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Transport in an idealized model with variable pore diameter as well as an AlPO4-5 zeolite is
examined using three different molecular dynamics techniques:~1! equilibrium molecular dynamics
~EMD!; ~2! external field nonequilibrium molecular dynamics~EF–NEMD!; and ~3! dual control
volume grand canonical molecular dynamics~DCV–GCMD!. The EMD and EF–NEMD methods
yield identical transport coefficients for all the systems studied. The transport coefficients calculated
using the DCV–GCMD method, however, tend to be lower than those obtained from the EMD and
EF–NEMD methods unless a large ratio of stochastic to dynamic moves is used for each control
volume, and a streaming velocity is added to all inserted molecules. Through development and
application of a combined reaction–diffusion–convection model, this discrepancy is shown to be
due to spurious mass and momentum transfers caused by the control volume equilibration
procedure. This shortcoming can be remedied with a proper choice of streaming velocity in
conjunction with a well-maintained external field, but the associated overhead makes it much less
efficient than either the EMD or EF–NEMD techniques. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1407002#

I. INTRODUCTION

The transport of guest species confined within mi-
croporous hosts has important ramifications in areas such as
membranes, catalysis, and adsorption. When the size of the
diffusing species becomes commensurate with the size of the
confining pores, peculiar phenomena not seen in bulk sys-
tems are observed.1 There has been a great deal of effort
recently to better understand the phenomena associated with
transport in these materials, including experimental2 and
theoretical,3,4 approaches. Molecular simulations also have
become a valuable tool in examining these systems. Three
comprehensive reviews of simulation methods used to exam-
ine diffusion in these systems have appeared recently.5–7

The quantity most often of interest in studies of transport
of these guest species under concentration gradients is the
transport diffusivity, Dt . The above nonequilibrium mode of
transport is generally described by the Fickian constitutive
relation

J52Dt~c!¹c, ~1!

whereJ is the molecular diffusive flux and¹c is the spatial
concentration gradient, presumed to drive diffusion. An al-
ternative formulation which relates the molecular diffusive
flux to a driving force is based on the Onsager and Maxwell–
Stefan~MS! formulations of irreversible thermodynamics.8

This formulation presupposes that the driving force for iso-
thermal diffusive mass transport is a gradient in chemical

potential rather than a concentration gradient. Thus the MS
constitutive relation for a single component diffusing in a
stationary host is

J52
L~c!

kBT
¹m, ~2!

whereL(c) is the single component transport coefficient,kB

is the Boltzmann constant,T is temperature andm is the
chemical potential. Equation~2! can readily be extended to
treat mixtures.9 The usefulness and validity of the MS ap-
proach for modeling transport in microporous materials has
been confirmed by several authors.10,11The primary focus of
this paper will be on computing the MS transport coefficient
L, since the two nonequilibrium transport coefficients can be
related to one another through knowledge of the adsorption
isotherm via the following relation:12

Dt~c!5
L~c!

kBT

]m

]c
. ~3!

There are four general classes of methods that have been
used to compute the MS transport coefficientL. The methods
are summarized below.

A. Equilibrium molecular dynamics

Given certain reasonable assumptions,13 L may be com-
puted from a standard EMD simulation by a generalized
Green–Kubo relation12

L5
V

3E0

`

dt8^J~ t8!•J~0!&, ~4!
a!Electronic mail: ed@nd.edu
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where V is the system volume. Equation~4! is obtained
through invocation of linear response theory, so it is valid
only in the limit of small chemical potential gradients. By
writing the flux J in terms of the molecular velocityvi ,
defining the chemical potential in terms of the fugacity, and
substituting Eq.~4! into Eq. ~3!, we obtain

Dt5
1

3N S E
0

`

dt8K (
i 51

N

vi~ t8!•(
j 51

N

vj~0!L D S ] ln f

] ln cD
T

,

~5!

wheref is the fugacity andN is the number of molecules in
the system.

This method has the advantage that it has a firm statisti-
cal mechanical basis, is straightforward to implement, and
because it is an equilibrium method, allows the user to com-
pute a host of other equilibrium properties from a single
simulation. The drawback is that the integral in Eqs.~4! or
~5! can be quite difficult to compute. EMD has been success-
fully used by several authors for computing nonequilibrium
transport coefficients of confined fluids.9,14–16

In the expression forDt @Eq. ~5!#, the correlation func-
tion inside the pointed brackets may be split into sep-
arate autocorrelation and cross-correlation parts, thereby
resulting in

Dt5S 1

3N (
i 51

N E
0

`

dt8^vi~ t8!•vi~0!&

1
1

3N (
i 51

N

(
j Þ i

N E
0

`

dt8^vi~ t8!•vj~0!& D S ] ln f

] ln cD
T

.

~6!

Note that the autocorrelation term in the above equation rep-
resents theself-diffusivity Ds . In the dilute limit wherec
tends to zero, the cross-correlation term in Eq.~6! tends to
zero and (] ln f/] ln c)T approaches unity. Hence, in the dilute
limit, the transport diffusivity tends to approach the self-
diffusivity. The two diffusivities should not be confused with
each other at finite concentrations as one is an individual
property (Ds), while the other is a collective property (Dt).

