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ABSTRACT

The 3D higher order organization of chromatin
within the nucleus of eukaryotic cells has so far
remained elusive. A wealth of relevant information,
however, is increasingly becoming available from
chromosome conformation capture (3C) and
related experimental techniques, which measure
the probabilities of contact between large numbers
of genomic sites in fixed cells. Such contact
probabilities (CPs) can in principle be used to
deduce the 3D spatial organization of chromatin.
Here, we propose a computational method to
recover an ensemble of chromatin conformations
consistent with a set of given CPs. Compared with
existing alternatives, this method does not require
conversion of CPs to mean spatial distances.
Instead, we estimate CPs by simulating a physically
realistic, bead-chain polymer model of the 30-nm
chromatin fiber. We then use an approach from
adaptive filter theory to iteratively adjust the param-
eters of this polymer model until the estimated CPs
match the given CPs. We have validated this method
against reference data sets obtained from simula-
tions of test systems with up to 45 beads and
4 loops. With additional testing against experiments
and with further algorithmic refinements, our
approach could become a valuable tool for re-
searchers examining the higher order organization
of chromatin.

INTRODUCTION

Eukaryotic cells need to accommodate their long genomic
DNA within a relatively small nucleus. This remarkable
feat is accomplished through several levels of 3D spatial
organization (1). The first level consists of wrapping the
DNA duplex around octamers of histone proteins to form
nucleosomes. The resulting string of nucleosomes is then

folded into a thicker fiber known as chromatin.
Subsequent levels of folding ultimately lead to the terri-
torial arrangement of chromosomes within the nucleus.
These additional levels of folding, referred to as higher
order organization of chromatin, are not only essential
for efficient DNA packaging but are also believed to
play a role in several other biological processes. For
example, the formation of chromatin loops facilitates
interactions between distant portions of DNA and these
interactions are essential for regulating transcription and
recombination (2–5). Also, the transcriptional activity of
genes tends to be inversely correlated with the spatial
density of chromatin fibers (6–9). Furthermore, growing
evidence suggests that spatially proximal regions of the
genome are more likely to be functionally correlated,
leading to the concepts of ‘factories’, ‘globules’ and
‘territories’ (10–14). Unfortunately, owing to the limita-
tions of current experimental methods in visualizing chro-
matin in vivo, the 3D higher order organization of
chromatin is not well understood. In particular, state-of-
the-art microscopy approaches, such as fluorescence in situ
hybridization (FISH) (15) and super-resolution fluores-
cence microscopy (16), do not simultaneously provide
the spatial resolutions and the measurement throughput
necessary to discern and locate individual chromatin fibers
within the nucleus.
During the past decade, however, increasingly higher

resolution and throughput have been achieved by a
number of sophisticated experimental techniques—
including 4C (17,18), 5C (19), GCC (20) and Hi-C
(21)—that are based on the original method of chromo-
some conformation capture (3C) (22). These techniques do
not directly capture the 3D spatial organization of chro-
matin. Instead, they measure the frequency of interactions
between different fragments of genomic DNA in fixed cells
(23). To detect such interactions, spatially proximal
segments of DNA are covalently cross-linked by treating
millions of intact nuclei with chemical agents, such as for-
maldehyde. The DNA is then cleaved into small fragments
by digestion with appropriate restriction enzymes.
Next, the resulting pairs of cross-linked fragments are
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enzymatically ligated and the cross-links are chemically
removed. Finally, the ligation products are amplified by
polymerase chain reaction and sequenced by high-
throughput methods. Analysis of the sequences allows
one to identify the pairs of fragments that were originally
cross-linked. Counting the number of times that each pair
was identified from the sequences yields a 2D map of
contact probabilities (CPs) for the examined pairs of
fragments.
Although CP maps provide abundant information to

help researchers infer the higher order organization of
chromatin through theoretical and computational
models (24,25), such a task is rather challenging. To
tackle this problem, several approaches have already
been proposed. Dekker et al. (22) presented the first
such approach to deduce a coarse 3D structure for the
320-kb chromosome III in NKY2997 cells. To obtain
the structure, 78 CPs were measured by 3C and converted
to spatial distances through a theoretical expression for
worm-like chains (26). The resulting distances were pre-
sumably used to solve a molecular distance geometry
problem. Later, Fraser et al. (27) assumed the inverse pro-
portionality relation d / 1=p to calculate spatial distances
d from hundreds of CPs p, obtained by 5C experiments on
the HoxA gene cluster in THP-1 leukemia cells. The re-
sulting distances d were then used as targets to optimize a
piecewise linear curve representing the gene cluster under
study. The same relation d / 1=p was used by Duan et al.
(28) to infer the 3D structure of the budding yeast genome
from over 65 000 CPs obtained by 4C. In addition, they
modeled chromatin as a chain of beads, each representing
10 kb of DNA, and defined various constraints to enforce
known geometric and topological features of yeast chro-
matin. Nonlinear constrained optimization methods were
then used to find an optimal structure. Another full
genome, that of fission yeast, was studied by Tanizawa
et al. (29) using a Hi-C variant with enrichment of
ligation products. To determine the 3D structure of this
genome, the authors used a bead-chain model and a
method similar to that of (28). This time, however,
spatial distances were calculated from CPs through a cali-
bration curve obtained by fitting a double exponential
decay function to distance measurements obtained by
FISH.
A bead-chain model of chromatin was also employed by

Baù et al. (12), who used 5C to analyze the 500-kb
ENm008 domain (�-globin gene) on human chromosome
16 in K562 cells and in GM12878 cells. In this case,
though, each bead represented a DNA restriction
fragment, with bead radius proportional to fragment
length. The beads interacted through harmonic restraints
with strengths and equilibrium distances derived from ex-
perimental CPs. A combination of optimization and clus-
tering algorithms was then used to determine a
conformation ensemble and corresponding centroid struc-
ture for the ENm008 domain in each cell type. Again
seeking conformation ensembles, Rousseau et al. (30)
used a probabilistic approach to analyze 5C data on the
142-kb HoxA cluster in THP-1 and HB-1119 cell lines,
and Hi-C data from (21) on the 88.4-Mbp long arm of
human chromosome 14. In particular, they applied a

Markov chain Monte Carlo sampling method to
generate ensembles of structures consistent with a poster-
ior distribution of spatial distances between restriction
fragment midpoints, where the distances were again
obtained from experimental CPs by assuming an inverse
power law relation. Another effort to obtain chromatin
conformation ensembles, but without using a
distance-CP relationship, was recently reported by
Gehlen et al. (31). To generate such ensembles for the
entire S. cerevisiae genome, the authors performed
multiple molecular dynamics simulations of a bead-chain
polymer model and included within each simulation a
randomly selected subset of intra- and inter-chromosomal
interactions experimentally determined through GCC.

