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S1. Modeling of DNA

The DNA is treated using the discretized wormlike bead-chain model, where each “bead”
represents a 3 nm segment of relaxed DNA (1, 2). Each bead is assigned a salt-dependent
charge qdna according to Stigter (3). The DNA bead-chain is also assigned an intramolecular
force field comprising of stretching, bending, twisting terms that capture all aspects of DNA
mechanics. The stretching energy Ustr of the DNA is given by

Ustr =
h

2

Ndna−1∑
i=1

(li − l0)2 (1)

where h is the stretching constant of DNA, Ndna is the total number of DNA beads, li is the
length of the segment connecting beads i and i+ 1, and l0 is the equilibrium segment length.
The bending energy Uben of DNA is given by

Uben =
g

2

Ndna−2∑
i=1

β2
i (2)

where g is the bending constant of DNA derived from its persistence length and βi is the Euler
angle describing the angle between the neighboring segments connected by beads i and i+ 1
and by beads i+ 1 and i+ 2. The torsional energy Utwi of DNA is given by

Utwi =
s

2l0

Ndna−2∑
i=1

(αi + γi)
2 (3)

where s is the torsional energy constant and αi and γi are the Euler angles describing the
twist between the local coordinate systems of adjacent DNA segments, respectively. The total
electrostatic repulsion Urep of the DNA is obtained as the sum of the Debye-Hückel potential
between all interacting DNA beads, as given by

Urep =
q2
dna

4πε0ε

Ndna−2∑
i=1

Ndna∑
j=i+2

exp(−κrij)
rij

(4)

where κ is the salt-dependent inverse Debye screening length, rij is the separation distance
between beads i and j, and ε and ε0 represent the dielectric constant of water and permitivity
of vacuum. As the strong electrostatic repulsion prevents the DNA beads from overlapping
with each other, no special excluded volume interactions are required. We use a monovalent
salt concentration of 150 mM for parameterization and simulations.

1Correspondence: garya@ucsd.edu
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The octamer is modeled as a rigid body composed of charged groove beads and neutral
flanking and internal beads, as described in the main text. The charged groove beads interact
with the DNA beads using the Debye-Hückel attractive potential:

Uatt =
qdna

4πε0ε

Ndna∑
i=1

Ngr∑
j=1

qoct,j exp(−κrij)
rij

(5)

where qoct,j denotes the charge on groove bead j and Ndna = 39 denotes the number of CG
beads describing a 117 nm-long DNA used in our simulations. The groove, flanking, and
interior beads interact with the DNA through an excluded volume potential treated using the
Lennard-Jones (LJ) potential:

Uev = 4εev

Ndna∑
i=1

Noct∑
j=1

[(
σev
rij

)12

−
(
σev
rij

)6
]

(6)

where σev and εev are the LJ energy and size parameters, which are chosen to ensure that
the DNA beads do not enter the interior of the histone octamer and that they do not overlap
extensively with the oppositely charged groove beads. The total potential energy of the
nucleosome is then given by the sum of the intramolecular DNA stretching, bending, torsion,
and electrostatics terms and the intermolecular electrostatic and excluded volume interaction
terms between the DNA and the octamer. The parameters for the above energy terms are
provided in Table S1.

S2. Brownian dynamics simulations

We employ a Brownian dynamics approach to simulate the dynamics of the octamer and the
DNA subjected to extensional forces. We account for friction but not explicit hydrodynamic
interactions, whose effects are secondary to the primary phenomenon being investigated here.
The second-order Runge-Kutta algorithm of Iniesta and de la Torre (2, 4) is employed for
updating the translation ri(t) and rotation vectors Ωi(t) of each component i of the system
(i = DNA beads or rigid octamer):

ri(t+ ∆t) = ri(t) +
DT
i (Fi(t) + F∗

i )

2kBT
∆t+ Ri

Ωi(t+ ∆t) = Ωi(t) +
DR
i (Ti(t) + T∗

i )

2kBT
∆t+ Wi (7)

where DT
i and DR

i are the translation and rotational diffusion coefficient, respectively; Fi(t)
and Ti(t) are the forces and torques experienced by component i at time t; F∗

i and T∗
i are the

predicted force and torque at time t + ∆t; and Ri and Wi are Gaussian-distributed random
vectors satisfying the fluctuation-dissipation theorem:

〈Ri〉 = 0, 〈RiRj〉 = 2DT
i ∆tδijI

〈Wi〉 = 0, 〈WiWj〉 = 2DR
i ∆tδijI (8)

