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ABSTRACT: Polyurea is an alternating copolymer with
excellent viscoelastic properties for dissipating shock and
impact loads; however, a molecular-level understanding of how
its chemistry relates to its performance remains elusive. While
molecular dynamics simulations can in theory draw connec-
tions between molecular structure and viscoelastic properties,
in practice the long relaxation times associated with polymer
dynamics make such calculations prohibitively expensive.
To address this issue, we have developed a coarse-grained (CG) model of polyurea in which each of the phenylmethane-
aminobenzoate and tetramethylene-oxide units making up the polyurea chains are treated using individual CG beads. The
parameters for the intra- and intermolecular force field of the CG model have been obtained in a rigorous manner by using the
iterative Boltzmann inversion approach. We have validated the CG model against densities, heat capacities, and chain
conformations obtained from fully atomistic MD simulations for oligomeric polyurea chains. A time-dependent dynamic
rescaling method is proposed that allows for quantitative predictions of stress relaxation beyond microsecond time scales. The
CG model introduced here opens up avenues to study the molecular structure−function relationship of polyurea and polyurea-
based materials.

1. INTRODUCTION

Polyurea is an elastomeric, alternating copolymer synthesized
from the reaction between a difunctional isocyanate and a di-
functional amine. Typically, the isocyanate is based on an aro-
matic moiety and the amine is based on a polyether, resulting
in a polyurea chain with alternating regions of long, flexible,
aliphatic segments and short, rigid, aromatic segments.1,2 Because
of differences in the chemical interactions of the two types of
segments, polyurea undergoes microphase segregation to yield
hard domains, comprised primarily of ordered aromatic seg-
ments, surrounded by a soft, viscoelastic matrix, composed of
mostly aliphatic segments. Such structured morphology seems
to endow polyurea with excellent dissipative properties, making
polyurea a useful material for shock-resistant coatings and rein-
forced composites.2 More recently, polyurea has found poten-
tial applications in protective gear of soldiers for mitigating
shocks from blasts and ballistic impacts to prevent traumatic
brain injury.3−5 This has spawned a renewed interest in poly-
urea, especially in resolving the molecular origin of its superior
dissipative properties and using this knowledge to design new,
improved shock mitigating materials.
While experiments have provided many invaluable insights

into the dynamical response of polyurea, relating the observed
response to the chemical composition, molecular architecture,
and microstructure of polyurea remains a formidable task for
experimentalists. Atomistic molecular dynamics (MD) simula-
tions provide a powerful route to developing such a molecular-
level understanding. However, to capture the viscoelastic
behavior of polyurea, the simulation domain must be larger

than the microphase-separated domains in polyurea, which
have thicknesses on the order of 10 nm in width and are longer
in length.6 Even for intermediate-length homopolymers, the
radius of gyration introduces a length scale longer than tens of
nanometers.7 At the same time, the time scale of the simulation
must exceed the longest relaxation mode in the system,
typically the rotational or diffusional relaxation time in case of
polymers. This characteristic time already exceeds tens of mi-
croseconds for short-chain polyethylene melts8 and is expected
to be much longer in the case of polyurea. Since atomistic MD
simulations are generally limited to systems sizes smaller than a
few nanometers and time scales on the order of a few nano-
seconds, computing the entire viscoelastic response of polyurea
spanning low to high frequencies becomes nearly impossible,
though the simulations can be used to probe localized, short-
time scale dynamics.
To overcome this challenge in simulating polyurea at real-

istic time and length scales, several groups9−11 have employed
coarse-grained (CG) models of polyurea chains in which
monomers or groups of contiguous monomers are represented
as single CG beads, allowing chain conformations to be de-
scribed by far fewer degrees of freedom. These models have
allowed researchers to simulate the dynamics of sufficiently
large polyurea systems for relevant time scales, yielding insights
into the morphology and dynamics of polyurea, including the
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effects of hard-to-soft segment ratio and segregation strength
on polyurea microstructure;11 the role of interconnected,
deformable hard domains, arising from its alternating chain
architecture, in shock mitigation;9 and the differences in the
mechanical properties of hard and soft domains.10 However,
the CG models of polyurea used so far are similar to the bead
spring models pioneered by Kremer and Grest12 and therefore
are not quantitatively predictive, as they have not been param-
etrized in a rigorous manner, e.g., to match the structural
and dynamical features of polyurea computed from atomistic
MD simulations, and the models have also not been validated
against experimental measurements. Thus, these CG models
can provide only qualitative and not quantitative predictions
of the dynamical behavior of polyurea. For a comparison of
systematically coarse-grained methods with other multiscale
modeling methods for polymers, the reader is referred to the
recent review article by Li et al.13

In this paper, we develop a systematic approach for coarse-
graining polyurea by using the iterative Boltzmann inversion
(IBI) approach.14−16 The approach involves simultaneous,
iterative optimization of the interaction potentials between CG
beads of the model until specific structural distributions derived
from the CG model match the corresponding distributions
computed from atomistic MD simulations. The resulting CG
model reproduces quantitatively the density, structural config-
uration, and heat capacity of a melt of oligomeric polyurea
obtained from atomistic MD simulations, but at orders of
magnitude lesser computational effort. In addition, we intro-
duce a time-dependent dynamic rescaling factor based on the
ratio of the mean squared displacements of atomistic and CG
oligomer systems that accounts for the faster dynamics of CG
models of polymers. With this scaling factor, CG simulations
quantitatively match their MD counterparts in predicting the
stress relaxation spectrum of oligomeric polyurea. The CG
model of polyurea and dynamic rescaling method developed
and tested here will be used in the future to provide rapid pre-
dictions of the viscoelastic properties of polyurea-based
composites as a function of chain architecture and composition,
facilitating materials discovery and development efforts in the
field of polyurea-based shock-dissipating materials.

