15)

where the left-hand side of each equation is a function of the
four GLD or GBD parameters. Actually, the equations for
α3 and α4 involve only the shape parameters, i.e. λ3 and λ4

or β3 and β4, and can therefore be solved as a system of two
equations,

{
α3 = α̂3

α4 = α̂4.
(16)

This system has no solutions for the GLD parameters when
1.8(α̂2

3 + 1) < α̂4 [11]. In this case, the GBD can be used
instead of the GLD to fit the data. The equations for α1 and
α2 do involve all four parameters, but can easily be solved
for the location and scale parameters, i.e. λ1 and λ2 or β1

and β2, once the two shape parameters are known. However,
solving the system (16) for the shape parameters is a non-
trivial task, especially for the GLD. This task must be carried
out numerically, as explained in [11].
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To determine the GLD parameters from given data, several
other fitting methods, besides the method of moments, have
been proposed, including the use of percentiles [18], the use
of L-moments [19], the starship method [20], discretized
methods [21, 22] and maximum likelihood estimation [23].
Usable implementations of these methods are available in the
package GLDEX [24] of the R system for statistical computing
[25]. However, we do not use these alternative fitting methods
in the present study because they require that all observations of
inter-bead distance di,j be fed at once to the fitting procedure.
To meet this requirement it would be necessary to record all
M bead-chain conformations for each sample obtained by
simulation, and such recording in turn would require large
amounts of data storage and processing time, when N and
M are large. Instead, by using the method of moments we
only need to record the four non-central moments (14) of di,j

for each bead pair (i, j), and such moments can be computed
incrementally as each conformation is generated by simulation,
without having to record all conformations.

2.4. Monte Carlo simulations of bead-chains

To generate samples containing uncorrelated bead chain con-
formations suitable for estimating CPs using contact counts,
with equation (1), or using fitted EGLD cdfs, with equation (4),
we performed configurational bias Monte Carlo (MC) simu-
lations [26] of a bead-chain polymer model at constant tem-
perature, as described in [27, 28]. Specifically, we simulated
a single chain of N beads connected by rigid bonds, and we
investigated chain lengths of N = 25, 50, 100, and 200 beads.
The potential energy of each chain,

U =
N−2∑

i=1

Ubend(i) +
∑

1!i<j!N

Uexcl(i, j) (17)

included contributions for chain stiffness and excluded vol-
ume, namely

Ubend(i) = 1
2
kθ θi

2 (18)

and

Uexcl(i, j)

=






4ε

[(
σ

di,j

)12

−
(
σ

di,j

)6

+
1
4

]

, di,j ! 21/2σ

0, otherwise,

(19)

where kθ is the bending constant, θi is the angle between the
two bonds connecting beads i, i + 1, and i + 2, ε is the the
Lennard–Jones energy parameter, and σ is the bond length.
To approximate the physical properties of the 30 nm chromatin
fiber, with one bead corresponding to roughly 3 kbp of DNA
[29], and with contacts mediated by proteins of roughly 15 nm
diameter, the parameters of this model were chosen to be dc =
1.5σ , kθ = 4, σ = 1, and ε = kBT = 1, in reduced units [7].

To ensure that the conformations in each sample were
uncorrelated, we extracted the conformations periodically
from each MC simulation with a sampling period of ns MC
steps, so that the kth conformation in a sample was generated

at step kns of the MC simulation. To determine an appropriate
sampling period ns for each chain length N , we performed
Ns = 10 sets of independent MC simulations, using a different
value of ns for each set and generating M = 106 conformations
from each simulation. Using contact counts from each
sample, we estimated p̃i,j from equation (1) for each bead
pair (i, j). Thus each set of simulations yielded a sample of
Ns independent observations for each p̃i,j . We then compared
the sample variance s̃2 of these observations to the variance
σB

2 = p(1−p)/M of the average of M independent Bernoulli
random variables with success probability p = pi,j . Because
pi,j is not known, we used p ≈ p̃i,j , where the over-line
denotes the sample average of p̃i,j over the Ns observations.
Finally, we chose the smallest value of ns such that 〈s̃/σB〉 ≈ 1,
where the angle brackets denote averaging over all possible
bead pairs (i, j), with 1 < j − i < N and p̃i,j > 10/M .