The above equations of motions apply for all components except the two terminal linker DNA
beads, which are pulled at constant speeds Vpull/2 in opposite directions along the y-direction,
as depicted in Fig. 1 A.
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While the octamer exhibits rotation and torque along its three axes, the DNA beads only
exhibit rotation and torque along their axis, defined by a vector pointing towards the next bead
along the DNA bead-chain. The reader is referred to Ref. (2, 5) for a detailed description of
the DNA model. The translational and rotational diffusion coefficient of the octamer is given
by DT

oct = kBT/6πηRoct and DR
oct = kBT/8πηR

3
oct, where Roct is the hydrodynamic radius

of octamer and η is the solvent viscosity. Similarly, the translational and rotational diffusion
coefficient of the DNA beads along the DNA axis DR

dna = kBT/4πηR
2
dnal0, where Rdna is the

hydrodynamic radius of each DNA bead and l0 ≡ 3 nm is the segment length associated with
each DNA bead. The force on each DNA and octamer bead is computed from the gradient of
the total potential energy

Fi = −∇riUtot (9)

where ri and Fi are the position vector and force acting on component i, respectively. The
torque on the ith DNA bead acting along its axis vector âi, arising from the twisting potential,
is given by

Tdna,i = − s
l0

(αi + γi − αi−1 − γi−1)âi (10)

while the torque on the histone octamer is given by

Toct =

Noct∑
i=1

(ri − rcm)× Fi (11)

where ri− rcm denotes the position vector of octamer bead i relative to the octamer center of
mass. All parameters associated with the BD algorithm are provide in Table S1.

S3. Obtaining free energy contribution of each groove bead

The binding free energy contribution ∆Gexp(i) from each octamer groove bead i is derived
from the DNA position-dependent cumulative free energy profile Gexp(x) obtained by Forties
et al. (6) (Fig. S1A). The DNA position x is defined relative to its nucleosomal entry site.
Thus, the dyad and the nucleosome exit sites are located at x = 73 bp and x = 146 bp,
respectively. Our procedure for obtaining ∆Gexp(i) consists of four steps. First, we shift the
given profile by 73 bp such that the DNA position is now relative to the dyad axis; the shifted
profile is denoted by Gsh(x). Second, the provided profile is not symmetric about the dyad
and is also incomplete on the right hand side of the dyad. To this end, we “symmetrize” the
profile ±10 bp about the dyad axis. Specifically, we replace the deviation in the free energy
from its dyad value, i.e., (Gsh(x)−Gsh(0)), by the average value of the deviation in the left and
right hand sides portions, i.e., [(Gsh(x)−Gsh(0)) + (Gsh(0)−Gsh(−x))]/2. The symmetrized
profile, denoted by Gsym(x), is then formally described by the following expression:

Gsym(x) =

{
Gsh(x) if x < −10 bp
1
2 [Gsh(−10) +Gsh(10)] + 1

2 [Gsh(−x)−Gsh(x)] if − 10 ≤ x < 0 bp
(12)

This symmetrized profile is shown in Fig. S1B. Third, we obtain a continuous free energy
profile Gfit from Gsym through spline fitting via MATLAB (Fig. S1B). Fourth, we determine
the free energies contributed by each octamer groove bead from the free energy difference along
the span of the DNA length associated with each bead, which is equal to 8.59 bp (Fig. S1C).
The derived free energy contribution ∆Gexp for each groove bead on the left hand side of the
dyad is plotted as a function of bead location in Fig. S1D. The groove beads on the right
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hand side can be obtained by symmetry: ∆Gexp(18− i) = ∆Gexp(i), recalling that there are
17 groove beads in total.

S4. Derivation of groove charge magnitudes

The charge parameterization procedure outlined in the main text yielded Eqs. (2-5), which
are rewritten below for convenience:

∆Gexp =

Ngr∑
i=1

∆Udo(i) + ∆Grem (13)

∆Gexp(i) = ∆Udo(i) + ∆Grem/Ngr (14)

∆Udo(i) = −Kqoct,i (15)

∆Gexp = α

Ngr∑
i=1

∆Udo(i) (16)

where ∆Gexp ≡
∑Ngr

i=1 ∆Gexp(i). Substitution of Eq. (14) into Eqs. (12) and (15) yields the
following two equations:

∆Gexp = −K
Ngr∑
i=1

qoct,i + ∆Grem (17)

∆Gexp = −Kα
Ngr∑
i=1

qoct,i (18)

Substitution of Eq. (17) into Eq. (15) followed by simplification yields:

∆Grem = K(1− α)

Ngr∑
i=1

qoct,i (19)

Substitution of Eq. (17) into Eq. (18) yields:

∆Grem = −1− α
α

∆Gexp (20)