Although the above computational approaches are re-
markable in their ability to handle large numbers of inter-
acting fragments, almost all of them rely on converting the
measured CPs to spatial distances between interacting
fragments. Such conversion is achieved by assuming a
functional relation that describes the behavior of free
linear chains. For example, polymer theory predicts that
p / d�3 for ideal random walk chains (32), whereas more
elaborate relations have been derived for worm-like chains
(33). These relations, however, may not be valid for
polymers subjected to looping and other external con-
straints. Also, several of the above approaches ignore
the mechanical properties of the chromatin fiber or deter-
mine only a single average structure from a given set of
CPs, which are in fact the result of cross-linking events
over an ensemble of chromatin conformations sampled
from millions of cells. Finally, none of the above studies
validate their proposed computational methods against
known chromatin conformation ensembles.

Here, we describe and validate a computational
approach to obtain ensembles of chromatin conformation
consistent with a given set of reference CPs. This approach
does not require assuming a functional relation between
spatial distances and CPs. Instead, we estimate new CPs
by simulating a coarse-grained polymer model that ap-
proximates the physical behavior of a 30-nm chromatin
fiber. We then iteratively adjust the parameters of this
polymer model until a good match is achieved between
the CPs estimated from the simulations and those in the
given reference set. The result is an ‘optimal’ ensemble of
conformations that is most consistent with the given ref-
erence CPs. Our initial validation of this approach against
several simulated test systems produced good agreement
of average spatial properties between reference and re-
covered conformation ensembles.

MATERIALS AND METHODS

Our goal is to generate an ensemble of conformations
consistent with a given set of probabilities of contact
between different segments of a chromatin fiber. To
achieve this goal, we propose a computational method
that consists of three main components (Figure 1): (i) a
coarse-grained polymer model approximating the physical
properties of chromatin; (ii) a procedure to generate an
ensemble of conformations for the polymer model and
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(iii) a procedure to refine the parameters of the polymer
model in such a way that the generated conformation
ensemble is consistent with the given set of CPs.

Coarse-grained polymer model of chromatin

We assume that chromatin exists as a fiber with an average
diameter of 30 nm, and that the conformation of this fiber
is determined primarily by its stretching resistance,
bending stiffness and excluded volume. To approximate
these physical properties, we use a bead-chain model, with
each bead representing a chromatin segment of 3–6 kb
(34). A similar model was proposed by Rosa et al. (35)
and was recently used to simulate the entire genome of
budding yeast (36). Following Baù et al. (12), we also
assume that the chromatin fiber is subjected to unknown
external constraints, e.g. due to looping interactions or
confinement, and that the average effects of these con-
straints can be approximated by additional harmonic
restraints connecting particular beads in the chain
(Figure 2a).

Thus, the potential energy U of the bead chain can be
expressed as the sum of four terms,

U ¼ Ubond+Ubend+Uexcl+Urest: ð1Þ

The first term Ubond accounts for the chain’s resistance
to stretching and results from connecting adjacent beads
with harmonic springs,

Ubond ¼
XN�1
i¼1

1

2
ks di,i+1 � d0
� �2

, ð2Þ

where di,j ¼ rj � ri
�� �� is the distance between beads i and j,

N is the number of beads in the chain, ks is the spring
constant, ri is the position vector for bead i, d0 ¼ � is
the equilibrium bond length and �=30nm is the unit of
length used in our simulations (Table 1).

The second potential energy term Ubend accounts for the
chain’s resistance to bending and results from subjecting
each triplet of adjacent beads to a harmonic bending po-
tential (37),

Ubend ¼
XN�2
i¼1

1

2
k��

2
i , ð3Þ

where �i is the angle between the displacement vectors
ri+1 � ri and ri+2 � ri+1, k� ¼ kBTLp=� is an angular
‘spring constant’, Lp is the persistence length of the
chain (38), kB is the Boltzmann constant and T is the
absolute temperature.

The third potential energy term, Uexcl, accounts for the
excluded volume, or effective thickness, of the chain and is
treated using the repulsive part of the Lennard–Jones
potential,

Uexcl ¼
X

2�i+1<j�N

4�� 21=6 �
di,j
�

� �
�

�

di,j

� �12

�
�

di,j

� �6

+
1

4

" #
,

ð4Þ

where � ¼ kBT is the unit of energy in our simulations,
�=30nm is the effective thickness of the fiber (Table 1)
and �ðxÞ is the Heaviside step function, which equals 1
when x > 0 and 0 otherwise.
The last potential energy term, Urest, accounts for the

presence of external forces or constraints that affect the
shape of the chromatin fiber as well as the probability of
contact between different segments of the fiber. In particu-
lar, we assume that the average effects of these constraints
can be reproduced reasonably well by including a suffi-
cient number of harmonic restraints that connect a
subset of the beads in the chain,

Urest ¼
X
ði,jÞ2R

1

2
ki,j di,j � d0i,j

h i2
, ð5Þ

where R is the set of pairs of beads connected by harmonic
restraints and ki,j (d

0
i,j) is the spring constant (equilibrium

distance) for the restraint connecting beads i and j. The
actual members (i, j) of the set R and the corresponding
values of ki,j and d0i,j are adjustable parameters in this
model of restrained chromatin.

Generation of conformation ensembles

To obtain optimal values for these adjustable parameters,
we compare a reference set of probabilities of contact
between the beads in the chain with a set of corresponding
probabilities estimated from an ensemble comprising a
large number of bead-chain conformations.

Simulations of bead chain
To obtain such an ensemble, we start by minimizing the
potential energy of an initial conformation. To this end,
we use the Polak–Ribiere modification of the conjugate
gradient algorithm (39). Next, we equilibrate the

polymer
model

parameter
refinement

ensemble
generation

improved
parameters

physical
properties

estimated CPs conformation ensemblereference CPs

Figure 1. Main components of the proposed computational approach
to recover a conformation ensemble from a given set of reference CPs.