2.5. Errors in estimated CPs

2.5.1. Reference CPs. To assess the error performance of the
two CP estimation methods considered in this study, one using
contact counts and the other fitted EGLD cdfs, we obtained
close approximations to the unknown true CPs. To compute
these approximations, which we refer to as reference CPs and
denote with p∗

i,j , we estimated CPs from contact counts col-
lected over Ns = 10 independent conformation samples, each
consisting of a large number M = 107 of uncorrelated confor-
mations, and we averaged those CPs over the Ns samples, i.e.

p∗
i,j = 1

Ns

Ns∑

k=1

p̃k
i,j , (20)

where p̃k
i,j is the CP for beads i and j estimated using equa-

tion (1) from the kth conformation sample. Thus, effectively,
each reference CP was estimated using contact counts from
108 uncorrelated conformations. To confirm the low variabil-
ity of each p∗

i,j , and therefore its suitability for use as reference
CP, we calculated the standard deviation of the CPs p̃k

i,j esti-
mated using contact counts from the Ns independent samples
of M = 107 uncorrelated conformations.

2.5.2. Root mean squared fractional deviation. To obtain a
measure of average systematic error, or bias, in the CP esti-
mates p̂i,j , from fitted EGLD cdfs, relative to the correspond-
ing reference CP p∗

i,j , we computed the average root mean
squared fractional deviation (RMSFD) of p̂i,j using

RMSFD =

√√√√√ 1
Np

∑

i,j

(
p̂i,j

p∗
i,j

− 1

)2

, (21)

where p̂i,j was estimated from a sample of M uncorrelated
conformations, Np is the number of bead pairs (i, j), such that
1 < j − i < N and p∗

i,j > 0, and the summation under the
square root is over all such pairs. The RMSFD for the esti-
mates p̃i,j from contact counts was obtained using the same
formula after replacing p̂i,j with p̃i,j . To assess the variability
of the RMSFD across conformation samples, we calculated
the mean and standard deviation of RMSFD values obtained
from Ns = 10 independent conformation samples.
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2.5.3. Mean ratio of standard deviations. To obtain an aver-
age measure of random error in the CP estimates p̂i,j from fitted
EGLD cdfs relative to the reference CPs p∗

i,j , we calculated the
mean ratio of standard deviations (MRSD) for p̂i,j using

MRSD = 1
Np

∑

i,j

ŝi,j

σB
, (22)

where ŝi,j is the sample standard deviation of p̂i,j calculated
using estimates from Ns = 10 independent samples of M con-
formations, and σB

2 = p(1 − p)/M is the variance of the
average of M independent Bernoulli random variables with
success probability p equal to the reference CP p∗

i,j . The ratio
ŝi,j /σB was averaged over the Np bead pairs (i, j) such that
1 < j − i < N , p∗

i,j > 0, and p̂i,j > 0. To assess the vari-
ability of the ratio ŝi,j /σB across bead pairs, we calculated the
standard deviation of that ratio over the same Np bead pairs
used to compute the MRSD. The MRSD of CP estimates p̃i,j

from contact counts was similarly calculated from the above
expression by using the sample standard deviation s̃i,j of p̃i,j

in place of ŝi,j , and redefining Np in terms of p̃i,j .

3. Results

3.1. Monte Carlo simulations yield uncorrelated bead-chain
conformations

In the present work we addressed the problem of efficiently
estimating contact probabilities (CPs) for pairs of beads in a
simulated bead-chain. To this end, we compared two compu-
tational methods for estimating CPs, one using contact counts,
through equation (1), the other using fitted EGLD cdfs, through
equation (4). Both methods take as input a sample of M uncor-
related bead-chain conformations. To generate several such
samples, we periodically extracted the conformations from
configurational bias Monte Carlo (MC) simulations [26] of
a bead-chain polymer model (figure 2).

Because conformations from successive steps of a
Markov-chain MC simulation are generally correlated [26],
it is necessary to use a sampling period ns > 1. To determine
ns, we calculated the variance s̃2 of p̃i,j over several sets of
Ns = 10 independent MC simulations, using a different value
of ns for each set. If p̃i,j was estimated from independent
conformations, then s̃2 should match the variance σB

2 =
p(1−p)/M of the average ofM independent Bernoulli random
variables with success probability p ≈ pi,j , Indeed, we found
the average of s̃/σB over bead pairs to approach 1 as ns

increases (figure 3), indicating that, with a sufficiently large
sampling period, our MC simulations could produce samples
of uncorrelated bead-chain conformations.