Finally, substitution of Eqs. (14) and (19) into Eq. (13) yields:

∆Gexp(i) = −Kqoct,i −
1− α
αNgr

Ngr∑
i

∆Gexp(i) (21)

Upon rearrangement, Eq. (20) yields the final expression we seek for parameterizing the oc-
tamer groove bead charges:

Kqoct,i = −∆Gexp(i)−
1− α
αNgr

Ngr∑
i=1

∆Gexp(i) (22)
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S5. Model for extrapolating unraveling forces

The theoretical model used in this study for extrapolating the computed unraveling forces to
small pulling speeds was developed (7–9) to quantify the rates of transitions in molecules sub-
jected to a linearly increasing force in time, as implemented in dynamic force spectroscopy. The
molecular transitions could involve dissociation of molecular complexes held by intermolec-
ular interactions—such as drug-receptor systems, double-stranded DNA, and DNA/protein
complexes—to the unfolding of single molecules held together by secondary interactions—
such as folded RNAs and proteins.

The model assumes that the molecular transition occurs in the high-friction limit, where the
timescale of the transition is significantly longer than that associated with the thermalization
of the molecule. Furthermore, the transition is assumed to occur along a single, dominant
reaction coordinate, the pulling direction. Both assumptions are in fact applicable to the
nucleosome unraveling transition. Under such circumstances, one can describe the molecular
transition in terms of a potential of mean force (PMF) or the effective free energy along the
reaction coordinate. The PMF of the unperturbed system along the coordinate x containing
the stable bound state, the metastable dissociated state, and an energy barrier separating
the two states was modeled using a linear-cubic polynomial G0(x) (Fig. S4). The effect of
the force was modeled as a tilting of the energy landscape, yielding a new perturbed PMF:
G(x;F (t)) = G0(x) − F (t)x. This tilting results in a lowering of the barrier height and a
reduction in the distance to the barrier (Fig. S4). The model then invoked Kramers theory,
valid under the high-friction limit and large barrier heights, to determine the average transition
rate k(F ) over the barrier as a function of the instantaneous force F (t). Formulating the net
rate of transitions across the barrier dS(t)/dt as being equal to the transition rate k(F )
multiplied by the remaining fraction of bound states S(t) then allows one to determine the
distribution of times p(τtr), and the distribution of forces p(Ftr), at which the transitions
occur. The distribution p(Ftr) can also be averaged to provide the mean force 〈Ftr〉:

〈Ftr〉 =
∆G∗

νx∗

[
1−

{
1

β∆G∗ ln
k0e

β∆G∗+γ

βx∗Ḟ

}ν]
(23)

where ∆G∗ is the height of the activation energy barrier associated with the transition, x∗ is
the distance between the barrier and bound state, k0 is the intrinsic transition rate at zero
force, Ḟ is the rate at which the imposed force is increasing (loading rate), and γ = 0.578,
ν = 2/3, and β = 1/kBT .

Equation 20 can be directly applied to extrapolate the rupture forces Funr computed at
large pulling speeds to the small pulling speeds vpull typically employed in single molecule
pulling experiments. In our case, the molecular transition being examined is the abrupt
unraveling of the nucleosome. Therefore, the fully wrapped nucleosome represents the bound
state and the fully unwrapped nucleosome the dissociated state. The unraveling force Funr
takes the place of 〈Ftr〉. The pulling speed-dependent Ḟ is determined from the slope of the F -
t curve before the abrupt unraveling transition. The remaining parameters such as the energy
barrier, barrier location, and transition rate are the unknowns of the system that are adjusted
within known bounds until the Funr-Ḟ fit yields the least deviation between the computed
and experimentally measured Funr.

5



S6. Energetics of nucleosome unraveling

We have plotted in Fig. S2 the time evolution of the total energy Utot of the nucleosome
during unraveling along with that of its five components arising from DNA stretching (Ustr),
DNA bending (Uben), DNA twisting (Utwi), electrostatic repulsion between DNA (Urep), and
DNA/octamer interactions (Uoct/dna), the last of which includes both electrostatic attraction
and excluded volume interactions.

In regime R1, where the linkers are relaxed, Utot exhibits minimal changes. The only
changes that occur within this regime are a gradual decrease in Uben due to straightening of
the linkers and a small increase in Uoct/dna within the early stages of the regime due to the
unwrapping/rewrapping of the flanking portions of wound DNA. Note that the two energy
changes do not include the loss in entropy incurred with linker straightening and the gain in
entropy associated with DNA release.