Figure 2. Schematic representations of (a) restrained bead-chain
polymer model used for BD simulations of a 30-nm chromatin fiber
subjected to looping constraints and (b) application of the LMS algo-
rithm to the optimization of the parameters in the general linear model
(Equation 9) used to predict restraint spring constants from reference
CPs.
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energy-minimized chain by performing 106 steps of
Brownian dynamics (BD) simulation. We then perform
an additional BD simulation during which we collect
one conformation every 100 integration steps. The set of
conformations collected from a single simulation trajec-
tory constitute a conformation ensemble.
To perform the BD simulations, we apply a second-

order algorithm (40,41), which we simplify to neglect the
effects of hydrodynamic interactions. Specifically, for each
bead i, we calculate a tentative new position at time t+�t
using the position riðtÞ of the bead and the force fiðtÞ on the
bead at time t,

eriðt+�tÞ ¼ riðtÞ+
�t

�m
fiðtÞ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT�t

�m

s
NðtÞ, ð6Þ

where � ¼ kBT=Dsm is the damping constant, Ds is the
self-diffusion coefficient, �t is the integration time step,
m is the mass of each bead and N(t) is a random displace-
ment vector whose components are normally distributed
with mean 0 and variance 1. Next, we use the tentative
bead positions to calculate a tentative new forceefiðt+�tÞ
for each bead i. Then, for each bead i, we calculate a more
accurate position using the tentative position and tentative
force at time t+�t and the force at time t,

riðt+�tÞ ¼eriðt+�tÞ+
�t

2�m
½�fiðtÞ+efiðt+�tÞ�: ð7Þ

Finally, these latter bead positions are used to calculate
more accurate forces fiðt+�tÞ at time t+�t:

Estimation of CPs
To estimate the bead CPs from an ensemble of bead chain
conformations, we analyze each member of the ensemble
and check for the occurrence of contacts within all
possible pairs of beads in the chain. Following Rosa
et al. (35), a contact between two beads is defined to
occur whenever the distance between the beads is less

than a predefined ‘contact’ distance, dc (Table 1). Hence,
we estimate the probability of contact pi,j between beads i
and j by calculating the proportion of conformations in
which a contact occurs between those beads,

p̂i,j ¼
1

Nc

XNc

l¼1

�ðdc � d l
i,jÞ, ð8Þ

where Nc is the total number of conformations in the
ensemble and dli,j is the distance between beads i and j in
conformation l of the ensemble.

Refinement of model parameters

In this work, we assume that a set of reference CPs,
denoted p�i,j, is available for 1 � i < j � N, and the
problem is to find an ensemble of bead-chain conform-
ations consistent with those CPs. To this end, we need
to optimize the adjustable parameters of the bead-chain
model so that simulating such a model yields a conform-
ation ensemble whose estimated CPs p̂i,j match as closely
as possible the corresponding reference CPs p�i,j for
1 � i < j � N.

The adjustable parameters to be optimized are the pairs
of indexes ði,jÞ 2 R and the values of ki,j and d0i,j for each
(i, j). To begin to tackle this complex problem, we choose
to reduce the number of adjustable parameters by fixing
the members (i, j) of the set R at the start of the optimiza-
tion procedure and by using zero as the equilibrium
distance for the harmonic restraints, i.e.
d0i,j ¼ 0,8 ði,jÞ 2 R. Although d0i,j ¼ 0, excluded volume
interactions (Equation 4) prevent beads from overlapping.

Placement of harmonic restraints
To determine the pairs ði,jÞ 2 R of beads that must be
connected by harmonic restraints, we analyze the given
set of reference CPs p�i,j, for 1 � i < j � N, by using a
peak detection algorithm. Specifically, we construct a
smooth surface z= g(x,y) such that gði,jÞ � p�i,j for

Table 1. Parameter values used to simulate the restrained bead-chain polymer model of chromatin and to provide a physically realistic approxi-

mation of the mechanical properties of chromatin, as currently known from experiments

Parameter Symbol Reduced units SI units

Thermal energya kBT 1.0 4:1� 10�21J
Bead massb m 1.0 7:0� 10�21kg
Lennard–Jones size parameter � 1.0 30 nm
Lennard–Jones energy parameter � 1:0 kBT 4:1� 10�21J
Bead separation d0 1:0 � 30 nm
Contact distancec dc 1:5 � 45 nm
Bond spring constantd ks 500 kBT=�

2 2:3� 10�3Jm�2

Persistence lengthe Lp 4:0 � 120 nm
Bending energy constant k� 4:0 kBT=rad

2 1:7� 10�20 J rad�2

Time step/damping constantf �t=� 3:3� 10�4 �2m=kBT 5:1� 10�19 s2

aEnergy per bead per degree of freedom at T=300K.
bRepresentative value based on the experimental measurement of 23.3MDa for a 15.5-kb fragment of 30-nm chromatin upstream of the chicken
�-globin locus (42).
cFollowing Rosa et al. (35), equivalent to assuming that contacts between chromatin fibers are mediated by proteins of 15-nm diameter.
dFrom experiments, the stretching modulus is d0ks � 5–150 pN (43), hence ks ranges from 1:7� 10�4 to 2:5� 10�2Jm�2.
eFrom experiments, Lp � 30 – 200 nm (43).
fTo maximize conformation sampling efficiency, we used the largest value of �t=� found to maintain stability of the BD simulations. A lower bound
for �t can be estimated by considering a chromatin sphere of radius r=15nm and using � ¼ 6�	r=m with the viscosity of water 	=890mPa s at
25�C and 1 bar (44). Then, �t � 18 ns.
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1 � i < j � N. Each peak on this CP ‘surface’ corresponds
to a pair of beads that interact more frequently than their
neighbors. Thus, we find the pair of integers (i, j) closest to
the location ðxp,ypÞ of each peak in the CP surface, and we
add (i, j) to the set R of pairs of beads connected by
harmonic restraints. To find the location ðxp,ypÞ of each
peak, we slice the surface at every point (i,j), for
1 � i < j � N, using the four vertical planes x= i, y= j,
x+y= i+j and x – y= i – j. Next, we find the local
maxima of the curve generated by each slice. If the
curves on all four slices have a local maximum close to
ðxp,ypÞ � ði,jÞ, then we deem ðxp,ypÞ to be the location of a
peak on the CP surface.