In particular, sampling periods of ns = 3 and ns = 10
appeared adequate for chains of 100 and 200 beads, respec-
tively. We therefore used sampling periods of 3, 4, 5, and 10
to obtain uncorrelated conformations from all our subsequent
MC simulations of chains containing N = 25, 50, 100, and
200 beads, respectively.

Figure 2. Representative collection of 100 conformations obtained
from configurational bias MC simulations of a chain containing
N = 50 beads. This collection was extracted from a much larger
sample of M = 107 conformations, which were all grown starting at
the origin and were used to compute the reference CPs p∗

i,j for the
simulated chain using equation (20). The image in this figure was
generated using the program UCSF Chimera [30].

Figure 3. Ratio of sample standard deviation of CP estimates p̃i,j ,
obtained using contact counts from M = 106 conformations, to
sample standard deviation σB of the average of M independent
Bernoulli random variables with probability of success equal to the
sample mean of the estimated CPs, for chains containing 100 beads
(circles and black line) and 200 beads (diamonds and blue line).
Sample mean and standard deviation of CPs were calculated from
10 independent MC simulations. The ratio was averaged over all
bead pairs (i, j ), with j − i > 1 and p̃i,j > 10/M , and plotted
against the conformation sampling period ns. Error bars are
standard deviations of the ratio over the bead pairs considered. All
plots in figures 3–9 were generated using the Python extension
modules NumPy and matplotlib [31, 32].

3.2. Log-squared distance moments yield better CPs than
distance moments

We next investigated whether CPs can be reliably estimated
from EGLD cdfs fitted to inter-bead distance distributions. To
obtain estimates p̂i,j of the CP for each pair of beads i and j

using a fitted EGLD cdf, we computed the first four non-central
sample moments of the inter-bead distance di,j between beads
i and j from a sample of M = 106 uncorrelated conformations

5



J. Phys.: Condens. Matter 27 (2015) 064120 D Meluzzi and G Arya

Figure 4. Plot of CPs p̂i,j estimated for a chain of N = 50 beads
from EGLD cdfs fitted using sample moments of inter-bead
distances di,j versus corresponding reference CPs p∗

i,j calculated
using contact counts from a large sample of 108 uncorrelated
conformations. The vertical position of each point is the CP
estimated for a particular pair of beads (i, j), 1 < j − i < N , from a
single sample of M = 106 uncorrelated conformations. The
horizontal position of each point is p∗

i,j . Horizontal error bars are
standard deviations over Ns = 10 estimates p̃i,j , each calculated
from a subsample obtained by splitting the sample of 108

conformations into Ns subsamples of equal size. Colors vary over
blue, cyan, green, yellow, orange, and red to indicate decreasing
separation j − i of the contacting beads along the chain.

generated by MC simulation. We then determined the EGLD
parameters using the method of moments [11] and calculated
p̂i,j = F̂i,j (dc), where F̂i,j (x) is the cdf of the fitted EGLD,
dc = 1.5σ is the contact distance, and σ is the bond length.

To assess the accuracy of the estimates p̂i,j obtained from
EGLD fits, we compared those estimates to corresponding
reference CPs p∗

i,j that were in turn calculated using con-
tact counts from a large sample of M = 108 uncorrelated
bead-chain conformations. Unfortunately, plotting the esti-
mated CPs against the corresponding reference CPs revealed a
rather poor agreement between the two sets of CPs (figure 4).
Whereas CPs around 10−2, corresponding to pairs of beads
(i, j) with separation j − i = 2, were estimated quite accu-
rately, the CPs for most of the other bead pairs were signifi-
cantly larger or smaller than the corresponding reference CPs
(figure 4).

To investigate the cause of this poor agreement between
estimated and reference CPs, we collected histograms of inter-
bead distances di,j from the same conformation samples used
to compute the sample moments of di,j . We then plotted the
fitted EGLD cdf over the corresponding cumulative histogram
observed for selected pairs of beads (figures 5(a)–(f )). For
many bead pairs, we found that the fitted EGLD cdf crosses
the contact distance dc either above (figures 5(b)–(d)) or below
(figures 5(e) and (f )) the trend implied by the cumulative
histogram. These results suggest that the poor correlation
between reference CPs and corresponding CPs estimated from
EGLD cdfs is likely due to a poor fit between the EGLD cdfs

and the actual cumulative distribution function at short inter-
bead distances.