2. METHODS
To develop an accurate coarse-grained (CG) model of polyurea, we
implement the iterative Boltzmann inversion (IBI) method,14−16 pre-
viously used successfully to coarse-grain a variety of other poly-
mers.14,17−20 Briefly, this approach treats the atomistic polymer chain
as a chain of CG beads, where each bead represents a group of atoms
along the polymer chain, allowing polymer chains to be described by
significantly fewer degrees of freedom. The CG beads interact with
each other, both along and across chains, through “effective” potentials
derived in a rigorous, iterative manner such that the CG bead-chain
exhibits similar configurational properties as the fully atomistic poly-
mer chain; in other words, the CG bead-chain reproduces the struc-
tural distributions of the atomistic chains obtained from molecular
dynamics (MD) simulations.
Coarse-Grained Model of Polyurea. Our model system is an

idealization of a polyurea relevant to shock mitigation that is synthe-
sized from a reaction between a diphenylmethane diisocyanate and a
poly(tetramethylene oxide) diaminobenzoate. The resulting chain is an
alternating copolymer made up of regions of hard segments composed
of the four aromatic moieties plus the urea linkage and soft segments
composed of the poly(tetramethylene oxide) chain (Figure 1a).
Because of differences in the physical properties of the hard and soft
segments, we use two distinct CG beads in representing such a chain.
One type of bead, which we term soft bead, or “S” for short, represents

each of the 14 repeating -C4H8O- units in the soft segment (Figure 1d).
A second type of bead, which we term hard bead or “H”, represents each
of the 2 symmetric halves −C6H6−NH−CO−NH-C6H6−CO− of the
hard segment (Figure 1d). The resulting CG bead-chain can therefore
be denoted by (H2S14)n, where n denotes the number of times the H2S14
block is repeated, depending on the degree of polymerization of the
polyurea chains.

Many of the recent experimental polyurea studies6,21−24 were con-
ducted with material samples based on a modified MDI polycarbo-
diimide-modified diphenylmethane diisocyanate (Isonate 143L/2143L)
and an oligomeric diamine (Versalink P1000). The multifunctional
isocyanate introduces chemical cross-linking in polyurea through a
small fraction of trifunctional polycarbodiimide adducts present in the
modified MDI mixture. The percentage of trifunctional isocyanate is
not well characterized, with reported values of isocyanate functionality
varying from 2.1 to 2.4.21,25 In this work, trifunctional groups are not
included so that all polyurea chains are purely linear without any
physical cross-links. We will address the influence of trifunctional hard
domain content in a future study.

Each CG bead type is assigned a mass equal to the sum of the
molecular weights of its atomic constituents (mH = 245 g/mol and
mS = 72 g/mol). The total potential energy of the CG bead-chain Utot
is given by three contributions:

= + +U U U Utot str bend nonb (1)

where Ustr is the energy associated with stretching the bonds between
adjacent beads along the bead-chain, Ubend is the energy associated
with bending the angles subtended by consecutive bonds, and Unonb is
the energy of nonbonded interactions between beads, on separate
chains or beads located further than two bonds apart on the same

Figure 1. Coarse grained (CG) model of polyurea: (a) chemical
structure of the repeating units of polyurea consisting of alternate hard
and soft segments, (b) figurative representation of a short polyurea
chain composed of coarse-grained beads, (c) coarse-grained mapping
of hard and soft segments of polyurea, and (d) chemical structure of
CG mapped beads; S represents the soft bead while H represents the
hard bead. The carbon atoms within each bead that are encircled by
dotted lines are the virtual sites from which interbead distances are
calculated in the generation of structural distribution functions.
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chain. Many studies include a fourth contribution arising from the
dihedral angles defined by four consecutive beads along the chain.
However, we find that such a contribution is not required, as explained
later.
The total bond stretching energy Ustr is calculated as the sum of

stretching energies of the three types of bonds present in the CG
system:
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where li is the length of the ith bond; −H H
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str , and −S S
str are the

CG potentials describing the stretching energies of the H−H, H−S,
and S−S bonds as a function of their lengths, respectively; and NH−H,
NH−S, and NS−S are the number of bonds of each type present in the
system.
Similarly, the net bending energy Ubend has contributions arising

from the three types of bond angles present in the CG model:
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where θi is the angle between the ith set of consecutive bonds;

− −H H S
bend , − −H S S

bend , and − −S S S
bend are the CG potentials describing the

energy of bending the angles subtended by H−H−S, H−S−S, and
S−S−S segments as a function of their bending angles; and NH−H−S,
NH−S−S, and NS−S−S are the number of bending angles of each type
present in the system.
Finally, the total nonbonded energy Unonb is calculated as the sum of

all nonbonded interactions in between and across the H and S beads in
the CG system:
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where rij is the distance between beads i and j; H/H
nonb , H/S

nonb, and

S/S
nonb are the CG potentials describing the nonbonded interactions

between H beads, between H and S beads, and between S beads as a
function of their separation distance, respectively; and NH and NS are
the total number of H and S beads in the CG system, respectively.
The CG force field described by eqs 1−4 requires a total of 9

effective CG potentials to fully describe the energetics and con-
formational dynamics of the CG polyurea system. Next, we describe a
procedure for deriving functional (or numerical) forms of these CG
potentials, via a combination of atomistic and CG simulations.
Atomistic MD Simulations. The purpose of these simulations is

to generate reference structural distributions of polyurea chains in the
melt state for parametrizing the effective potentials of the CG model
described above. Because simulations of full-length polymer systems
are computationally prohibitive, CG potentials are usually derived
from simulations of much shorter, oligomeric versions of the chains
carried out at the same temperature and pressure. The assumption is
that the potentials derived for shorter chains are transferable to full-
length chains. In this study, we use short atomistic chains of polyurea
containing a single repeating motif (atomistic H2S14) for generating
the structural distributions.
We measure three types of structural distributions from our

atomistic simulations. First, we collect distributions in bond lengths l,
i.e., distances between virtual points along the atomistic polymer chain
representing the centers of adjacent beads in the CG model. There are
three types of bonds in our CG system, so we obtain three sets of
bond length distributions, denoted by PH−H(l), PH−S(l), and PS−S(l) for

the H−H, H−S, and S−S bonds. These distributions are used to
parametrize the bond stretching potentials − l( )H H

str , − l( )H S
str , and

− l( )S S
str of our CG model. Second, we collect distributions in bond

angles θ, i.e., the angles between points along the atomistic chain
representing the centers of three adjacent beads in the CG model.
We thus obtain three distributions, PH−H−S(θ), PH−S−S(θ), PS−S−S(θ),
corresponding to the three types of bond angles present in our CG
chains, as defined by H−H−S, H−S−S, and S−S−S bead triplets.
These three distributions will be used to parametrize the three CG
bending potentials θ− − ( )H H S