Optimization of restraint spring constants
The remaining group of adjustable parameters are the
spring constants ki,j that determine the strength of the
harmonic restraints on bead pairs ði,jÞ 2 R. To predict
these spring constants from the known reference CPs,
we use the general linear model

k� ¼Wp�: ð9Þ

Here, k* is a vector containing n predicted spring con-
stants ki,j of the harmonic restraints, where n is the
number of bead pairs in R; W is an n� ðn+1Þ matrix of
model parameters and p* is a vector containing n+1
elements, where the first n elements are the reference
CPs p�i,j for the pairs of beads connected by the n
harmonic restraints, and the last element is a non-zero
constant c that allows W to map the background CPs of
an unrestrained chain to zero spring constants. As c is
multiplied by appropriate weights, its value can be arbi-
trary. To minimize roundoff errors, however, we use
c ¼ ½

P
ði,jÞ2R p�i,j�=n:

Now the problem of finding optimal values for the
spring constants ki,j becomes a problem of determining
the optimal elements of the matrix W. This is not a
trivial problem, because each spring constant ki,j may in
general affect not only the CP for the pair (i, j) of beads
connected by that spring but also the CPs for other pairs
of beads in the chain, including those connected by other
restraints. Also, because Equation 9 is an approximation,
the optimal W will not necessarily yield valid spring con-
stants ki,j when p* changes. Thus, in general, an optimal
W must be determined for each given p*.

One could argue that predicting the ki,js through
Equation 9 is an unnecessary complication, because
optimal ki,js could be found more simply by using a
standard optimization algorithm that adjusts the ki,js to
minimize the sum of squared differencesP
ði,jÞ2R ðp̂i,j � p�i,jÞ

2. We did not pursue such a blind
approach, however, because we suspected that it would
be less efficient than alternative methods that take advan-
tage of additional information about the underlying
physical system. Such information, in the proposed
approach, is the hypothesis that there exists an ‘inverse’
system that converts the CPs to spring constants accord-
ing to the general linear model of Equation 9.

To find optimal elements for W in Equation 9, we apply
the least mean squares (LMS) algorithm developed by

Widrow and colleagues (45–47) (see the Appendix). This
simple yet powerful algorithm has been extensively used in
the field of adaptive signal processing to optimize a digital
filter structure known as adaptive linear combiner (ALC).
An ALC performs a dot product between a time-varying
weight vector wk and a time-varying input vector xk, thus
obtaining a scalar output yk=wk

Txk, which is required to
approximate a given desired signal dk at each discrete time
step k. To meet this requirement, the LMS algorithm uses
a steepest descent scheme that iteratively adjusts the
elements of the weight vector wk at each time step k using

wk+1 ¼ wk+2
ekxk, ð10Þ

where ek ¼ dk � yk is the error at time step k and 
 is a
gain factor that affects the speed of convergence and the
stability of the algorithm.
To apply the LMS algorithm toward the optimization

of the parameter matrix W in Equation 9, we allow this
matrix, the CPs and the predicted spring constants to vary
with iteration index k, i.e. kk=Wkpk. We then treat the
elements of kk and the rows of Wk as the outputs and
transposed weight vectors, respectively, of n ALCs,

kk ¼ y1,k y2,k . . .n,k

� 	T
, ð11Þ

Wk ¼ w1,k w2,k . . . wn,k

� 	T
: ð12Þ

To complete this application of the LMS algorithm,
we must provide appropriate inputs to the ALCs and
obtain appropriate errors, which are necessary to adjust
the weight vectors. To obtain an input vector xk for all
ALCs, we first predict a set of restraint spring constants
using the parameter matrix available at iteration k
and the constant vector of reference CPs (first block
in Figure 2b), i.e. k�k ¼Wkp

�. Next, we use this set of
spring constants to generate, through BD simulations,
an ensemble of bead-chain conformations, and we use
this ensemble to estimate the CPs for the restrained bead
pairs ði,jÞ 2 R (second block in Figure 2b). The resulting
vector p̂k of estimated CPs is now used as input
for all n ALCs, which produce a corresponding out-
put vector k̂k =Wkp̂k at iteration k (third block in
Figure 2b). If the weights of the ALCs were optimal,
then the ALC outputs in k̂k at iteration k would be very
close to the spring constants in k�k, which were used to
generate the ensemble of conformations from which p̂k
was estimated. Therefore, the ALC errors are the
elements of the vector ek= k�k� k̂k, which we can finally
use to compute a better estimate of the parameter matrix
for the next iteration,

Wk+1 ¼Wk+2
kekp̂
T
k : ð13Þ

To ensure stability of the LMS algorithm, we need a
gain factor 
 < 1=tr½R�, where tr[R] is the trace of the
input correlation matrix (47). Thus, to calculate a safe
value for 
, we let 
 ¼ 0:1=tr½R� and we use the
approximation

tr½R� �
1

2
½p̂

T
k p̂k+p�Tp��, ð14Þ
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where we account for both current and reference CPs in
order to decrease 
 when p̂k is large and to bound 
 from
above when p̂k is small. To determine the first vector of
predicted restraint spring constants k�1, we assume a linear
relationship between each ki,j and the corresponding
reference CP p�i,j. Specifically, we set ki,j ¼ a0+a1p

�
i,j for

ði,jÞ 2 R, where a0=2� 2p�min/(p
�
max� p�min), a1=2/

(p�max� p�min) and p�min(p
�
max) is the minimum (maximum)

value of the reference CPs p�i,j for ði,jÞ 2 R. This choice
yields initial spring constants ranging from 20 to 40% of
the maximum value of 10 that we allow ki,j to take. Then,
to begin the restraint optimization procedure with the first
vector of estimated CPs p̂1, we set the diagonal elements of
W1 equal to 1 and all other elements equal to 0.