B. Transient molecular dynamics

A second method proposed for computing nonequilib-
rium transport coefficients involves the use of a transient
molecular dynamics technique.12 In this method, an actual
concentration gradient is set up within a simulation cell. The
system is then allowed to relax using MD, and the rate of
relaxation is monitored and fit to the appropriate continuum
solution of the diffusion equation. In this way,Dt can be
extracted directly from a single simulation. The method has a
good physical basis and, in principle, is more computation-
ally efficient than EMD simulations. It suffers from a number
of practical issues, however, including difficulties in setting
up an initial concentration profile and uncertainty about
whether or not the simulation is occurring in the linear re-
sponse regime. Transient MD techniques have been shown to
be more efficient than EMD and NEMD methods in comput-
ing other collective properties such as shear viscosity.17

C. External field nonequilibrium molecular dynamics

A third technique for obtainingL is to drive the system
using an external field. In this approach, an external fieldF
that mimics the influence of a chemical potential gradient is
introduced into the Hamiltonian. The system responds to this
external perturbation by developing a homogeneous flux.
Once the steady-state value of this flux has been measured,
the coefficientL is then computed using Eq.~2! by replacing
the ‘‘2¹m ’’ term in the equation by the external force term
‘‘ F. ’’ The method is similar in spirit to other nonequilibrium
methods used to compute collective transport properties such
as viscosity.18 Complete details of the method as applied to
transport in microporous hosts may be found elsewhere.12

The advantages of this technique are that it is easy to imple-
ment, computationally efficient, and a range of gradients
may be used. The latter feature enables one to examine both
linear and nonlinear responses. This method has not been
widely used, perhaps because the equivalence of such a ho-
mogeneous external forcing function that drives diffusion
and an actual chemical potential gradient has not been for-
mally demonstrated. One of the objectives of the present
study is to investigate whether the use of an external field in
place of an actual chemical potential gradient is justified.

D. Boundary-driven nonequilibrium molecular
dynamics

The fourth technique for obtaining nonequilibrium trans-
port coefficients is through use of boundary-driven
methods.19–21As applied to the study of transport in porous
materials, this method involves the construction of high and
low concentration reservoirs on opposite sides of a ‘‘trans-
port zone.’’ Molecules flow between the reservoirs and, as
long as the population of the reservoirs is replenished, a
steady-state flux develops. By computing the steady-state
flux and through knowledge of the chemical potential~or
concentration! gradient between the reservoirs, the transport
coefficient may be evaluated directly as is consistent with the
basic assumption of irreversible thermodynamics@see Eq.
~2!#. This method has been enthusiastically adopted by many
researchers, and is currently the most commonly used of the
four techniques listed above for computing nonequilibrium
transport coefficients. It has been used to study diffusion in
zeolites,22 membranes,21,23–27 polymers,28 microporous car-
bon and slit pores29–33and fluid systems.34,35 The boundary-
driven approach owes its popularity to the fact that it is a
conceptually attractive method. Concentration or chemical
potential gradients are established that mimic a real system,
and the flux develops as a natural consequence.

There are several limitations of this method though.
First, the number of molecules that must be simulated is
larger than in any of the other approaches, due to the fact that
reservoirs of molecules are required to maintain a density
gradient. Second, the overhead associated with keeping the
reservoirs properly populated~usually performed through a
grand canonical Monte Carlo or GCMC procedure! is a sig-
nificant fraction of the total simulation cost. This can be
especially troublesome for complex molecules or dense sys-
tems, where the probability of achieving an accepted inser-
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tion of a molecule using a grand canonical procedure can be
very low. Recent work has been directed at overcoming this
problem,35 although many difficulties still remain. Third, the
near-equilibrium approximation of irreversible thermody-
namics that stipulates a linear relationship between the dif-
fusive flux and the chemical potential gradient is often dis-
rupted by real or artificial momentum transfers~as will be
shown later in this paper!. In general, momentum transfer
can be included in the Onsager formalism of irreversible
thermodynamics but this would require the determination of
additional transport coefficients which are difficult to esti-
mate. The best strategy to obtain an accurate value ofL is
therefore to identify such momentum transfers and to remove
them artificially in these simulations. Finally, there are
choices to be made about how to handle the reservoirs and
the way they are interfaced with the transport region of the
simulation box. These choices impact the performance of the
simulation and the results that are obtained.

The first such choice to be made is the ratio of Monte
Carlo to molecular dynamics moves or, in other words, the
equilibration rate. Ideally, one would like this MC:MD ratio
to be large so that the reservoirs are maintained at a fixed
chemical potential.29 If the ratio becomes too large, however,
the computational requirements become overwhelming. Dif-
ferent authors have used different MC:MD ratios, and these
ratios are often varied depending on the system being stud-
ied. Generally speaking, the greater the rate of transport, the
higher the ratio should be.20 Cracknell and co-workers used
MC:MD ratios ranging from 20:1 to 110:1.29 Xu and co-
workers varied their MC:MD ratio from 50:1 to 400:1, de-
pending on the size of the confining pore.31 Heffelfinger and
van Swol have used a ratio of 100:1 in examining a fluid
system.20 Thompson and co-workers used a ratio of 3072:1
to study binary diffusion.34