To improve the fit of the EGLD cdf at short inter-bead
distances, we stretched the distribution of such distances by
collecting non-central sample moments of log(di,j /σ )2, rather
than di,j . We thus determined EGLD parameters from sample
moments of log(di,j /σ )2 and computed CPs for all pairs of
beads by evaluating the corresponding fitted EGLD cdf at
log(dc/σ )2. This simple modification to the fitting procedure
resulted in a much better visual agreement between the fitted
EGLD cdfs and the corresponding cumulative histograms of
inter-bead distance in the region around the log-squared contact
distance log(dc/σ )2 (figures 5(g)–(l)). Consistently, using
sample moments of log(di,j /σ )2 instead of sample moments
of di,j to determine the EGLD parameters also resulted in a
dramatically improved correlation between the reference CPs
and the corresponding CPs estimated from fitted EGLD cdfs
(figure 6). Although still not perfect, the greater agreement
between the two sets of CPs motivated us to investigate the
error performance of CPs estimated from EGLD relative to
CPs estimated from contact counts.

3.3. EGLD fits incur smaller estimation errors at intermediate
sample sizes

To determine how the errors in the CP estimates p̂i,j obtained
from fitted EGLD cdfs compare to errors in the CP estimates
p̃i,j obtained from contact counts, we computed both p̂i,j and
p̃i,j from conformation samples of increasing size M . In
particular, we performed MC simulations of chains containing
N = 25, 50, 100, and 200 beads, and from these simulations
we obtained samples containing M = 103, 104, 105, and 106

uncorrelated conformations. We then compared the estimates
p̂i,j and p̃i,j for each sample size M to the corresponding
reference CPs p∗

i,j , which were computed using contact counts
from a large sample of 108 conformations.

Plotting p̃i,j against p∗
i,j for all bead pairs with 1 < j−i <

N in a chain containing 200 beads confirmed the absence of
CP estimates p̃i,j less than 1/M and revealed the presence of
evident quantization errors for CP values in the range from
1/M to 10/M (figures 7(a)–(d)). The same quantization of
p̃i,j was also observed for chains of N = 25, 50, 100 beads
(data not shown). In contrast, the estimates p̂i,j obtained from
fitted EGLD cdfs were all non-zero and were not affected by
such quantization errors, even with the relatively small sample
size of M = 103 (figures 7(e)–(h)). Thus, estimating CPs from
fitted EGLD cdfs yields viable estimates even for CPs in the
range from 0.1/M to 1/M , where the use of contact counts
produces CP estimates p̃i,j that are either too large or zero.

The plots also indicate that the CPs estimated from
EGLD fits generally deviate less from the reference CPs
than do the CPs estimated from contact counts, for all tested
sample sizes M . However, the progression of plots with
increasing sample size M shows that while the CP estimates
from contact counts eventually converge to the reference CPs
as M increases, the CP estimates from EGLD fits do not
appear to converge, indicating the presence of small systematic
errors in the latter estimates. These errors are not surprising
because the EGLD is used here as an approximation to, rather
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Figure 5. Fitted EGLD cdfs (black lines) overlaid onto the corresponding cumulative histograms (circles) of (a)–(f ) inter-bead distance di,j

and (g)–(l) log-squared distance log(di,j /σ )2 for representative bead pairs (i, j) in a chain of 50 beads. Histograms in (a)–(f ) and (g)–(l)
were collected from the same conformation samples used to obtain the estimates p̂i,j shown in figures 4 and 6, respectively. The vertical
dashed lines indicate (a)–(f ) the contact distance dc = 1.5σ , or (g)–(l) the log-squared contact distance log(dc/σ )2 ≈ 0.81093, where σ is
the bond length. The height of the intersection between the vertical dashed line and the fitted EGLD cdf is equal to the estimate p̂i,j . In (b)
this estimate is at least a factor of 10 smaller than the true CP pi,j , whereas in (h) the estimate closely approximates the true CP.