Selection of optimal ensemble
After a sufficient number of iterations, the restraint opti-
mization procedure described above should yield a set of
predicted spring constants ki,j that produce a good match
between the CPs estimated for the ‘restrained’ bead pairs
and the corresponding reference CPs, i.e. p̂i,j � p�i,j for
ði,jÞ 2 R. Our goal, however, is to generate an optimal
ensemble of bead-chain conformations such that the CPs
estimated for ‘all’ bead pairs, not just the restrained ones,
closely match the corresponding reference CPs, i.e. we
want p̂i,j � p�i,j for 1 � i < j � N. To quantify the
goodness of match between estimated and reference CPs,
we calculate the root mean-squared deviation (RMSD)
between the two sets of probabilities,

pRMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

NðN� 1Þ

X
1�i<j�N

ðp�i,j � p̂i,jÞ
2:

s
ð15Þ

To find the set of restraint spring constants that
minimize pRMSD, we perform 40 iterations of the LMS
algorithm (Equation 13) during the restraint optimization
procedure described above. To accelerate these iterations,
we perform only 5� 106 steps during the BD simulations
from which the CPs are estimated at each iteration. In
general, the conformation ensembles produced by such
short simulations will depend on the initial bead-chain
conformation used for the BD simulations. Therefore, to
find the ensemble that minimizes pRMSD, we perform
several trials of the restraint optimization procedure. In
each trial, we use a different initial conformation for the
simulations, and we identify the set of restraint spring
constants that minimize pRMSD among all iterations per-
formed. Next, these optimal spring constants and the cor-
responding initial conformation are used to generate a
larger conformation ensemble, this time by performing
108 steps of BD simulation. Among the larger conform-
ation ensembles obtained from all trials, we select the one
that yields the smallest pRMSD. This final ensemble is the
one we deem to be optimal, i.e. most consistent with the
reference CPs.

Generation of initial conformations
To obtain the different initial bead-chain conformations
used for each trial of the restraint optimization procedure,
one could simply generate a number of random con-
formations. We choose, however, a more deterministic

approach aimed at generating conformations with differ-
ent relative orientations of loops. Specifically, we design
each initial conformation in the shape of a tight cylindrical
bundle (Figure 6). To generate the bundle, all the beads
connected by harmonic restraints are arranged on a circle
whose circumference is just large enough to prevent
overlapping those beads. Next, the intervening fragments
that contain the other beads of the chain are used to
connect the beads on the circle. As they join the beads
on the circle, these fragments are forced to run perpen-
dicular to the plane of the circle. Hence, there are two
ways in which each fragment can connect two adjacent
beads on the circle: on the same side of the plane of the
circle, or on opposite sides. By connecting the beads on the
circle with the intervening fragments in all possible ways,
we can generate up to 2nc�1 distinct conformations, where
nc is the number of beads on the circle and where we omit
those conformations that result from reflecting other con-
formations about the plane of the circle. In the present
study, we selected up to 32 different bundle conformations
to perform the trials of the restraint optimization proced-
ure (Table 2).

RESULTS AND DISCUSSION

Test systems

To validate our computational method, we considered six
test systems of increasing complexity. Each test system
consisted of the same bead-chain model that we used to
recover an optimal conformation ensemble from reference
CPs. In each such system, however, we induced the for-
mation of specific loops by connecting appropriate beads
with up to eight harmonic restraints (Supplementary
Table S1). To vary the complexity of these test systems,
we varied the number of beads in the chain and the
number of induced loops (Table 2). In particular, we
simulated chains of 25, 35 and 45 beads with 2, 3 and 4
‘free’ loops, respectively. To mimic the effects of confine-
ment constraints, we also simulated the same chains with
additional restraints connecting the middle beads of free
loops across such loops, as shown schematically in
Supplementary Table S1, thus giving rise to ‘tied’ loops.

We used the same value of k�i,j ¼ ks=200 for the spring
constants of all restrained bead pairs (i, j) in all test
systems. The conformations of these test systems
obtained after minimizing their potential energy are
shown in Figure 3.

Reference CPs
To obtain reference sets of estimated bead CPs p�i,j, for
1 � i < j � N, in each of the six test systems, we generated
corresponding ensembles of bead-chain conformations by
performing BD simulations following the same protocol
described above for the ensemble recovery procedure. In
particular, for each test system, we constructed an initial
bead-chain conformation by threading the appropriate
number of beads into the path of a 3D Hilbert curve
(21). We then minimized the potential energy of the
initial conformation (Figure 3), equilibrated the system
with 106 simulation steps and performed 108 additional
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steps, during which we collected one bead-chain conform-
ation every 100 steps. From the collected conformations,
we estimated p�i,j using Equation 8. The CPs estimated for
a chain of 45 beads with four free loops and four tied
loops are represented as heat maps in Figure 4a. Also
highlighted are the locations of bead pairs (i, j) that
were connected by harmonic restraints to induce the for-
mation of loops or to tie the loops.

These heat maps qualitatively confirm the intuition that
p�i,j for beads connected by restraints and for nearby beads
along the chain should be greater than the background
CP. These maps, however, also reveal enhanced CPs for
pairs of beads that were not directly connected by
harmonic restraints and that were relatively distant
along the chain from other restrained beads. A similar
phenomenon was observed for the chain with 35 beads,
but not for the chain with 25 beads (data not shown).
Thus, an enhanced probability of contact between two
beads in the chain is not always due to an external force
directly pulling those beads toward each other. These
results underscore the complexity of interactions that
can arise even for a chain of only 35 beads, when such a
chain is subjected to looping constraints.

Relation between CPs and mean inter-bead distances
Simulating the above test systems to validate our compu-
tational method also provided an opportunity to investi-
gate the behavior of chromatin assumed in previous
related works. In particular, to infer the 3D conformation
of chromatin from experimentally measured CPs, previous
studies have assumed that the mean spatial distance d
between two DNA fragments can be deduced from their
CP p through a simple functional relation. For example,
the power law p / d � has been used with exponents
� ¼ �1:0 (27,28) and � ¼ �2:0 (30). Alternatively, expo-
nential decay (29) and logarithmic types of relations (12)
have also been used. To assess whether a simple relation-
ship between mean inter-bead distance,

�d�i,j ¼
1

Nc

XNc

i¼1

di,j, ð16Þ

and corresponding CP p�i,j does hold for our test systems,
we obtained �d�i,j from the same conformation ensembles
that were used to determine p�i,j.
First, however, we analyzed the results from simulations

of bead chains that lacked harmonic restraints. A plot of
p�i,j against

�d�i,j, for 1 � i < j � N, obtained from simulating
an unrestrained chain of 45 beads, shows that, in the
absence of constraints inducing loop formation, the CPs
follow a clear trend with a peak at �d�i,j � 8� (Figure 5a).
We observed similar trends for chains with 35 and 25
beads (data not shown).
As p�i,j does not vary significantly among pairs of beads

separated by similar mean spatial distances �d�i,j or by
similar loop lengths j – i (Figure 5a), it is reasonable to
estimate looping probabilities by averaging p�i,j over