The second choice that must be made when performing
such a simulation is how to assign the velocities of the mol-
ecules that are inserted in the reservoirs. Generally, molecu-
lar velocities are chosen from a Maxwell–Boltzmann distri-
bution consistent with the thermodynamic temperature of the
system. Some authors also add a ‘‘streaming velocity’’ to
inserted molecules29,31 while others do not.20,34 It has been
argued that the addition of streaming velocities to newly in-
serted molecules is necessary to avoid discontinuities in ve-
locities at the reservoir/transport region interface, and that
failure to add these streaming velocities leads to severely
underestimated fluxes.31 The addition of the proper stream-
ing velocity is nontrivial, however, since the streaming ve-
locity ~i.e., flux! is the object of the simulation and so is not
known a priori.29 Typically, an iterative procedure is used,
although such a method is prone to numerical instabilities.29

In summary, boundary-driven methods are conceptually
attractive and simple, but the approach can be more compu-
tationally intensive than other techniques. Furthermore, the
fact that the results can depend on how the reservoirs are
interfaced with the transport region means that one must be
very careful in how a simulation is conducted.

Given the variety of simulation methods available for
calculating nonequilibrium transport coefficients in confined
media, the obvious question is: which method is best? Sur-

prisingly, there has not been a study in which these methods
have been critically compared against one another in terms
of accuracy and performance. There have been some com-
parisons made between results obtained using boundary-
driven and EMD methods,20,29,31but these comparisons were
generally limited to the self-diffusivity to ensure that the
boundary-driven simulation was working properly. The ob-
jective of the present study is to critically compare the accu-
racy and performance of three techniques for computing
nonequilibrium transport coefficients in confined media. The
three techniques examined are equilibrium molecular dy-
namics~EMD!, external field nonequilibrium molecular dy-
namics ~EF–NEMD!, and boundary-driven molecular dy-
namics in the form of the commonly used dual control
volume grand canonical molecular dynamics~DCV–GCMD!
algorithm. We also intend to study in detail the role of
MC:MD ratio and streaming velocity on the DCV–GCMD
results. We do not believe that transient methods of the kind
described above are as useful for these types of simulation,
and so we will not examine the use of this approach.

II. MODEL AND SIMULATION DETAILS

Simulations were carried out in two different model pore
systems. Model 1 consisted of a single pore cut through a
face-center-cubic~fcc! lattice of oxygen atoms. The use of
such a pore system enabled the diameter of the pore to be
varied easily, so as to gauge the impact of pore diameter on
the different simulation results. Nominally cylindrical pores
of radiusr p along thez axis were created by removing oxy-
gen atoms from the fcc lattice whose centers were less than
r p away from the pore axis. The Model 1 lattice is made up
of several unit cells aligned along thez direction, where the
width of the unit cell in thex andy directions fully encom-
passes the pore. It is important to keep the lattice width in the
x and y directions larger than the diameter of the pore plus
the cutoff radius of the potential~see below!. The spacing
between adjacent oxygen atoms,w, is fixed at 3.2 Å. Thus
the length of the unit cell in thez direction is equal to 4.525
Å ( 5wA2), the true fcc unit cell length. The lattice is as-
sumed to be rigid and defect free. Figure 1 shows a sche-
matic of the structure of the pore and the oxygen lattice. Also
shown in the same figure is a single unit cell as depicted by

FIG. 1. Schematic showing the pore structure of Model 1. The shaded atoms
comprise a unit cell.
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the shaded oxygen atoms. Note that after removing the oxy-
gen atoms from the lattice to form the pore, the resulting
pore cross section does not remain perfectly circular but has
some corrugations.

Pore Model 2 consisted of an actual zeolite pore
(AlPO4-5), which has a simple pore structure consisting of
nonintersecting and approximately cylindrical pores of nomi-
nal diameter 7.3 Å running in the@001# direction. The unit
cell of AlPO4-5 has lattice parametersa513.726 Å, b
513.726 Å, c58.484 Å, a590°, b590° and g5120°.
Consistent with many past studies, the zeolite was modeled
as a rigid lattice of oxygen atoms.36 The AlPO4-5 simula-
tions serve as a check to ensure that the results obtained in
the present work are general and applicable to real porous
materials.

The diffusing guest species was a Lennard-Jones sphere
with self-interaction parameterss53.73 Å and e/kB

5147.95 K37 chosen to represent methane. Interactions be-
tween methane and the host oxygen atoms for both model
systems were treated using parameters from Ref. 37, namely
s53.214 Å ande/kB5133.3 K. The potential cutoff radius
was taken to be 10 Å. To reduce computational effort, a
pretabulated potential map with a grid spacing of 0.2 Å was
used.38 Interactions between species in neighboring pores
were neglected to save computational time. Although it is
possible for molecules in neighboring pores of AlPO4-5 to
come slightly closer than the potential cutoff distance, these
interactions are very small compared to those due to the pore
walls and sorbates in the same pore, and so are not expected
to have a significant impact on the transport properties.39

The simulation box for all the simulations consisted of
an array of unit cells along thez direction. Periodic boundary
conditions were applied in thez direction, while no periodic
boundary conditions were required in thex andy direction as
the sorbate molecules were confined within the pore. Figure
2~a! is a schematic of the simulation cell used for the DCV–
GCMD simulations, while Fig. 2~b! shows the cell corre-
sponding to the EMD and EF–NEMD simulations. The
DCV–GCMD simulation cell consists of two transport re-
gions, each sandwiched between two control volumes. The

control volume in the middle of the simulation cell is re-
ferred to as CV1, while the two control volumes at the ends
are referred to as CV2. CV1 is maintained at a high fugacity
f CV1 , while the end control volumes CV2 are maintained at
a lower fugacityf CV2 . The length of the control volumes is
l CV while the length of the transport region isl TR.