Figure 6. Plot of CP estimates p̂i,j obtained for a chain of 50 beads
from EGLD cdfs fitted using sample moments of log-squared
distances log(di,j /σ )2 versus corresponding reference CPs p∗

i,j . For
more details, see figure 4.

than an exact formulation for, the actual distribution of log-
squared distances. Nevertheless, figure 7 shows that, with
conformation samples of intermediate sizes, say from M =
103 to M = 105, fitting EGLD cdfs yields, on average, smaller
CP errors than using contact counts.

3.3.1. Systematic errors in the CP estimates. To investigate
quantitatively the systematic errors in the CP estimates p̂i,j and
p̃i,j , we computed the root mean squared fractional deviation

(RMSFD, equation (21)) for both sets of CP estimates. We
used the RMSFD because it provides an average measure of
fractional rather than absolute errors in the estimated CPs, thus
providing equal sensitivity to errors in both large and small
CPs.

Plotting the RMSFD of p̃i,j against sample size M for each
bead-chain length confirmed that CPs estimated from contact
counts are not biased, because their RMSFD approaches 0 as
M increases (circles and black lines in figure 8). Therefore, the
estimates p̃i,j contain only random errors that on average are
proportional to M−1/2 (figure 8(d)). In contrast, the RMSFD
trends for p̂i,j appear to approach finite values at sample sizes
M > 105 (diamonds and blue lines in figure 8). These
limiting values reflect an average fractional bias in p̂i,j . The
bias increases with chain length because longer chains have a
greater number of bead pairs with small CPs and small CPs
have greater fractional bias than large CPs. However, when M

is less than a threshold that varies from 105 for a chain of 25
beads to 106 for a chain of 200 beads, the RMSFD of p̂i,j is
consistently lower than the RMSFD of p̃i,j , indicating that the
estimates p̂i,j are, on average, more accurate than the estimates
p̃i,j when CPs are estimated from configuration samples of
limited size M .

3.3.2. Random errors in the estimated CPs. To quantify the
random errors in the estimates p̂i,j and p̃i,j , we computed
the mean ratio of standard deviations (MRSD, equation (22))
for increasing sample sizes M . The MRSD compares the
sample variance of the CP estimates to the theoretical variance
of CPs estimated using contact counts from a sample of M

7
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Figure 7. Plots of (a)–(d) CP estimates p̃i,j from contact counts and (e)–(h) CP estimates p̂i,j from EGLD fits against corresponding
reference CPs p∗

i,j , for a chain of N = 200 beads and for conformation samples of varying size M . The interpretation of each point is the
same as in figures 4 and 6. Each dashed diagonal line corresponds to y = p∗

i,j , where y ≡ p̃i,j or p̂i,j , and the curves above and below each
diagonal line correspond to y = p∗

i,j + σB and y = p∗
i,j − σB, respectively, where σB is defined in the text and in figure 3. Colors are used as

in figure 4.

Figure 8. Comparison of average systematic errors in CPs estimated from fitted EGLD cdfs (diamonds and blue lines) to corresponding
errors in CPs estimated from contact counts (circles and black lines), as the size M of the conformation samples used to obtain the estimates
varies. Each point is the average of 10 values of root mean squared fractional deviation (RMSFD) for CPs estimated from 10 independent
conformation samples. Error bars are standard deviations of those 10 RMSFD values. The dashed line in (d) indicates the power law
y ∼ M−1/2.

uncorrelated conformations. The latter variance is the variance
σB

2 of the average of M independent Bernoulli random
variables with success probability equal to the reference CP.
Similarly to the RMSFD, the MRSD gives equal importance
to random errors over all magnitudes of CP estimates.

Plotting the MRSD of p̃i,j against M for different
chain lengths N confirmed that the sample variance of p̃i,j

approaches the theoretical variance of such estimates when
M is sufficiently large (circles and black lines in figure 9).
The larger average variance of p̃i,j seen at smaller sample
sizes is an artifact due to the tendency of contact counts to
yield zero CP estimates when M is small, thus decreasing the