Table 2. Validation of the conformation ensemble recovery procedure using reference CPs estimated by simulating test systems of increasing

complexity

Test systema Ensemble recoveryb

RMSDc

2 Parameters n+1 Parameters

Figure 3d Ne n*f Loopsg nh Ntrial
i tc

j k p �d k p �d

a 25 3 2 Free 3 4 2.9 0.050 0.0015 0.020 0.036 0.0016 0.020
b 25 4 2 Tied 4 16 2.9 0.064 0.0024 0.012 0.065 0.0048 0.018
c 35 4 3 Free 6 8 4.1 0.017 0.0015 0.016 0.056 0.0018 0.018
d 35 6 3 Tied 9 32 4.3 0.099 0.0060 0.028 0.122 0.0055 0.026
e 45 5 4 Free 10 16 5.3 0.023 0.0016 0.025 0.022 0.0019 0.025
f 45 8 4 Tied 13 32 5.5 0.175 0.0086 0.063 0.147 0.0103 0.070

aCharacteristics of test systems used to generate conformation ensembles from which reference CPs were estimated.
bResults of ensemble recovery procedure applied to reference CPs.
cRMSD between recovered and reference values of restraint spring constants (k), CPs (p) and mean inter-bead distances ( �d), achieved when using a
general linear model (Equation 9) with the specified number of parameters per spring constant.
dLabel used to identify test system in Figure 3.
eNumber of beads in the chain.
fNumber of restraints used to induce the loops in the bead chain.
gNumber and type of induced loops.
hNumber of restraints found by peak detection algorithm.
iNumber of trials performed to select the optimal ensemble.
jAverage computation time per trial in hours when performing each trial with n+1 parameters on one core of a 2.2-GHz AMD Opteron Processor
2427.

Figure 3. Energy-minimized conformations of the test systems used to
generate reference CPs for validating the proposed computational
method. The systems are labeled as in Table 2. Images were generated
using UCSF Chimera (48).
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constant values of j – i (Figure 5a, inset). We found that
such looping probabilities for an unrestrained chain of 45
beads approximately follow the trend predicted by theory
for worm-like chains with non-zero persistence length and
non-zero contact distance (26), thus confirming that our
simulations can reproduce the behavior of such chains.
Furthermore, noting a monotonic relation between p�i,j
and �d�i,j for �d�i,j 	 10�, we also fitted the power
law p�i,j / ð

�d�i,jÞ
� to our simulation data for the unrestrained

chain, and we obtained � � �2:2, which approximately
agrees with the value � ¼ �2:0 reported in (30). These

results suggest that, in the absence of harmonic restraints
and for �d�i,j sufficiently large, it may be appropriate to
assume a simple monotonic relation between p�i,j and

�d�i,j
and to use such relation for predicting approximate values
of �d�i,j from known or measured values of p�i,j.

We next analyzed the results from the simulations of the
test systems, where specific beads were connected by re-
straints as described above. In this case, the plots of p�i,j
against �d�i,j indicate that the addition of harmonic
restraints complicates the relation between �d�i,j and p�i,j
(Figure 5b and c) far beyond the clear trend obtained
from the simulations of the unrestrained chains. In par-
ticular, when harmonic restraints are present, the CPs are
overall greater than the corresponding values observed in
the absence of restraints, and there appears to exist no
simple law that relates p�i,j and

�d�i,j. In fact, different pairs
of beads separated by similar mean spatial distances or by
similar loop lengths yield CPs that differ significantly by
up to four orders of magnitude. The observed variation of
p�i,j with

�d�i,j for the chain with four free loops is bounded
by power laws with exponents as different as �3 and �8
(Figure 5b and c, dashed lines). Hence, for the test systems
considered in the present study, assuming a simple func-
tional relation and using such relation to calculate �d�i,j
from p�i,j would introduce large fractional errors in the
predicted values of �d�i,j, and those errors would increase
with decreasing bead CPs. These results thus motivate
the development of computational approaches that do
not rely on calculating �d�i,j from p�i,j but directly compare
estimated CPs with reference CPs to infer a configuration
ensemble.

Method validation

Ensemble recovery from reference CPs
After obtaining the reference set of bead CPs p�i,j for each
test system, we applied our computational method to
recover an ensemble of conformations whose estimated
CPs p̂i,j match the corresponding reference CPs. We
began by selecting a few pairs of beads to be connected
with harmonic restraints. This selection was performed in
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Figure 4. Heat maps representing (a) reference and (b) recovered CPs
for a chain of 45 beads with (left) four free loops or (right) four tied
loops. Free loops result from connecting loop end-beads with harmonic
restraints (gray arcs in top-left schematic), while tied loops result from
connecting middle beads across free loops (dotted arcs in top-right
schematic). Blue circles on the maps identify pairs of beads that were
restrained (a) when generating reference CPs and (b) when performing
the ensemble recovery procedure. Test systems with two and three
loops (Table 2) yielded a similarly good visual match between reference
and recovered CP maps (data not shown).
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Figure 5. Variation of bead CPs with mean inter-bead distance in reference ensembles for chain (a) without restraints, (b) with four free loops and
(c) with four tied loops. Each point represents one of the possible bead pairs in the chain. Error bars are standard deviations over 10 independent
simulations. The dashed line in (a) is a fit of the power law p / ð �dÞ�, giving � ¼ �2:23. Inset in (a): looping probability versus loop length in ensemble
for chain without restraints. The curve in this inset is a fit of Equation 3 from (26). The dashed curves in (b) and (c) are power laws with exponents
�8 and �3. Distances are in units of �.
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an automated fashion by analyzing the reference CP maps
with the peak detection algorithm described above. The
algorithm successfully identified all of the bead pairs that
were connected by harmonic restraints in the test systems
used to generate p�i,j (Supplementary Table S1). Moreover,
for chains with 35 and 45 beads, the algorithm found 2, 3 or
5 additional bead pairs that were not restrained in the test
systems (Supplementary Table S1) but nevertheless gave
rise to CPs enhanced above the background (Figure 4).