A velocity Verlet algorithm with a time step of 5 fs was
used to integrate the equations of motion. The equations of
motion for the EF–NEMD simulations are the same as for
the other two methods, except that an additional force in the
z direction (F52¹m) is added to each molecule. To main-
tain a constant temperature, a Nose´–Hoover thermostat40

with a time constant of 0.5 ps was used in all the simulations.
For the EF–NEMD and DCV–GCMD simulations~where
molecular fluxes develop! the temperature is defined by sub-
tracting off the streaming velocity from thez component of
the velocities. All simulations were performed at 300 K.

To compare the results for the different methods, the MS
mobility coefficient was computed for each simulation
method under the same nominal conditions. The mobility
coefficient was computed using EMD through direct appli-
cation of a Green–Kubo formula similar to Eq.~4!,

L5VE
0

`

dt8^Jz~ t8!Jz~0!&, ~7!

where now only thez component of the flux and mobility
tensor is relevant. For the EF–NEMD simulations, the mo-
bility coefficient was determined by first computing the
steady-state flux that developed upon application of the ex-
ternal forceF ~assumed to drive molecules in the positivez
direction!, using the following equation:

Jz5
N12N2

t runAxy
, ~8!

where t run is the simulation run time over which the fluxes
are recorded andAxy is the cross-sectional area of the pore,
approximated aspr p

2 . N1 andN2 represent the net number
of sorbate molecules that move through a flux plane within
the pore in the positive and negativez directions, respec-
tively. The MS mobility coefficient was then obtained from
the measured flux as discussed in Sec. I. For the DCV–
GCMD simulations, the steady-state flux that developed as a
result of a chemical potential gradient¹m5(mCV1

2mCV2)/ l TR was computed using Eq.~8!, with the flux taken
as the average of the fluxes recorded at planes located in the
middle of the two transport regions. The MS mobility coef-
ficient was then obtained from Eq.~2!. Typically, simulation
times on the order of 10–100 ns were required to obtain
reliable flux values.

To make the comparison with the EMD simulations
valid, it is crucial to ensure that the EF–NEMD and DCV–
GCMD simulations are in the linear response regime. To
check this for the DCV–GCMD simulations, simulations at
three different chemical potential gradients were performed.
The actual conditions are shown in Table I, where ‘‘L’’ des-
ignates low gradient simulations, ‘‘M’’ medium gradient
simulations, and ‘‘H’’ high gradient simulations. The results
described below show that, within the accuracy of the simu-
lations, the computed transport coefficients are independent

FIG. 2. Schematic diagram showing~a! the DCV–GCMD simulation cell,
and ~b! the EMD or EF–NEMD simulation cell.
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of the gradient, confirming that the system is in the linear
response regime. The EF–NEMD simulations were per-
formed using the same nominal chemical potential gradient
as the DCV–GCMD simulations, and were also found to be
in the linear response regime.

The AlPO4-5 simulations were performed at two differ-
ent sorbate loadings, where the low loading simulations were
designated by the symbol ‘‘LL’’ while the high loading simu-
lations were designated by the symbol ‘‘HL.’’ Model 1 simu-
lations at each pore radius were however performed at a
single loading~refer to Table I!. The EMD and EF–NEMD
simulations were performed at the same average sorbate
loading as the DCV–GCMD simulations. In all cases, four
different simulations were conducted, each starting from a
different initial configuration. The results of these individual
simulations were averaged to get the reported values. The
lengths of the transport region in the DCV–GCMD simula-
tions were fixed atl TR518.10 Å and l TR516.97 Å for
Model 1 and Model 2, respectively, while the size of the

control volumes was varied to accommodate a given loading.
Other simulation details are provided in Table II.

Two different types of DCV–GCMD simulations were
conducted to test the importance of the use of a streaming
velocity and the MC:MD ratio. The first set of simulations
were standard DCV–GCMD simulations without the addi-
tion of a streaming velocity, and at three different MC:MD
ratios. These simulations are denoted with the prefix
‘‘DCVNS’’ where NS stands for ‘‘no streaming’’ velocity.
Simulations designated as DCVNS1 are associated with a
very low grand canonical Monte Carlo overhead of 100
insertion/deletion attempts every 50 MD time steps.
DCVNS2 simulations employed 500 MC insertion/deletion
moves every 50 MD time steps, whereas DCV3NS simula-
tions used 500 MC moves every 10 MD time steps. A second
set of three DCV–GCMD simulations, denoted by the prefix
‘‘DCVWS’’ where WS stands for ‘‘with streaming’’ velocity,
were performed at identical MC:MD ratios as the corre-
sponding DCVNS simulations, but a streaming velocity con-
sistent with the flux in the transport region was added to each
newly inserted molecule. The streaming velocity was calcu-
lated as the average flux measured in the previous 1000 time
steps divided by the average concentration in the control
volume. Molecules were given a positive or negative stream-
ing velocity depending on which side of the control volume
center line they were added~see Fig. 2!.