number Np of pairs used to calculate the MRSD. For all tested
chain lengths, the MRSD of p̂i,j also appears to approach a
limit as M increases (diamonds and blue lines in figure 9).
However, at each sample size M , the MRSD of p̂i,j is lower
than the MRSD of p̃i,j by a factor that increases with chain
length and is approximately 3 for a chain of 200 beads. These
results indicate that the values of p̂i,j are on average more
precise than the corresponding values of p̃i,j estimated from
the same sample of chain conformations. In other words, the
CP estimates obtained from EGLD fits are less sensitive to
variation across data sets than the estimates obtained from
contact counts.
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Figure 9. Comparison of average random errors in CPs estimated from EGLD cdfs (diamonds and blue lines) to corresponding errors in
CPs estimated from contact counts (circles and black lines), as the size M of the conformation samples used to obtain the estimates varies.
Each point is the average over bead pairs of the mean ratio of standard deviations (MRSD), which is defined by equation (22) and effectively
compares the sample variance of the CP estimates to the theoretical variance of CP estimates obtained using contact counts from a sample of
M uncorrelated conformations. Error bars are standard deviations of the MRSD over all bead pairs considered.

The lower variance of p̂i,j compared to that of p̃i,j can
be explained by noting that the estimation of CPs through
fitted EGLD cdfs requires collecting four sample moments
from a given conformation sample for each bead pair, whereas
the estimation of CPs from contact counts requires collecting
one contact count per bead pair. Therefore, CPs estimated
from EGLD fits are derived from at least four times as
much information as CPs estimated from contact counts. In
summary, the plots in figures 8 and 9 provide quantitative
evidence that both the accuracy and precision of CPs estimated
from contact counts degrade more quickly than those of
CPs estimated from fitted EGLD cdfs as the size M of the
conformation sample decreases, confirming that the use of
EGLD cdfs to estimate CPs is a better choice in applications
where confirmation samples have limited size M .

3.3.3. Fractions of bead pairs with sufficiently accurate CPs.
The RMSFD and MRSD provide convenient summary mea-
sures of average errors in CP estimates relative to reference
CPs. It is also of interest to assess the error performance of CP
estimates in terms of number of bead pairs with sufficiently
accurate CP estimates. The definition of sufficient accuracy
necessarily depends on the particular application at hand. For
our purpose of comparing the CP estimates p̂i,j and p̃i,j ob-
tained from EGLD fits and contact counts, respectively, we
deem each such estimate to be sufficiently accurate if it does
not deviate from the corresponding reference CP p∗

i,j by more
than the standard deviation σB =

√
p(1 − p)/M of the aver-

age of M independent Bernoulli random variables with success
probability p = p∗

i,j .
Table 1 reports the fractions of bead pairs with sufficiently

accurate CP estimates obtained from fitted EGLD cdfs and
from contact counts, for different chain lengths N , different
conformation sample sizes M , and different intervals of CP
values. Our tallies indicate that, with sufficiently large con-
formation samples, i.e. M = 106, contact counts yield greater
numbers of bead pairs with accurate CP estimates than do fit-
ted EGLD cdfs. This outcome is due to the presence of a small
bias in the estimates p̂i,j , as already seen in figure 7(h). As M

increases, σB decreases in proportion to M−1/2 and eventually
becomes smaller than the bias in p̂i,j , at which point p̂i,j is no
longer considered to be sufficiently accurate according to our
criterion.

Conversely, at intermediate sample sizes of up to 105 con-
formations, much larger numbers of bead pairs with accurate
CP can be obtained from EGLD fits than from contact counts.
A notable exception occurs for the most frequently interacting
bead pairs, those with CPs in the interval (10−3, 10−1], for a
chain of 25 beads, or (10−2, 10−1] for chains of 50 or more
beads. When using large conformation samples, i.e. M " 104

for a chain of 25 beads, and M " 105 for a chain of 50 or
more beads, fewer of these frequently interacting bead pairs
are assigned sufficiently accurate CP estimates through EGLD
fits than through contact counts. This discrepancy is again
caused by σB becoming smaller than the bias in p̂i,j . These
results indicate that using fitted EGLD cdfs is preferable to
using contact counts when estimating CPs from samples of
M = 103–105 conformations and when the CP magnitude is
less than roughly 100/M .