We next adjusted the spring constants ki,j of the guessed
restraints by performing up to 32 trials of our iterative
restraint optimization procedure. Each trial used a differ-
ent initial chain conformation (Figure 6) to start the BD
simulations performed to estimate the CPs for the re-
strained bead chain.

From each trial, we obtained a different set of restraint
spring constants together with the corresponding ensemble
of chain conformations. For each such conformation
ensemble, we used Equation 15 to calculate pRMSD, the
RMSD between the CPs p̂i,j estimated for that ensemble
and the corresponding reference CPs p�i,j previously
obtained for the test system under study. We found that
pRMSD varies among the trials of the ensemble recovery
procedure for a given test system and that this variation
increases with the complexity of the test system (Figure 7),
indicating that, within the simulated time intervals, the re-
strained bead chain tends to get trapped into local energy
minima that depend on the initial chain conformation.

For each recovered conformation ensemble, we also
calculated the mean inter-bead distances �di,j for
1 � i < j � N. Then, to compare quantitatively these
mean inter-bead distances with the corresponding refer-
ence quantities �d�i,j, we calculated the RMSD between
the two sets of distances (30),

dRMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

NðN� 1Þ

X
1�i<j�N

ð �d�i,j �
�di,jÞ

2

s
: ð17Þ

We found that minimizing pRMSD over the trials for a
given test system yields the smallest, or a relatively small
value for the RMSD of the mean inter-bead distances,
dRMSD (Figure 7). These results indicate that minimizing
pRMSD relative to a set of reference CPs p�i,j is an effective
strategy for identifying a conformation ensemble that
closely matches the mean inter-bead distances of the
original conformation ensemble from which the p�i,j were
estimated or measured.

Therefore, to conclude our ensemble recovery proced-
ure, for each test system, we selected the set of restraint
spring constants and the corresponding conformation
ensemble that minimized pRMSD among all trials.
Comparing the heat maps of the CPs estimated from re-
covered and reference ensembles for chains with 45 beads
(Figure 4a and b) shows a good qualitative agreement
between the two ensembles. A similar good agreement
was also observed for the simpler test systems (data not
shown). This agreement is also apparent in plots of p̂i,j
against p�i,j (Figure 8a).
Furthermore, the mean and standard deviation of the

inter-bead distances in the recovered conformation ensem-
bles are in excellent agreement with the correspond-
ing quantities calculated for the reference ensembles
(Figure 8b and c), confirming that our procedure success-
fully recovered not only the average frequency of the
various inter-bead interactions but also the average
inter-bead distances and the extent to which these dis-
tances fluctuate about the mean.
To visualize the reference and recovered conformation

ensembles, we uniformly extracted 100 conformations
from each such ensemble and aligned those conformations
on the beads that were restrained in the test system used to
generated the reference ensemble. The resulting 3D repre-
sentations of the reference and recovered conformation
ensembles reveal large fluctuations in the positions of
the loops (Figure 9). The same regions of space,
however, tend to be occupied by corresponding loops in
the reference and recovered ensembles, thus providing a
visual confirmation of the similarity between the average
spatial arrangements of the two ensembles.

Simplified general linear model
The good agreement that we observed between recovered
and reference ensembles is in fact a consequence of success-
fully optimizing the general linear model of Equation 9
with the LMS algorithm. This optimization resulted in a
good prediction of restraint spring constants from the

Figure 6. Initial conformations used in eight trials of the ensemble
recovery procedure for a chain with 35 beads and 6 restraints (third
row in Table 2), shown before (top) and after (bottom) minimization of
the potential energy, Equation 1. Images were generated using UCSF
Chimera (48).
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Figure 7. Plots of RMSD of mean inter-bead distances (Equation 17)
against RMSD of CPs (Equation 15) for all trials of the ensemble
recovery procedure and for all tested systems. Each point represents
RMSD values obtained from an ensemble of 106 conformations at the
end of a particular trial. Inset: enlarged view of boxed area. Distances
are in units of �.
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reference CPs associated with the restrained bead pairs. In
fact, as noted above, some bead pairs were chosen by the
peak detection algorithm for restraining, even though they
were not restrained in the test systems. During the ensemble
recovery procedure, however, the spring constants for the
restraints on these bead pairs decreased to small values
relative to the spring constants restraining the other bead
pairs (Supplementary Table S1). These results indicate that
the ensemble recovery procedure correctly distinguished
the pairs of beads that were directly connected by
harmonic restraints in the reference conformation
ensemble from those pairs that were not. In particular,
the RMSD,

kRMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nc

X
ði,jÞ2R

ðki,j � k�i,jÞ
2

s
, ð18Þ

between the spring constants ki,j predicted during the
ensemble recovery procedure and the corresponding
value k�i,j used for the restraints in the test systems was
<6% of k�i,j for all such systems (Table 2). Thus, the pro-
cedure successfully deduced approximate values of the
underlying spring constants using only the knowledge of
reference CPs.

We asked whether a similarly good prediction of each
restraint spring constant could be achieved with fewer
than n+1 non-zero elements per row in the matrix W in
Equation 9, i.e. with fewer than n+1 parameters per
spring constant. To answer this question, we repeated
the ensemble recovery procedure on all test systems, this
time forcing all of the off-diagonal elements of W—except
those in the last column—to be zero, thus effectively using
only two parameters to predict each spring constant. This
choice corresponds to assuming that each restraint spring
constant ki,j is linearly related only to the CP p̂i,j estimated
for the bead pair (i, j) restrained by that spring constant,
i.e. ki,j=wi,jp̂i,j+ci,j. We found that the resulting RMSDs
of the spring constants, CPs and mean inter-bead dis-
tances did not differ appreciably from the corresponding
values obtained by using n+1 parameters per spring
constant (Table 2). Therefore, for the test systems con-
sidered in this study, it appears that the CP associated
with each restrained bead pair depends primarily on the
spring constant restraining that bead pair. This conclu-
sion, however, may not hold for more complex systems,
where the restraints might be less uniformly distributed
among the beads and might have more variable spring
constants than the restraints we used in this study to
generate the reference CPs. For more complex systems,
using all parameters in the general linear model of
Equation 9 may be necessary to achieve adequate
accuracy in the prediction of spring constants from CPs.