Finally, in an effort to better understand the results ob-
tained from the different methods, a hybrid simulation tech-
nique was created that combines elements of the EF–NEMD
and DCV–GCMD methods. This technique is designated
with the prefix ‘‘DEF.’’ In the hybrid simulations, a simula-
tion cell identical to that used in the DCV–GCMD simula-
tions is used. Unlike the DCV–GCMD simulations, how-
ever, the two control volumes are maintained atequal
chemical potentials through the use of a GCMC routine. The
sorbate loading therefore remains uniform throughout the
system, in contrast to the DCV–GCMD simulations. A force
equal to the desired chemical potential gradient is added to
the molecules within the transport region, and the resulting
steady state flux was recorded and used to determine a trans-
port coefficient via Eq.~2!. In particular, we conducted one
such type of simulation, whereby we used thesameMC:MD
ratio as in the DCVNS1 simulations, andno streaming ve-
locity was added to newly inserted molecules in the control
volumes ~hence the simulation is designated as DEFNS1!.
The DEFNS1 simulations mimic the EF–NEMD simulations
with the exception that control volumes are added to the ends
of the transport regions. The DEFNS1 simulations also
mimic the DCVNS1 simulations, except that an external
force replaces an actual chemical potential gradient as the
driving force for diffusion.

III. RESULTS AND DISCUSSION

A. Simulation results

Table III lists the computed values of the transport coef-
ficient L as a function of pore size, gradient level, model
type, and simulation method. The error bars on the results
were estimated by computing the variance of four simulation
runs, each starting from a different initial configuration. In

TABLE I. Fugacities maintained in the two control volumes (f CV1 and
f CV2), the magnitude of the chemical potential difference (Dm) relative to
kBT, and the chemical potential gradient (¹m) produced for the different
simulations.

f CV1 f CV2 Dm/kBT ¹m
Model system Gradient level ~bar! ~bar! ~J/mol/m!

L 65.0 55.0 0.1671 2.301831011

Model 1 M 70.0 50.0 0.3365 4.636131011

H 75.0 45.0 0.5108 7.038531011

L 2.2 1.8 0.2007 2.949731011

Model 2 ~LL! M 2.4 1.6 0.4055 5.960131011

H 2.6 1.4 0.6190 9.099531011

L 72.0 48.0 0.4055 5.960131011

Model 2 ~HL! M 76.0 44.0 0.5465 8.033931011

H 80.0 40.0 0.6931 1.018931012

TABLE II. EMD, EF–NEMD, and DCV–GCMD simulation details for
Model 1 simulations at the five different pore radii (r p), and Model 2
simulations at the two different sorbate loadings.

r p

~Å!
l CV

a

~Å!
l E

b

~Å!
cavg

c

~molec./UC!
tD

d

~ns!
tE

e

~ns!

2.00 126.7 398.2 0.77 100~50! 100~50!
4.56 54.3 144.8 2.07 50~25! 50~25!

Model 1 6.70 36.2 90.5 3.25 50~25! 50~25!
9.35 27.2 63.4 5.11 25~12! 25~12!

15.56 18.1 36.2 9.70 10~5! 10~5!

Model 2 ~LL! 3.65 339.36 1153.8 0.53 250~100! 100~50!

Model 2 ~HL! 3.65 67.87 169.7 3.56 250~100! 100~50!

aLength of control volumes in the DCV–GCMD simulations.
bLength of EMD and EF–NEMD simulation cell.
cSorbate loading~equal in the EMD, EF–NEMD, and DCV–GCMD simu-
lations!.

dDCV–GCMD simulation run length. Equilibration times are in parentheses.
eEMD and EF–NEMD simulation run length. Equilibration times are in
parentheses.
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the case of EMD simulations, the error bars were computed
by taking the standard deviation of plateau values of the
integral in Eq. ~7! at an appropriately chosen simulation
time. A time of 50 ps seemed reasonable as the integrals
were observed to have reached near-steady values at that
time. Measuring values of the integral at larger times resulted
in large statistical errors, while shorter times led to system-
atic errors due to the neglect of long time tails.40 The error
bars on the EF–NEMD and DCV–GCMD results were com-
puted from the variance of block averages of the fluxes ob-
tained from the four runs.