bend , θ− − ( )H S S
bend , and θ− − ( )S S S

bend . Finally,
we gather radial distribution functions (RDFs) of distances r between
pairs of points on the atomistic chains representing nonbonded centers
of beads in the CG model. Three types of RDFs, namely, gH/H(r),
gH/S(r), and gS/S(r), are collected corresponding to distributions
in distances between nonbonded pairs of H beads, nonbonded
H and S beads, and nonbonded pairs of S beads, respectively. These
RDFs are used to parametrize the CG nonbonded potentials r( )H/H

nonb ,

r( )H/S
nonb , and r( )S/S

nonb . We also measure distributions in the dihedral
angle, as defined by four points along the atomistic chain representing
the centers of four adjacent beads in the CG bead-chain. However,
these distributions measured for the different kinds of bead qua-
druplets (e.g., H−H−S−S, H−S−S−S, etc.) are quite flat, suggesting
that a dihedral potentials might not be required in the CG force field
of polyurea chains.

To perform MD simulations of the atomistic polyurea segments, we
construct cubic simulation domains with edge lengths of 36.3 Å, each
containing 20 randomly distributed chains of atomistic H2S14 polyurea
segments. For this purpose, we use the amorphous cell component
within the Materials Studio environment.26 Simulations are carried out
using the large-scale atomic/molecular massively parallel simulator
(LAMMPS) package, developed at Sandia National Laboratories27 to
integrate atomic trajectories with a time step of 1 fs. The atomic inter-
actions are governed by the condensed-phase optimized molecular
potentials for atomistic simulations studies (COMPASS) force field, a
class II force field that is parametrized for a wide range of experimental
measurements for organic compounds;28 the functional form of class II
potentials can be found in various sources.27,29,30 Additionally, we use
the particle−particle/particle−mesh (PPPM) approach in the LAMMPS
k-space package27 to calculate long-range Coulombic interactions.

To speed up equilibration of the initial randomly generated con-
figurations, each atomistic system is equilibrated in a constant pressure−
temperature (NPT) ensemble for 8 ns at an elevated temperature (T =
500 K) and atmospheric pressure and subsequently quenched to
300 K over a time span of 8 ns. The systems are then held for an
additional 16 ns at ambient temperature and pressure (T = 300 K and
p = 1 atm) so that the total simulation time for equilibration is 32 ns.
Following equilibration, a production run of 1 ns is performed in the
canonical (NVT) ensemble at T = 300 K for sampling pair, bond, and
bond-angle structural distributions. To reduce the influence of the
initial randomly generated state of each system the pair, bond, and
bond-angle structural distributions are averaged from MD trajectories
obtained from 15 different starting configurations. The average density
over all runs is 1.068 g/cm3, close to the experimentally measured
density of polyurea. For calculating structural distributions, we use the
carbon atom near the center of the backbone atoms of the relevant
segments (H or S) as the CG bead center.

For the IBI method to generate accurate CG potentials, proper
equilibration of the atomistic systems is critically important. Parts a−c
of Figures 2 show the evolution of the radial distribution functions
gH/H(r), gH/S(r), and gS/S(r) for the three bead pairs at various equili-
bration times. In particular, gH/H(r) and gH/S(r) undergo significant
changes before approaching a stationary state at 32 ns of equilibration.
The convergence of gH/H(r) is more clearly shown by examining the
time evolution of its peak value (Figure 2d). As smaller peak values in
the radial distribution functions will lead to weaker attractive energies
in the effective CG models, sampling an insufficiently equilibrated
all-atom system will lead to under-represented attractive forces
between CG beads.
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Iterative Boltzmann Inversion. We use the distributions
PH−H(l), PH−S(l), and PS−S(l) measured from atomistic simulations
to derive the CG bond-stretching potentials − l( )H H

str , − l( )H S
str , and

− l( )S S
str via Boltzmann inversion:

= − ≡ − − −l k T P l l x( ) ln[ ( )/ ], H H, H S, S Sx x
str

B
2 (5)

where kB is the Boltzmann constant and the l2 term accounts for the
degeneracy in the position of a bead located at a fixed distance l from
another bead.31 The potentials derived in this manner typically have a
quadratic shape about their minimum, implying a harmonic underlying
potential. Therefore, one can simply model the bond-stretching poten-
tial as a harmonic spring:

≈ − ≡ − − −l
k

l l x( )
2

( ) , H H, H S, S Sx
x

x
str 2

(6)

where the effective bond stiffnesses kH−H, kH−S, and kS−S and
equilibrium bond lengths lH−H, lH−S, and lS−S for the three types of
bonds can be obtained fitting the potentials derived via eq 5 to the
harmonic functions described in eq 6.
Similarly, one can directly derive the CG angle-bending potentials

θ− − ( )H H S
bend , θ− − ( )H S S

bend , and θ− − ( )S S S
bend via Boltzmann inversion of

the bending angle distributions PH−H−S(θ), and PS−S−S(θ) measured
from atomistic simulations:

θ θ θ= −

≡ − − − − − −

k T P

x

( ) ln[ ( )/sin ],

H H S, H S S, S S S
x x
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B

(7)

where the sin θ term accounts for the degeneracy in the position of a
bead subtending an angle θ with a bond. As in the case of bond
lengths, the bending potential in eq 7 can be approximated as a har-
monic angular spring:

θ θ θ≈ − ≡ − − − − − −
k

x( )
2

( ) , H H S, H S S, S S Sx
x

x
bend 2

(8)

where the effective bending angle stiffnesses kH−H−S, kH−S−S, and kS−S−S
and equilibrium bending angles θH−H−S, θH−S−S, and θS−S−S for the
three types of bending angles can be obtained fitting the potentials
derived via eq 7 to the functions described in eq 8.

The bond stretching and bending potentials derived from such
direct Boltzmann inversion of bond length and angle distributions are
usually good approximations of the true underlying potentials. The
reason is that each distribution has a stiff, localized dependence on its
corresponding order parameter (bond length or angle) and is therefore
uncorrelated with other distributions. However, this is not true for
nonbonded RDFs, which arise from softer potentials and include
significant contributions from beads other than the pair of beads used
in the RDF calculation (multibody effects), especially in condensed
phases like polymer melts. Hence, direct Boltzmann inversion of the
RDFs will not generally yield the correct nonbonded pair potentials.