Computation time
The majority of the computation time required by the
proposed ensemble recovery procedure is consumed by
the BD simulations. These simulations are needed to
estimate the CPs either for adjusting the spring constants
through the LMS algorithm or for selecting the optimal
conformation ensemble through a comparison of pRMSD

values among the ensembles obtained from different initial
conformations. The simulations must be sufficiently long
to ensure that the variance of the CPs estimated using
Equation 8 does not outweigh the variation in CP due
to differences in spring constants and initial conform-
ations. In our work with the test systems, obtaining CPs
sufficiently precise to ensure rapid convergence of the
LMS algorithm in all trials of the restraint optimization
procedure required 5� 106 steps per simulation. On the
other hand, ensuring that the optimal ensemble selected
from several trials of the procedure matches the diversity
of conformations present in the corresponding reference
ensemble required 108 simulation steps, i.e. the same
number that was used to obtain each reference
ensemble. The average computation time per trial was
found to increase linearly with the number of beads
(Table 2).

(a)

(c) (d)

(e) (f)

(b)

Figure 8. Comparison of (a,b) bead CPs, (c,d) mean inter-bead dis-
tances and (e,f) standard deviation of inter-bead distance determined
from optimal recovered ensemble to respective quantities determined
from reference ensemble for a chain with 45 beads and (a,c,e) 4 free
loops or (b,d,f) 4 tied loops. Each point represents one of the possible
bead pairs in the chain. The dashed lines are plots of y= x, not linear
fits. Distances are in units of �. Better correlations were observed for
test systems with three and two loops (data not shown).
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CONCLUSION

We have developed a computational approach to recover
chromatin conformation ensembles from a set of reference
CPs. The overall strategy of this approach consists of
comparing the given set of reference CPs to a set of CPs
obtained from simulations of a restrained bead-chain
polymer model of chromatin. The results of this compari-
son are used iteratively to adjust the parameters of the
polymer model so that, after a sufficient number of iter-
ations and trials, an optimal conformation ensemble is
obtained whose CPs closely match the corresponding ref-
erence probabilities. We have validated this procedure by
using reference data sets obtained from simulations of six
test systems of increasing complexity. For all such
systems, the procedure yielded a conformation ensemble
whose CPs, mean inter-bead distances and standard devi-
ation of inter-bead distances all agree very closely with the
corresponding reference quantities. The most complex test
system that we considered was a chain of 45 beads, equiva-
lent to roughly 135–270 kb, containing four tied loops
(Figure 3f). Although this system is much smaller than
the genomic loci typically investigated in 3C-based experi-
ments, it does provide initial support to the validity of the
proposed computational approach, which can already be
used to investigate the spatial organization of small
genomic regions.

To enable efficient and accurate analysis of experimen-
tal data sets obtained from large genomic loci, entire
chromosomes or even entire genomes, the proposed com-
putational approach will require additional improvement
and validation. For example, whereas the present
approach estimates CPs for beads representing fragments

of equal lengths, 3C-based experiments typically provide
reference CPs for fragments of various lengths. This
mismatch could be overcome by mapping the experimen-
tal fragments onto the bead-chain contour and by
estimating CPs for pairs of mapped fragments, rather
than for pairs of beads. Another issue is computational
effort. Although the procedure we described lends itself to
parallelization, with each trial executing on a separate pro-
cessor core, it may nevertheless become too demanding for
large genomic loci. Computational effort could be lowered
by improving the efficiency of conformation sampling, for
example through Monte Carlo simulations, and by
avoiding Equation 8 in the estimation of CPs, for
example by inferring inter-bead distance distributions
from sample means and higher moments of di,j. Finally,
further validation of the procedure will require not only
the simulation of larger and more complex test systems
but also the availability of experimental data sets that
include both 3C and FISH measurements on the same
genomic region. Applications of our method to the
analysis of experimental data and to the study of specific
phenomena, such as gene clustering (31), are important
issues that will be addressed in the future.
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APPENDIX

THE LMS ALGORITHM

The LMS algorithm (45,46) has found numerous appli-
cations in the field of adaptive signal processing,
including adaptive system identification, adaptive
inverse modeling, adaptive control and adaptive interfer-
ence canceling (47). This algorithm was developed to
optimize iteratively and dynamically the weights of a
digital filter structure, known as ALC, that performs
the dot product yk=wk

Txk, where yk is the ALC
output, wk is a vector containing n+1 adjustable
weights, xk is a vector containing n+1 inputs and k is
the current time step for the inputs, weights and output.
The choice of the inputs in xk and the role of the output
yk depend on the specific application of the ALC. All
applications, however, include a desired signal dk and
require the adjustment of wk at each time step k so
that the output yk is, on average, as close as possible
to dk or, equivalently, so that the magnitude of the error

ek ¼ dk � yk ¼ dk � xTkwk, ðA1Þ

averaged over a long interval of k, is as small as possible.
The degree to which the ALC meets this requirement can
be quantified, as a function of wk, by defining the quad-
ratic performance surface �=E[ek

2], where the expected

value E½
� is taken over the time step k. Hence, the require-
ment to achieve optimality of the ALC is that the weight
vector wk be adjusted at each time step k to minimize �.
The LMS algorithm addresses this requirement by using a
variant of the steepest descent algorithm. This variant
replaces the gradient r� of the quadratic performance
surface with a simpler estimate obtained at time step k
directly from e2k, i.e.

r� � re2k ¼ 2ekrek ¼ �2ekxk, ðA2Þ

where r ¼ @
@w1

@
@w2

. . . @
@wn+1

h iT
is the gradient operator

with respect to the components of the weight vector wk.
The gradient estimate re2k is then used to calculate an
improved weight vector from the current one,

wk+1 ¼ wk � 
re2k ¼ wk+2
ekxk, ðA3Þ

where 
 > 0 is a gain factor that determines the size of the
step along the negative gradient estimate. A small value of

 causes slow convergence, whereas too large a value of 

causes instability of the algorithm. It has been shown (47)
that the LMS algorithm is stable for 
 < 1=tr½R�, where
R ¼ E½xkx

T
k � is the input correlation matrix. The strengths

of the LMS algorithm are its simplicity, robustness and
relatively rapid convergence despite the presence of noise
in the input xk and desired signal dk.
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