4. Discussion

We have described and tested a computational method for
efficiently estimating contact probabilities (CPs) from samples
of simulated bead-chain conformations. Our method relies on
fitting the extended generalized lambda distribution (EGLD) to
inter-bead distance distributions using the method of moments
[11]. We have compared the average systematic and random
errors in the CPs estimated with this method to corresponding
errors in CPs estimated from contact counts. We found that
CPs estimated from fitted EGLD cdfs are preferable to CPs
estimated from contact counts if the conformation samples
used to obtain the estimates are limited in size and if the specific
application can tolerate some bias in the larger CP estimates.

One such application is the CP estimation described in
[7] as part of an iterative procedure that optimizes certain
additional restraints on a bead-chain polymer model of the
30 nm chromatin fiber. In this case, the speed of CP estimation

9
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Table 1. Fractions of bead pairs (i, j), 1 < j − i < N , with sufficiently accurate CP estimates obtained from contact counts and from fitted
EGLD cdfs.a

Conformation sample size M

103 104 105 106

N b p∗ intervalc Np
d countse fitf counts fit counts fit counts fit

25 (0, 10−3] 253 5.2 (1.1) 95.8 (1.1) 70.2 (1.4) 92.8 (3.0) 67.4 (3.5) 73.0 (5.2) 69.1 (2.6) 36.3 (2.1)
(10−3, 10−2] 15 68.7 (9.0) 78.0 (10.8) 73.3 (12.3) 68.0 (10.2) 73.3 (10.7) 7.3 (7.6) 62.0 (14.6)
(10−2, 10−1] 8 71.2 (18.6) 76.2 (10.4) 72.5 (15.6) 58.8 (14.8) 75.0 (16.8) 3.8 (5.7) 68.8 (14.0)

50 (0, 10−4] 112 95.0 (4.5) 35.6 (4.6) 97.7 (2.6) 69.2 (4.0) 94.4 (4.3) 66.6 (6.5) 47.9 (7.7)
(10−4, 10−3] 1016 1.9 (0.4) 94.1 (1.4) 67.1 (1.6) 92.0 (2.2) 68.9 (1.3) 75.6 (1.9) 68.2 (1.5) 35.2 (2.4)
(10−3, 10−2] 40 68.3 (6.0) 78.5 (4.8) 67.2 (9.6) 71.8 (4.6) 69.0 (5.8) 4.8 (2.4) 71.2 (8.5)
(10−2, 10−1] 8 72.5 (17.5) 82.5 (11.5) 77.5 (13.5) 72.5 (13.5) 71.2 (19.4) 6.2 (6.2) 77.5 (16.6)

100 (0, 10−4] 2338 95.6 (1.3) 20.4 (1.0) 97.9 (0.7) 67.9 (1.0) 97.3 (0.9) 69.0 (0.6) 46.5 (2.7)
(10−4, 10−3] 2415 0.9 (0.2) 94.6 (1.0) 68.0 (1.1) 92.1 (1.4) 68.5 (0.4) 71.9 (1.7) 68.6 (0.9) 29.9 (1.5)
(10−3, 10−2] 90 67.2 (4.7) 76.7 (3.4) 66.3 (4.4) 68.6 (4.2) 67.8 (4.2) 4.1 (1.9) 67.9 (3.2)
(10−2, 10−1] 8 76.2 (19.7) 80.0 (10.0) 65.0 (14.6) 70.0 (13.9) 58.8 (12.6) 2.5 (5.0) 70.0 (15.0)

200 (0, 10−5] 3491 94.5 (2.5) 99.1 (0.5) 32.8 (0.9) 100.0 (0.1) 66.0 (0.9) 15.3 (2.2)
(10−5, 10−4] 10 885 95.0 (0.7) 10.2 (0.5) 98.0 (0.5) 63.5 (0.3) 98.5 (0.3) 65.9 (0.5) 47.6 (2.5)
(10−4, 10−3] 5127 0.4 (0.1) 93.6 (1.0) 65.4 (0.7) 90.4 (1.1) 65.8 (0.5) 69.4 (1.7) 66.2 (0.8) 26.3 (1.1)
(10−3, 10−2] 1.0 63.3 (3.3) 74.0 (2.7) 66.6 (2.4) 66.6 (2.4) 65.0 (2.6) 5.1 (1.3) 65.9 (2.4)
(10−2, 10−1] 8 70.0 (17.0) 76.2 (21.3) 58.8 (22.4) 70.0 (12.7) 70.0 (17.9) 5.0 (6.1) 62.5 (15.8)