To derive the true CG nonbonded pair potentials, we perform MD
simulations of CG H2S14 bead-chains at the same relevant densities
and temperatures as the corresponding atomistic simulations. For the
CG force field, we use initial guesses of the three CG nonbonded
potentials obtained via Boltzmann inversion:

= − ≡r k T g r x( ) ln ( ), H/H, H/S, S/Sx x,0
nonb

B (9)

along with the set of six bond-stretching and bending potentials
obtained via eqs 5−8. These CG MD simulations yield RDFs gx,0(r)
that may differ from the target RDFs gx(r) obtained from atomistic
simulations, where x ≡ H/H, H/S, or S/S. On the basis of differences
between the two sets of RDFs, the CG nonbonded potentials

r( )x ,0
nonb can be iteratively improved by the following correction:
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x
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where i stands for the iteration number and α < 1 is a scaling factor
that helps improve the convergence and stability of the IBI process.

Figure 2. Evolution of radial distribution functions (a) gH/H(r), (b) gH/S(r), and (c) gS/S(r), with equilibration time, and (d) convergence of the
gH/H(r) peak.
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In general, the value of α is problem specific, however for the polyurea
model, we find that a value of α = 0.05 is sufficient for robust opti-
mization of the potentials. This iterative procedure is continued until
all nonbonded potentials converge to their limiting profiles, as denoted
by r( )H/H

nonb , r( )H/S
nonb , and r( )S/S

nonb . At this point, the CG simu-
lations should yield the same RDFs as the targets gH/H(r), gH/S(r), and
gS/S(r) obtained from the atomistic MD simulations. Even after
matching the target RDFs, the pressures computed from the CG simu-
lations might not match the target pressure. To resolve this potential
issue, we modify the pressure by adding a linear term to the CG non-
bonded pair potential after each iteration until we get the correct
pressure:15,32−34

Δ = −
⎛
⎝⎜

⎞
⎠⎟r Ak T

r
r

( ) 1pc B
cut (11)

where the value of A depends on the deviation from the target
pressure.
Figure 3 summarizes our implementation of the IBI method. We

begin by placing 150 H2S14 CG bead-chains in random, nonoverlapped

configurations within a cubic simulation box of size commensurate
with the target density. The initial bond lengths and angles of the
chains are set equal to their respective equilibrium values obtained
from eqs 6 and 8. Each IBI iteration step starts with a 0.8 ns equili-
bration step at 300 K. For the force field, we utilize the CG bond-
stretching and bending potentials derived from atomistic simulations,
eqs 6 and 8, along with the CG nonbonded potentials obtained from
the previous iteration step, except for the first step where we use the
direct Boltzmann inversion of the atomistic RDFs as an initial guess for
the nonbonded potentials. The equilibration step is followed by a cycle
of pressure-correction steps. During this cycle, the CG system is held
at T = 300 K in an NVT ensemble to compute a ensemble- and time-
averaged pressure. This pressure is compared against the target
pressure (p = 1 atm) so as to adjust the CG nonbonded potential
according to eq 11. The pressure correction cycle is repeated until the
computed CG pressure matches the target pressure, which is quite
rapid and typically converges within 3−5 iterations. At this point,
longer CG MD simulations (1.6 ns) are performed in the NVT
ensemble at T = 300 K, using the pressure-corrected nonbonded
potentials to compute the RDFs. These CG RDFs are compared
against the atomistic RDFs to propose more accurate estimates of CG
nonbonded potentials via eq 10. We iterate the IBI steps discussed

above, inclusive of the pressure correction cycle, until the CG RDFs
converge to the atomistic RDFs. As with the atomistic simulations,
all CG MD simulation steps are performed using the LAMMPS
software.35

Model Validation. The utility of a CG model is measured by its
ability to correctly predict structural and thermodynamic properties of
the atomistic system that did not feature in the CG force field param-
etrization. We validate our CG model by comparing several of its
properties, including the density, heat capacity, and stress relaxation
spectrum against those computed from atomistic simulations. In
particular, we use four different monodisperse, short-chain systems in
which the length of the polyurea chains varies from one to eight
blocks−H2S14, (H2S14)3, (H2S14)5, and (H2S14)8. We also examine how
well the CG model can predict properties of polyurea melts containing
much longer chains, (H2S14)20.

Heat Capacity. The specific heat capacity Cv plays an important
role in energy storage and dissipation. We compute the specific heat Cv
of our polyurea systems from the fluctuation in the total energy of the
system in the NVT ensemble:36

δ= ∂⟨ ⟩
∂

= ⟨ ⟩
C

E
T

E
k TV

V

2

B
2

(12)

where ⟨E⟩ and ⟨δE2⟩ are the mean value and variance of the total en-
ergy, respectively. Following Zhou et al.37 we decompose the specific
heat in terms of the kinetic and potential energy contributions as

= ∂⟨ ⟩
∂

+ ∂⟨ ⟩
∂
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U
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V V (13)

From the equipartition theorem, ⟨K⟩ = (3/2)NkBT, and therefore

∂⟨ ⟩
∂

=K
T

Nk
3
2 B (14)

where N represents the number of atoms or CG beads in the system.
This term represents the ideal heat capacity of the system. The
remainder of the heat capacity, due to the interaction between
particles, can be formulated assuming that the potential energy follows
the Boltzmann distribution:

δ δ δ∂⟨ ⟩
∂

= ⟨ ⟩ + ⟨ ⟩U
T

U
k T

U K
k TV

2

B
2

B
2

(15)

where ⟨δUδK⟩ is the ensemble-averaged cross-correlation of the
variances of potential energy and kinetic energy.

Diffusion Coefficient. The self-diffusion coefficient Ds characterizes
the mobility of the polymer chains within the melt. We compute Ds of
the center of mass of polyurea chains, both CG and atomistic, from the
slope of the mean square displacement:31

= ⟨| − | ⟩
→∞

D
t

tr rlim
1
6

( ) (0)
t

s
2

(16)

where t denotes time, r(t) is the position of the center of mass of the
polymer chain i at time t, and ⟨···⟩ denotes ensemble average of the
quantity within the angular brackets over all chains in the simulation
and reference positions r(0).