There is generally good agreement between the transport
coefficients computed using EMD and EF–NEMD simula-
tions for all the pore radii and for both models. Note that the
EF–NEMD results have smaller error bars as compared to
the EMD method, suggesting that EF–NEMD is the more
accurate of the two methods. The agreement between the
DCV–GCMD results and the EMD or EF–NEMD results is
on the other hand far from satisfactory. It is observed that the
flux computed from the simulations with the low MC:MD
ratio and no streaming velocity~DCVNS1! is lower than the
flux from the EMD and EF–NEMD simulations by factors
ranging roughly from 1.4 to 2.3. This is true for both Model
1 and Model 2, although the differences are smaller for
Model 2. The DCVNS1 and DCVWS1 results in Table III
show that keeping the MC:MD ratio constant but imposing a
streaming velocityincreasesthe computed transport coeffi-
cient. The magnitude of the increase ranges from less than
10% for the smallest pores to roughly 60% for the largest

pores. This observation of confirms the assertion of Xu and
co-workers that neglect of the streaming velocity leads to a
lower computed flux.31 The transport coefficients computed
in the DCVWS1 simulations are still significantly smaller,
however, than those obtained using the EMD or EF–NEMD
methods.

To investigate the role that the ratio of stochastic to de-
terministic moves plays on the computed transport coeffi-
cient, the number of MC moves per 50 MD time steps was
increased from 100 to 500 in the DCVWS2 simulations, and
the frequency was increased in the DCVWS3 simulations
such that 500 MC moves were performed every 10 MD time
steps. In both cases, a streaming velocity was also added to
inserted molecules. The results in Table III clearly show that,
as the ‘‘stochastic content’’ of the simulation increases, the
transport coefficient computed using the DCV–GCMD ap-
proaches that calculated using EMD and EF–NEMD. This
can be more clearly observed in Fig. 3 where EMD, EF–
NEMD, and DCV–GCMD results have been plotted along
side each other. To show that the DCVWS-type simulation
results asymptotically approach the EMD and EF–NEMD
results as the MC:MD ratio is increased, and thatL does not
increase indefinitely with the MC:MD ratio, we plottedL
obtained from DCV–GCMD simulations for the case of
Model 1 with a pore radii of 6.7 Å against MC:MD ratio in
Fig. 4. The plot also shows an additional simulation result at
an abnormally high MC:MD ratio of 500 insertion/deletion
attempts every MD time step. It can be clearly observed that
L does reach a steady value at high MC:MD ratios, and that

TABLE III. Computed transport coefficients from the EMD, EF–NEMD, DCV–GCMD, and the hybrid methods in the two model systems. The numbers in
parentheses represent statistical uncertainties in the value of the transport coefficients.

r p

~Å!
Gradient

level

Transport coefficientL @1043~mol/m/s!#

EMD EF–NEMD DEFNS1 DCVNS1 DCVNS2 DCVNS3 DCVWS1 DCVWS2 DCVWS3

L 23.78~0.65! 10.17~0.78! 10.81~1.63! 11.08~1.43! 14.56~0.63! 11.63~0.34! 15.55~0.77! 21.51~2.41!
2.00 M 22.25~1.55! 21.99~0.18! 9.59~0.17! 10.19~0.63! 12.46~0.54! 13.56~0.31! 10.64~0.97! 15.36~0.30! 22.13~1.71!

H 21.15~0.22! 9.73~0.55! 10.55~0.37! 12.32~0.37! 13.65~0.45! 10.77~0.32! 16.19~0.73! 22.13~0.26!

L 15.43~0.28! 8.85~0.28! 9.37~0.69! 9.02~0.24! 9.34~0.29! 12.40~0.11! 16.16~1.11! 15.63~1.19!
4.56 M 16.08~1.17! 15.60~0.44! 8.67~0.43! 8.85~0.22! 8.96~0.06! 9.57~0.10! 12.12~0.04! 15.09~0.75! 16.08~0.25!

H 15.72~0.13! 8.72~0.23! 9.03~0.20! 8.86~0.19! 9.71~0.19! 12.06~0.03! 14.20~0.06! 16.19~0.26!

L 8.20~0.28! 5.31~0.14! 5.31~0.23! 5.98~0.55! 6.41~0.56! 7.83~0.18! 8.54~1.52! 8.86~0.40!
Model 1 6.70 M 9.64~1.08! 8.66~0.24! 5.52~0.18! 5.68~0.23! 5.89~0.32! 6.12~0.22! 7.32~0.20! 8.43~0.45! 9.23~0.53!

H 8.88~0.15! 5.47~0.21! 5.79~0.08! 5.63~0.16! 5.93~0.30! 7.47~0.25! 8.46~0.09! 9.06~0.20!

L 11.93~0.49! 6.07~0.12! 5.86~0.83! 6.49~1.01! 6.31~0.40! 9.01~0.76! 10.69~1.29! 13.22~1.83!
9.35 M 13.16~0.83! 12.54~0.16! 6.25~0.17! 6.90~0.07! 6.15~0.31! 6.70~0.33! 9.65~0.36! 11.00~0.56! 12.50~0.47!

H 12.74~0.20! 6.06~0.12! 6.21~0.13! 6.37~0.18! 6.63~0.13! 9.31~0.16! 10.69~0.37! 11.74~0.54!

L 10.57~0.14! 4.61~0.24! 4.68~0.28! 4.95~0.22! 5.20~0.16! 7.23~0.33! 8.71~0.26! 9.72~0.27!
15.56 M 10.94~0.83! 10.88~0.09! 4.43~0.03! 4.45~0.23! 4.71~0.12! 5.05~0.23! 7.03~0.25! 8.30~0.33! 9.29~0.09!