a Fractions are reported as percentages. Values in parentheses are standard deviations of fractions computed from 10 independent
conformation samples. Omitted values are equal to zero.
b Number of beads in the chain.
c Each row in the table reports fractions for bead-pairs whose reference CPs p∗

i,j are within the specified interval.
d Number of bead pairs (i, j), with 1 < j − i < N , having reference CPs within the interval indicated in the previous column. Note that
bead pairs (i, j) with j − i = 1 are of no interest, because di,j < dc for these beads, and are therefore not counted.
e Fraction of bead pairs with sufficiently accurate CP estimates from contact counts.
f Fraction of bead pairs with sufficiently accurate CP estimates from fitted EGLD cdfs. The larger of the two fractions reported for
contact counts and fitted EGLD cdfs is highlighted in bold to facilitate comparison.

is more important than CP accuracy, because the iterative
procedure employed to adjust the additional restraints on the
polymer model requires tens of iterations to achieve good
convergence, but is also resilient to errors in the estimated
CPs. Our results indicate that, using fitted EGLD cdfs instead
of contact counts, such procedure could achieve up to a tenfold
reduction in the number of conformations needed to estimated
CPs with a given average error quantified by the RMSFD
(figure 8).

We found, however, that as CP magnitude increases, as
sample size M increases, or as chain length N decreases,
estimates obtained from contact counts become sufficiently
accurate for more bead pairs than do estimates obtained from
fitted EGLD cdfs (table 1). Thus, applications requiring
sufficiently accurate estimates also for relatively large CPs may
benefit from a hybrid approach that estimates large CPs from
contact counts and small CPs from fitted EGLD cdfs. Such
a hybrid approach might represent an interesting direction for
future work.

Although the functional forms of the EGLD offer
great flexibility in representing a variety of probability
distributions, efficiently fitting such functional forms with the
method of moments is complicated by the complexity of the
resulting mathematical expressions and by the lack of global
convergence in the space of shape parameters. Following
the suggestions in [11], we addressed this challenge by
implementing a table look-up of initial solutions that are known
a priori to yield correct solutions for the shape parameters when
using the Newton–Raphson method.

On the other hand, several alternatives to the method
of moments for fitting the GLD, which is one component
of the EGLD, have been proposed [20, 22, 23, 33–36] and
ready-to-use implementations of these methods are available
[24, 37, 38]. However, such methods require entire data
sets, rather than just the moments, and appear to be more
computationally demanding than an approach based on table
look-up of a precomputed initial solution followed by a single
root-finding iteration. Moreover, the latter approach is equally
suitable to determine the shape parameters of both the GLD
and the GBD. The details of our EGLD fitting procedure and
its comparison to other methods will be provided in a separate
publication.

The present work did not include any evaluation of the
‘quality of fit’ for the EGLD in the context of inter-bead
distance distributions. Although such evaluation represents
an interesting topic for future studies, it was not essential in
addressing the main concern of the present study, which is
the efficient estimation of reasonably accurate and precise CPs
from simulated bead-chain conformations. In fact, we found
that this requirement can be met by ensuring that a good match
between the fitted EGLD cdf and the actual cdf is achieved
for inter-bead distances on the order of the contact distance dc.
Therefore, maximizing a goodness-of-fit measure based on a
standard test, such as a chi-square test or the Kolmogorov–
Smirnov test, would not necessarily guarantee the optimal
estimation of CPs from the fitted EGLD cdf. Instead, our
direct comparison of estimated CPs to reference CPs provides
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a better criterion for assessing the ability of the fitted EGLD
cdfs to yield reliable CP estimates.

Future studies could investigate alternative methods for
fitting the EGLD and assess their ability to produce CPs
with lower systematic and random errors, while minimizing
computation time and sample size. Another interesting
direction for future work could be to fit other families of
probability distributions, either generic [39] or theoretical
[14, 15], and to determine whether the CP estimates obtained
from such distributions are more reliable and easier to compute
than those obtained from fitted EGLD cdfs. Although the
method we presented is aimed at accelerating efforts to
elucidate the spatial organization of chromatin, the ability to
estimate CPs efficiently from simulations of polymer chains
may be also beneficial to research in topics as diverse as globule
formation in multiblock copolymers [40] or reaction kinetics
in macromolecules with reactive groups [41].
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