Stress Relaxation. The stress relaxation spectrum G(t) is perhaps
the most important quantity relevant to energy dissipation. We com-
pute G(t) from the stress autocorrelation function:9

σ σ= ⟨ ⟩G t
V

k T
t( ) ( ) (0)xy xy

B (17)

Here σxy is the instantaneous shear stress computed from the virial
theorem
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j i

N

ijx ijy
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where V is the volume of the simulation box; mi, vix, and viy are the
mass and x- and y-component velocities of bead i and j, respectively;

Figure 3. IBI implementation procedure.
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and rijx and Fijy are the x-component separation distance and y-
component force acting between beads i and j, respectively. Since the
stresses σxy, σxz, and σyz are equivalent for an isotropic system, we use
the average of the autocorrelations functions obtained from the three
stresses to obtain smoother estimates of G(t).
Simulation Details. The above properties are computed for both

the atomistic and CG systems using equilibrium MD simulations. For
the atomistic simulations, the number of chains in each system are
varied to keep the net number of H2S14 blocks fixed at 40, so that each
system contains about 10,000 atoms. The simulations are performed
with a time step of 1 fs. The fully atomistic systems are constructed in
a random, nonoverlapping configurations and annealed for 8 ns in the
NPT ensemble at T = 500 K and p = 1 atm, followed by a decrease in
temperature to 300 K for 8 ns, and equilibrated at 300 K for 16 ns.
Thereafter, the equilibrated systems are simulated in the NVT ensem-
ble at 300 K for 100 ns. The MD simulations of the corresponding
CG chains are equilibrated in the NPT ensemble at 300 K for 250 ns
because of the limited temperature transferability of CG potentials,
however this simpler equilibration is sufficient due to their faster
dynamics. The number of polyurea blocks is also increased to 500 for
the CG systems and the integration time step is increased to 25 fs. For
each simulation, the densities, heat capacities, and stress relaxation
profiles are computed from the atomic/CG bead positions and
velocities to test how well the CG model reproduced these properties
in comparison to the corresponding fully atomistic MD simulations.

3. RESULTS
Model Parameterization. As discussed in the previous

section, nine different structural distributions are computed
from atomistic MD simulations of short-chain polyurea systems
(H2S14) in the melt state at atmospheric conditions. Figure 4
presents the bond length distributions PH−H(l), PH−S(l),
and PS−S(l) computed from these simulations. All three

distributions exhibit a typical Gaussian shape, suggesting that
the underlying bond-stretching potentials can indeed be
modeled as harmonic springs. Figure 5 shows the Boltzmann-
inverted estimates of the underlying bond-stretching potential

− l( )H H
str , − l( )H S

str , and − l( )S S
str obtained via eq 5. Also shown

in the same plots are the excellent fits to these potentials using
the harmonic equation presented in eq 6, with the exception of
the S−S bond length distribution that has a minor second peak
due to two torsional conformations. While the harmonic bond
approximation does not allow the CG model to reproduce this
double-peaked bond length distribution, it has a negligible effect
on the structural and thermodynamic properties of the CG
system. The resulting fits yield the effective bond stiffnesses and
equilibrium bond lengths tabulated in Table 1. These values

indicate that the S−S bonds are the shortest while the H−S
bonds are the stiffest, while the H−H bonds are the longest and
softest, clearly due to the smaller size of the S segments.

Figure 4. Bond length distributions (a) PH−H(l), (b) PH−S(l), and (c) PS−S(l) obtained from atomistic MD simulations and from CG MD simulation
after IBI convergence. The dashed line shows a weighted Gaussian fit to the bond distributions obtained from atomistic MD simulations.

Figure 5. Bond-stretching potentials (a) − l( )H H
str , (b) − l( )H S

str , and (c) − l( )S S
str obtained from Boltzmann inversion of bond length distributions

and from harmonic approximation based on fitted parameters summarized in Table 1.

Table 1. Summary of Bond and Angle Parameters for CG
Model of Polyurea

bond type bond length (Å) stiffness (kcal/mol/Å2)

H−H 11.17 1.05
H−S 9.26 5.82
S−S 4.98 3.03

angle type angle (deg) stiffness (kcal/mol/rad2)

H−H−S 128.4 1.60
H−S−S 134.5 0.76
S−S−S 169.5 0.64
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Figure 6 shows the bending angle distributions PH−H−S(θ),
PH−S−S(θ), and PS−S−S(θ) measured from atomistic simulations.
Boltzmann-inverting the distributions via eq 8 yields the effec-

tive bending potentials θ− − ( )bend
H H S , θ− − ( )bend

H S S , and θ− − ( )bend
S S S ,

which are plotted in Figure 7. The potentials exhibit a harmonic
shape, though somewhat less harmonic than the bond stretching
potentials. Nonetheless, fitting the potentials to the harmonic
function in eq 8 yields the parameters tabulated in Table 1.
Figure 8 shows the RDFs gH/H(r), gH/S(r), and gS/S(r) corre-

sponding to the three types of nonbonded pairwise interac-
tions, as computed from the atomistic MD simulations. All three
RDFs exhibit a discernible peak at short separation distances.

As expected, gH/H(r) displays the highest peak, indicating strong
aggregation of hard segments into hard domains due to π-stacking
of the aromatic rings and hydrogen bonding between the urea
linkages; in contrast, gS/S(r) and gH/S(r) display much smaller
peaks, suggesting weaker interactions between soft segments and
between soft and hard segments, respectively. We also observe
some modulations in the RDFs beyond these first peaks, implying
higher-order caging effects. However, these modulations decay
quickly, and by r ≥ 22 Å for gH/H(r) and r ≥ 16 Å for both
gH/S(r) and gS/S(r), plateau to their nominal bulk value of 1.

To derive the CG nonbonded potentials r( )H/H
nonb , r( )H/S

nonb ,

and r( )S/S
nonb , we use the above RDFs to obtain initial guesses

Figure 6. Bending angle distributions (a) PH−H−S(θ), (b) PH−S−S(θ), and (c) PS−S−S(θ) obtained from all-atom MD simulations and from CG MD
simulations after IBI convergence. The dashed line shows a weighted Gaussian fit to the all-atom angle distributions via eqs 7 and 8.

Figure 7. Bending angle potentials (a) θ− − ( )H H S
bend , (b) θ− − ( )H S S

bend , and (c) θ− − ( )S S S
bend obtained from Boltzmann inversion of bending angle

distributions and from harmonic approximation based on the fitted parameters summarized in Table 1. The Boltzmann inverted potential is shifted
by an arbitrary constant so that its minimum value is zero energy. Note that this shift plays no role in determining the structure and dynamics of the
CG system.