H 10.92~0.08! 4.41~0.07! 4.56~0.08! 4.61~0.08! 4.87~0.10! 6.87~0.11! 8.25~0.11! 9.15~0.11!

L 1.02~0.07! 0.78~0.09! 0.79~0.07! 0.88~0.07! 0.79~0.12! 0.96~0.13! 0.84~0.09! 0.97~0.01!
Model 2 ~LL! 3.65 M 1.21~0.11! 1.11~0.04! 0.80~0.05! 0.80~0.01! 0.78~0.03! 0.82~0.03! 0.86~0.06! 092~0.07! 0.87~0.05!

H 1.12~0.04! 0.77~0.04! 0.80~0.03! 0.77~0.03! 0.77~0.04! 0.82~0.02! 0.88~0.02! 0.88~0.02!

L 1.61~0.09! 1.34~0.03! 1.45~0.08! 1.51~0.05! 1.68~0.07! 1.48~0.08! 1.70~0.12! 1.80~0.05!
Model 2 ~HL! 3.65 M 1.87~0.10! 1.71~0.09! 1.34~0.04! 1.46~0.08! 1.62~0.02! 1.71~0.03! 1.49~0.02! 1.67~0.03! 1.80~0.03!

H 1.77~0.06! 1.36~0.02! 1.44~0.01! 1.64~0.03! 1.71~0.04! 1.54~0.05! 1.65~0.02! 1.88~0.01!
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this value is commensurate with the EMD and EF–NEMD
results. On the other hand, increasing the MC:MD ratio with
no addition of a streaming velocity~as in DCVNS2 and
DCVNS3 simulations! results only in little to moderate in-
creases in the transport coefficient, and the transport coeffi-
cients at the highest MC:MD ratio are still significantly
smaller than transport coefficients obtained via EMD and
EF–NEMD methods~as seen clearly in Fig. 3!. Hence, an
increase in the MC:MD ratio profoundly impacts simulation
results when the streaming velocity is implemented, but has
only a small effect on simulation results when the streaming
velocity is not implemented.

If one accepts that the EMD results are ‘‘correct,’’ then it
is clear that the EF–NEMD method is able to obtain the
correct transport coefficient, but that the value of the trans-
port coefficient obtained from the DCV–GCMD simulations

depends on the choice of whether a streaming velocity is
added and what the MC:MD ratio is. To obtain the ‘‘correct’’
transport coefficient using DCV–GCMD, a large MC:MD
ratio is required and a streaming velocity must also be used.
This result is consistent with previous findings.31,34 Unfortu-
nately, the overhead associated with these operations is a
significant fraction of the total simulation time. For example,
the DCV–GCMD runs for the DCVWS1 simulations atr p

56.7 Å take roughly 3.5 h to complete on a SunULTRA30
workstation, whereas the DCVWS3 simulations with en-
hanced rates of insertions and deletions take about 7.5 h to
complete. Increasing the frequency of insertions/deletions
from 10 MD time steps to 1 MD time step~as is commonly
done! increases the computational requirements even more,
as these simulations now take roughly 50 h to complete. In
contrast, equivalent EMD and EF–NEMD simulations took
only about 1.5 h of CPU time to complete. This demonstrates
that the EMD and EF–NEMD methods are significantly
more efficient than the DCV–GCMD method for calculating
nonequilibrium transport in microporous systems.

To gain more insight into the DCV–GCMD results, we
also obtained the concentration and flux profiles for the six
different simulations, i.e., three DCVNS-type simulations
plus the three DCVWS-type simulations. The profiles were
obtained by dividing the axial length of the DCV–GCMD
simulation cell into a number of bins of equal width. A bin
width was chosen such that each unit cell of width 4.525 Å
accommodated exactly eight bins. The concentration in each
bin was computed by collecting the average number of mol-
ecules in the bins over the course of a simulation and then
dividing it by the bin volume. The flux in each bin was
measured by multiplying the average concentration by the
average velocity, as measured in each bin. Figures 5 and 6
show the concentration and flux profiles obtained from the

FIG. 3. Computed values ofL for methane in Model 1 lattice from EMD,
EF–NEMD, and the various DCV–GCMD simulations at different pore
radii r p . The solid and dashed lines are meant to guide the eye.

FIG. 4. Computed values ofL for methane in Model 1 lattice with a pore
radius of 6.7 Å from DCV–GCMD simulations at different MC:MD ratios.
The MC:MD ratio was calculated as the number of insertion/deletion at-
tempts per GCMC step divided by the number of MD time steps between
two successive GCMC steps. The value ofL obtained from EMD and EF–
NEMD simulations are shown for reference. The dashed lines are meant to
guide the eye.

FIG. 5. Concentration profiles for the DCV–GCMD simulations. Solid sym-
bols are representative of DCVNS-type simulations while open symbols are
representative of DCVWS-type simulations. Circular symbols represent
simulations at the lowest MC:MD ratio, square symbols represent simula-
tions at the medium MC:MD ratio, while triangular symbols represent simu-
lations at the highest MC:MD ratio. The insets show a close-up view of the
two interfaces. The solid and dashed lines are the concentration profiles
obtained from the RDC model for the DCVNS-type simulations and
DCVWS-type simulations, respectively.
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high ~H! gradient DCV–GCMD simulations in a 6.7 Å ra-
dius pore of Model 1, respectively. Note that we only show
the profiles on the right half of the DCV–GCMD simulation
cell, knowing that the concentration and flux profiles on the
left half of the simulation cell are, respectively, symmetric
and antisymmetric to those on the right half. Concentration
and flux profiles obtained from the rest of the DCV–GCMD
simulations are not shown here, as they are very similar in
nature to the ones shown for the present pore system.