In regime R2, where the linkers become taut, we note a sharp rise in Utot until the unrav-
eling of the inner turn (force rip). The main contributors to this rise are increases in Uoct/dna,
Uben, and Ustr even though Urep decreases. The increase in Uoct/DNA and decrease in Urep
both arise from the unwrapping of the “outer” turn of DNA from the octamer. The increase
in Ustr arises from the DNA becoming taut while the increase in Uben arises from the bending
of DNA at the entry/exit point in order to align with the linkers, which are oriented along
the pulling direction.

Upon the unwrapping of the “inner” turn, at the beginning of regimeR3, the DNA becomes
relaxed again and the DNA bending and stretching energies drop. Continued pulling of the
linkers results in the DNA becoming taut, leading to an increase in the DNA stretching
energy. However, the bending energy term remains constant, as the small amount of DNA
still attached to the octamer is already aligned along the pulling direction and does not need
to bend, as in regime R2. It is noted that the DNA twisting energy understandibly remains
nearly constant throughout the pulling, as the DNA ends are free to rotate during pulling.
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Table S1: Physical parameters associated with the coarse-grained nucleosome and Brownian
dynamics simulations.

Parameter Description Value

l0 Equilibrium DNA segment length 3.0 nm
h DNA stretching constant 300kBT/l

2
0

g DNA bending constant LpkBT/l
2
0

s DNA torsional rigidity 300 pN nm2

Lp DNA persistence length 50 nm
σev Excluded volume size parameter 2.4 nm
εev Excluded volume energy parameter 0.025 kBT
ε Dielectric constant of solvent 80
qdna Charge on DNA beads −24.1e
cs Salt concentration 150 mM
κ Inverse Debye screening length 1.275 nm−1

T Temperature 300 K
Roct Hydrodynamic radius of octamer 4.0 nm
Rdna Hydrodynamic radius of linker bead 1.5 nm
∆t BD simulation timestep 2 ps
Ngr Number of charged, groove beads 17
Nflk Number of flanking beads 34
Ncen Number of inner core beads 14
Noct Total number of octamer beads 65
Ndna Total number of DNA beads 39
λ Groove bead charge scaling factor 7.1e
wdna Width of wound DNA supercoil 4.5 nm
rdna Radius of wound DNA supercoil 4.18 nm
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Figure S1: Procedure for deriving binding free energy contribution ∆G from each octamer
groove bead. (A) Original cumulative free energy profile Gexp(x) of Forties et al. (6) (black
line). The dotted line represents the dyad location. (B) Shifted and symmetrized free energy
profile Gsym(x) (red line) and its spline fit Gfit(x) (dashed black line). (C) Free energy profile
indicating the span of the DNA segments associated with each groove bead, which are all equal
to 8.59 bp (blue crosses). (D) Free energy contribution for each groove bead determined from
the free energy difference across the DNA length associated with each bead (green circles).
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Figure S2: Time evolution of the total energy Utot (black) of the nucleosome system (black
line) and its four components from DNA stretching Ustr (magenta line), DNA bending Uben
(brown line), DNA twisting Utwi (green line), and DNA/DNA repulsion Urep (blue line),
and DNA/octamer attraction Uoct/dna (red line). For intact nucleosomes, at small times,
DNA/octamer attraction Uoct/dna ≈ −168 kcal/mol and the effective attraction Utot ≈ −80
kcal/mol. Thus, unfavorable contributions to DNA/histone binding from DNA stiffness and
DNA/DNA repulsion, reduce the overall affinity of DNA for the octamer by a factor α = 1/2.
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Figure S3: Number of direct and indirect hydrogen bonds between DNA and the histone
octamer at different locations along the wound DNA, as obtained by Davey et al. (10).
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Figure S4: Force-induced tilting of the energy landscape. The intrinsic PMF G0(x) (black
curve) with energy barrier ∆G∗, distance to barrier x∗, and transition rate k0 tilts with
imposed force F to a modified PMF G(x, F ) (brown curve) with a smaller energy barrier and
smaller distance to barrier.
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Figure S5: Results from unraveling simulations performed at vpull = 0.025 cm/s. (A-C)
Cartesian coordinates of the octamer center of mass as a function of time. (D) Force-extension
curves. (E) Extent of nucleosome wrapping as a function of time. (F) Octamer elevation angle
as a function of time. In each case, one representative trajectory is shown in black while the
remaining 35 trajectories are shown in grey.
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Figure S6: Results from unraveling simulations performed at vpull = 0.25 cm/s. (A-C) Carte-
sian coordinates of the octamer center of mass as a function of time. (D) Force-extension
curves. (E) Extent of nucleosome wrapping as a function of time. (F) Octamer elevation
angle as a function of time. In each case, one representative trajectory is shown in black while
the remaining 35 trajectories are shown in grey.
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