Figure 8. Radial distribution functions (a) gH/H(r), (b) gH/S(r), and (c) gS/S(r) obtained from all-atom MD simulations, CG MD simulations after IBI
convergence and CG MD simulations during the first IBI iteration, i.e., based on the initial guess potential obtained from Boltzmann inversion the
all-atom MD RDFs.
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of the nonbonded potentials via eq 10. We then use these
guesses along with the bond-stretching and bending potentials
derived earlier to initiate the IBI procedure. In Figure 8 we
compare the RDFs computed from CG MD simulations gH/H,i,
gH/S,i, and gS/S,i after the first IBI iteration (i = 1), and after
convergence against the target RDFs obtained from atomistic
simulations. It can be observed that the IBI procedure imple-
mented here leads to converged RDFs for all three types of
nonbonded interactions within 80 iterations. We also note that
among the three RDFs, those corresponding to S/S interactions
converge the fastest (within 10 iterations) while those corre-
sponding to H/H interactions converge the slowest because
of the phase segregation between hard and soft segments of
polyurea.

The final, converged CG nonbonded potentials r( )H/H
nonb ,

r( )H/S
nonb , and r( )S/S

nonb are plotted in Figure 9. We observe that

r( )H/H
nonb exhibits a much deeper energy minimum (∼1kBT)

than the other two nonbonded potentials (≪1kBT). Clearly, it
is this difference in the interactions of hard and soft segments
that is responsible for the microphase separation observed in
polyurea systems. We have also plotted in the same figure the
initial guesses for the nonbonded potentials, as obtained from
Boltzmann inversion. The converged nonbonded potentials are
clearly very different from the initial guesses, which emphasizes
the importance of the IBI procedure in deriving correct non-
bonded interaction potentials. These differences also aptly
illustrate the distinction between a pairwise potential energy, as

captured by the converged potentials r( )x
nonb , and a potential

of mean force (or free energy), as captured by the initial

guesses r( )x ,0
nonb .

Our current IBI procedure of simultaneously optimizing the

CG nonbonded potentials r( )H/H
nonb , r( )H/S

nonb , and r( )S/S
nonb

seems to work efficiently and robustly. We also attempted a
slightly different scheme for deriving the CG nonbonded
potentials involving sequential optimization of the potentials.

In this sequential scheme, we first derived r( )S/S
nonb by imple-

menting IBI on S14 chains, using the bonded potentials − r( )S S
str

and − − r( )S S S
bend derived earlier. Next, we derived r( )H/H

nonb by
implementing IBI on H2 dimers, using the bonded potential

− r( )H H
str derived earlier. Finally, r( )H/S

nonb was derived by
implementing IBI on H2S14 chains using the two nonbonded
CG potentials and six bonded CG potentials derived earlier.
We find that while this scheme yields similar estimates of

r( )S/S
nonb as those obtained from simultaneous IBI optimiza-

tion, the IBI step for deriving r( )H/H
nonb , and r( )H/S

nonb was
generally unstable and failed to converge because sequential
optimization is poorly suited for CG models of polymers that
have a large contrast in affinities between the different bead
types, as is the case with our CG model of polyurea. Thus, we
suggest that simultaneous IBI optimization, as opposed to
sequential optimization, is perhaps the most efficient strategy
for deriving CG nonbonded potentials of heterogeneous
systems composed of more than one type of bead.

Model Validation. To validate the CG model of polyurea
developed above, we have computed several thermophysical
and structural properties of short-chain polyurea systems using
the CG model and compared the properties against those
computed from fully atomistic models. As mentioned earlier,
we carry out this comparison for four different systems, each
containing polyurea chains of different lengths: (H2S14)n, where
n = 1,3,5 and 8. Because of the computational expense in
generating equilibrium configurations with all-atom models,
only the 1-block polyurea end-to-end distribution, morphology,
stress relaxation spectra, and dynamic scaling factor are com-
puted as verification of the CG model.
We begin by comparing the average densities ρ and constant-

volume heat capacities Cv computed from the CG and atomistic
models for the four different polyurea systems, which are plot-
ted in Figure 10 as a function of chain length. Each atomistic

model was simulated with a single system due to the large
computational expense to equilibrate all-atom systems. For the
CG models, five different replica systems were simulated
and the results averaged to produce the predicted density and
heat capacity values. The standard deviation of the density

Figure 9. Nonbonded potentials (a) r( )H/H
nonb , (b) r( )H/S

nonb , and (c) r( )S/S
nonb . obtained from convergence of the IBI method compared against

those used in the first IBI iteration (i.e., obtained from Boltzmann inversion of the all-atom RDFs).

Figure 10. Comparison of (a) density and (b) heat capacity between
all-atom MD simulations and CG simulations for oligomeric polyurea of
varying chain lengths. Experimental values are denoted with asterisks.
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predictions was less than 0.1%, while for the heat capacity, the
standard deviation was less than 1%.
We observe an increase in density with increasing chain

length for both the CG and atomistic systems, although the CG
models exhibit a larger increase, particularly at the transition
from one to two block chains. The largest difference in the
predicted density is seen for the 8 block system, where the
disparity is 4.4%. The density of polyurea reported by Amini
et al.38 is 1.1 g/cm3 for a molecular weight consistent with a 20
block chain is plotted with an asterisk as a reference.
Comparison of the computed heat capacity between atom-

istic and CG models via eqs 14 and 15 is less straightforward as
the thermodynamic temperature of the system explicitly
depends on the number of degrees of freedom in the system.
As the CG models contain significantly fewer degrees of free-
dom per unit volume, their computed heat capacities are pro-
portionally lower. A single block (H2S14) of polyurea contains
246 atoms or 16 CG beads with the previously described
mapping, leading to a scaling factor of Ck = 15.375 for the ideal
heat capacity of the system. For the nonideal components, we
compare the ratio of the fluctuation terms ⟨δU2⟩ and ⟨δUδK⟩
between the CG and all-atom MD simulations of single block
systems to empirically determine scaling factors of Cu = 9.30,
and Cuk = 26.67, respectively, with the assumption that the
partitioning of energy between the coarse-scale energy
fluctuations observed in the CG system and the averaged-out
fine scale fluctuations is invariant to molecular weight. Figure
10b shows the predicted heat capacities from atomistic and CG
simulations with these scaling factors applied via eq 19 for the
CG values:

δ δ δ
= +

⟨ ⟩
+

⟨ ⟩
C C N k

C U
k T

C U K
k T

3
2V k CG

u CG uk CG CG
B

2

B
2

B
2

(19)

where NCG represents the number of CG beads in the system,
⟨δUCG

2⟩ is the variance of CG potential energy, and ⟨δUCGδKCG⟩
is the ensemble averaged arises from the cross correlation of CG
potential energy and CG kinetic energy. The sensitivity of the
chain length to the heat capacity is somewhat exaggerated in the
CG model, however comparison to an experimentally measured
value for polyurea of 1.977 J K−1 cm−3 is quite reasonable.22

Next, we compare the global structure of the polyurea sys-
tems computed using CG and atomistic models, in terms of
chain conformations and overall morphology of the system. No
attempt is made to compare the local structure from the CG and
atomistic models because the IBI parametrization automatically
leads to preservation of the local structure of the atomistic
system, as noted by the excellent match between the CG and
atomistic RDFs (Figure 8). We characterize chain conformations
in terms of the distribution of chain end-to-end distances
P(dee), where the end-to-end distance dee ≡ |rN(t) − r1(t)|. We
also qualitatively characterize the overall morphology in terms
of the size and shape of microphase-separated domains.
To characterize the effect of the chain length on end-to-end

distances in polyurea, five different CG systems of increasing
chain length are simulated, with the results shown in Figure 11a.
Because of the computational expense in generating equilib-
rium configurations with all-atom models, only 1-block poly-
urea end-to-end distribution is computed as verification of the
CG model, which is shown in Figure 11b. Because of the slow
diffusion in the atomistic system, the end-to-end distributions
deviate very slowly from their initial state, and therefore
sufficient sampling is challenging even for this short chain

system. Table 2 summarizes the calculated expected value ⟨dee⟩
for different CG systems and the single-block fully atomistic
system showing reasonable agreement between the CG and all-
atom systems for the 1-block polyurea chains. The dependence
of the average end-to-end distance with chain length follows a
power law with an exponent of 0.577 consistent with the theo-
retical scaling of 0.588 obtained for three-dimensional random
walk chains in good solvent.39

To characterize the phase morphology of polyurea, we simu-
late (H2S14)1 and (H2S14)20 CG polyurea systems containing
128 000 beads in a cubic simulation box that has an edge length
of 26.5 nm. As a comparison, we also simulate a fully atomistic
system containing 160 1-block chains, equivalent to 2,560 CG
beads, in a 7.2 nm cubic simulation box. Figure 12a shows the
initially random configuration of the single block CG system.
After 200 ns of simulation time, the resulting microstructures
for the (H2S14)1 and (H2S14)20 systems can be seen in Figure 12,
parts b and c. The initial and final states of the atomistic system
are shown in Figure 12, parts d and e. The atomistic system is
equilibrated for only 32 ns, but at elevated temperatures as
previously described. To more quantitatively compare the
morphology of the CG and all-atom systems, and to investigate
the effect of the number of blocks, we computed the number
and sizes of segregated hard domains for single block and
20 block CG systems. Clusters are identified by grouping all
neighboring hard beads with a neighbor threshold distance of
7.5 Å. A clear difference between the morphology of the
(H2S14)1 and (H2S14)20 systems can be observed as the single
block polyurea chains tend to aggregate into a fewer number of
larger clusters as observed by Arman et al.9 These results are
plotted in Figure 13 for the CG systems. Since the fully
atomistic simulation box contains only 2% of the volume of the
CG simulation box, quantitative analysis of the number and size
of the segregated hard domains is not meaningful, although
qualitatively, the clustering of hard domain segments is similar to
the CG models. Moreover, fully atomistic simulations of phase
segregation in polyurea for quantitative predictions would
require prohibitive computational effort.

Figure 11. (a) Predicted distributions of chain end-to-end distances
P(dee) from CG MD simulations with increasing chain lengths, and
(b) Comparison of P(dee) for 1-block systems obtained from all-atom
MD and CG MD simulations.

Table 2. Summary of Expected Value ⟨dee⟩ for Different CG
and All-Atom MD Systems

no. of blocks all-atom (nm) CG (nm)

1 3.13 3.79
3 − 6.99
5 − 9.28
8 − 11.19
20 − 22.17
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Finally, we compare the stress relaxation function G(t) from
a one block system computed from both the CG and atomistic
models. Since the stress relaxation function computed directly
from the autocorrelation of the virial stress via eq 17 is highly
noisy, we take running averages of the raw G(t) between 0.9t
and 1.1t, consistent with previous studies.40 Furthermore, the
time axis of the CG stress relaxation function must be rescaled
to account for the faster dynamics of the CG system due to its
smoothed energy landscape and reduced frictional forces acting
between molecules. While several authors have suggested
the use of a constant scaling factor related to the ratio of self-
diffusivities,41,42 we find that this is insufficient to match the
profile of the stress relaxation function between the CG and all-
atom models. Instead we observe that the ratio in the mean
square displacement between the two systems is not constant,
starting at a value near unity and increasing until reaching an
asymptotic value after 100 ns. This trend suggests that at ex-
tremely short time spans, the diffusion of the system is limited
only by the available thermal energy and momenta of the
atoms, and not until longer time scales is motion limited by
frictional forces. Figure 14a shows the ratio of mean square
displacements from the CG and all-atom MD systems fitted to
a time-dependent dynamic rescaling function f t(t), defined as.

= + − τ−f t a( ) 1 (1 e )t
t/

(20)

where the constants a = 8,731 and τ = 23.8 ns reflect the long
time scale scaling constant and transition time, respectively.
Thus, the relaxation spectrum for the CG model is rescaled as

= ×G t G t f t( ) ( ( ))CG CG t CG (21)

Figure 14b compares the rescaled CG relaxation spectrum
for (H2S14)1 with all-atom MD simulation. At very short time
scales, (t ≤ 10 ps), the stress relaxation function of the all-atom
system decays much faster than that of the CG system because
some of the atomic-scale relaxation mechanisms, such as
damped oscillations of collective bond and bending angle vibra-
tions, are not represented in the CG model. At intermediate
time scales (10 ps ≤ t ≤ 1 ns) the agreement between the
two models is excellent. Beyond 1 ns sufficient sampling of the
all-atom MD model becomes increasing computationally
expensive and the autocorrelation of the stress decays rapidly
with insufficient sampling. However, the efficiency of the CG
model allows for sufficient sampling well past 1000 ns, far
beyond the practical range of all-atom MD simulations.

4. DISCUSSION
We have developed a CG model of polyurea, composed of a
series of “soft” and “hard” CG beads that represent the flexible
aliphatic and more rigid aromatic moieties connected by urea
linkages, respectively. The interaction potential for the CG
beads is calibrated with the iterative Boltzmann inversion
method to match structural distributions obtained from atom-
istic MD simulations of oligomeric polyurea systems. Addi-
tional structural and physical properties, such as end-to-end
distributions, density, and heat capacity are compared between
the CG and atomistic models to verify that the CG model is
representative of the atomistic MD model. The CG model
allows prediction of stress relaxation in oligomeric systems at
microsecond time scales due to the increased efficiency and
faster dynamics of the CG system. By rescaling time in the CG
simulation by the ratio of mean square displacements in all-
atom and CG MD simulations, quantitative agreement with the
relaxation spectrum predicted from atomic MD simulations is
achieved. Provided that this time rescaling function is insen-
sitive to the length of the polymer chain, this approach may
allow for quantitative predictions of stress relaxation in
polymers with realistic molecular weights.
For atomistic MD simulations of polyurea, it is evident that

even short oligomeric chains require a significant amount of
computational time to reach a well-equilibrated configuration.
For instance, systems composed of a single hard segment con-
nected to a chain of 14 tetramethylene oxide monomers require
at least 32 ns of equilibration time at elevated temperatures to

Figure 13. Size distribution of hard domains in terms of the fraction of
H beads within each hard domain for H2S14 and (H2S14)20.

Figure 14. (a) Dynamic scaling factor f t for (H2S14)1 system. The
dashed line shows the exponential fit of f t. (b) Comparison of all-atom
MD and scaled CG stress relaxation spectra G(t)/G(0) for (H2S14)1.

Figure 12. Morphologies of CG and all-atom polyurea systems before
and at the end of the simulation runs: (a) initial and (b) final
morphology of 1-block CG chains; (c) final morphology of 20-block
CG chains; and (d) initial and (e) final morphology of 1-block all-
atom chains. Red points represent the hard segments while green
points represent the soft segments.
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reach a steady state distribution. The most significant change
observed during the equilibration of such oligomeric polyurea
systems is the increase in the height of the peak in the H/H
pair radial distribution function. Since this height corresponds
to the depth of the energy well describing mutual attraction
between hard beads, calibration of a poorly equilibrated system
with the IBI method will result in under-prediction of hard
segment attraction and produce a system less likely to phase-
segregate and ultimately not representative of polyurea. CG
simulations conducted to compare the phase segregation of
systems containing short oligomeric polyurea chains with sys-
tems containing longer chains produced similar results com-
pared to the bead−spring model developed by Arman et al.,9

where short oligomers produced larger clustered hard domains
than did longer multiblock chains.
However, even with CG models, the simulation box sizes

employed in this study are still far too small to reproduce the
experimentally observed morphological features of polyurea,
which can be as large as 100 nm in size.6 To address this chal-
lenge, a higher degree of coarse-graining would be required,
though CG models that amalgamate greater numbers of atoms
within a single bead will have less accurate dynamics due their
smoother energy landscapes, which results in reduced inter-
molecular friction. Furthermore, as the number of CG degrees
of freedom decrease, the distance between bonded CG beads
increases, allowing for unphysical crossings of polymer chains,
making simulations inaccurate for prediction of dynamical and
mechanical properties. Therefore, optimal CG models are likely
to be specialized for each application. For predictions of mor-
phology at realistic length scales, inaccurate dynamics of highly
coarse-grained models are irrelevant, or perhaps even an advantage
as the system can find the equilibrium state more rapidly. Con-
versely, for computing rheological properties, CG models would
require higher detail in their mappings.
With copolymers that exhibit significant phase segregation,

optimization of all pair potentials simultaneously with iterative
Boltzmann inversion appears to be more robust than indi-
vidually optimizing each pair potential sequentially, due to the
interdependencies between pair interactions. For example, in
our polyurea CG model, the H/H and H/S interactions are
correlated, as strong aggregation of the H beads automatically
leads to some aggregation between the S and H beads, due to
chain connectivity. Therefore, modifying the H/H potential
alters both the H/H and H/S radial distribution functions. To
improve the stability of the IBI method, corrections to the pair
potentials are scaled by an additional parameter, α, to reduce
oscillations, mitigate strongly coupled interactions, and improve
convergence to the target pair distributions. The optimal
scaling parameter depends strongly on the underlying atomistic
chemistry and CG mapping. In this work, we selected an initial
value of unity and iteratively halved its value until the number
of iterations required for convergence was minimized; we used
the same scaling parameter for all pair combinations. A scaling
factor of 0.05 is nearly optimal for our CG mapping of polyurea
and excellent convergence of the target radial distribution func-
tions is achieved within 100 iterations. While efforts to deter-
mine effective CG potentials for a phase segregating polymer
blends of polyisoprene (PI) and polystyrene (PS) have been
previously reported,43,44 the degree of independence between
the PS/PS, PS/PI, and PI/PI pair potentials was far less than
that observed here for polyurea. For instance, the peak in the
radial distribution function of the polyurea CG H/H beads is

four times higher than the reported peak in the PI/PI or PS/PS
radial distribution functions.
Lastly, the computational efficiency gained from CG models

is substantial, allowing MD simulations to probe the dynamics
of polymers at time scales relevant to shock propagation. Fully
atomistic NVT simulations of polyurea containing 10k atoms,
executed in parallel on 64 CPU cores (Intel Xeon E5−2670
processors) progressed at a rate of 21.9 ns per day, while equiv-
alent CG simulations progressed at 17.9 μs per day on 32 cores,
i.e., a speedup of 3 orders of magnitude. With the additional
speed up in dynamics of the CG system, the CG model can
probe relaxation phenomena in polyurea with an overall effec-
tive speedup of 6−7 orders of magnitude compared to the
atomistic MD models.
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