It is noted that the concentration profiles fluctuate rap-
idly with large amplitudes due to corrugations in the pore
potential thus making them almost indistinguishable from
each other~refer to Fig. 5!. In addition, these profiles are
found to have poor resolution, especially at the interfacial
regions between the transport region and the control vol-
umes. In fact, the running averages of the profiles~not
shown! also suffer from the above problems. We can observe
from the existing plots that the concentrations in the control
volume have been maintained fairly well in all the simula-
tions, and that they exhibit an almost linear decay in the
transport region. This linearity breaks down at the interfaces,
suggesting significant momentum and mass transfers. In par-
ticular, we find that the concentrations at the control
volume–transport region interfaces deviate from the concen-
trations within the bulk of the corresponding control vol-
umes, i.e., the ‘‘required’’ concentrations. For example, the
concentration at the CV1 interface is slightlybelow the re-
quired value, while the concentration at the CV2 interface is
slightly abovethe required value. This is evidently because
CV1 is not supplying molecules fast enough to the interface
to account for the molecules being lost to the transport re-
gions, and that CV2 is not depleting molecules fast enough
to account for the molecules entering the lower concentration
control volume. Another observation, though not clearly vis-
ible from Fig. 5, is that these interfacial concentrations ap-

proach their required values as the MC:MD ratio is in-
creased. This is because the control volumes are now able to
more thoroughly regenerate and deplete molecules at the in-
terfaces as applicable.

The flux profiles plotted in Fig. 6 present a striking dis-
tinction between the six different simulations. The dotted
horizontal line in the figure corresponds to the flux obtained
in an ‘‘idealized’’ DCV–GCMD simulation with a transport
coefficient equal to the average of transport coefficients ob-
tained by EMD and EF–NEMD methods. This flux value of
1.59531023 molecules/Å2/ps is denoted by the symbolN0

for future reference. We note that the fluxes obtained in the
transport regions for all DCV–GCMD simulations are lower
than N0, and that they approachN0 when large MC:MD
ratios as well as a streaming velocity are used. When a
streaming velocity is not used, the three fluxes remain almost
unchanged irrespective of the MC:MD ratio at about two-
thirds of theN0 value. We notice that the flux profiles for the
DCVNS-type simulations decay to zero inside the control
volumes due to the absence of any concentration gradients
within the ‘‘bulk’’ of the control volume. This is not the case
for the DCVWS-type simulations, where the fluxes remain
nonzero in the control volumes. Clearly, this difference in the
two profiles arises due to the presence of a streaming veloc-
ity in the DCVWS-type simulations, which gives rise to
some form of convective flux developing in the control vol-
umes. In the DCVNS-type simulations where a streaming
velocity is not added, no such fluxes are observed. We also
observe that the convective flux in the DCVWS-type simu-
lations increases with the MC:MD ratio, evidently because a
larger fraction of the molecules in the control volumes are
the newly inserted molecules which possess a streaming ve-
locity. In addition, we notice rather large fluctuations in the
flux profiles within the control volumes for the simulations
with large MC:MD ratios~i.e., the DCVNS3 and DCVWS3
simulations!, apparently due to molecules not having enough
time to develop a smooth flux profile. The fluxes abruptly
tending to zero at the edges of the figure is an artificial
boundary effect due to the requirement that the fluxes pass
through a zero value atz50 andz5 l CV1 l TR to accommo-
date negative flux values in the left half of the simulation
cell.

It is instructive to examine the results of the hybrid
DEFNS1 simulations to better understand the source of the
differences between the DCV–GCMD simulations and the
other two techniques. Recall that in the DEFNS1 simula-
tions, the flux is driven by the external field added to the
Hamiltonian, as is done in EF–NEMD simulations, but the
impact of having control volumes with molecular insertions
and deletions is also incorporated, as is done in DCV–
GCMD simulations. The results in Table III show that the
transport coefficients obtained from DEFNS1 simulations are
in good agreement with the DCVNS1 results, and that both
results under predictL when compared to EMD and EF–
NEMD. This result enables two important conclusions to be
drawn. First, the assumption thatF52¹m in the EF–
NEMD simulations is valid. That is, an external driving force
in a system with homogeneous density produces the same
type of flux response as does a system having an actual

FIG. 6. Flux profiles for the DCV–GCMD simulations. Solid symbols are
representative of DCVNS-type simulations while open symbols are repre-
sentative of DCVWS-type simulations. Circular symbols represent simula-
tions at the lowest MC:MD ratio, square symbols represent simulations at
the medium MC:MD ratio, while triangular symbols represent simulations at
the highest MC:MD ratio. The solid lines are the flux profiles obtained from
the RDC model.
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chemical potential gradient, all other aspects of the systems
being equal. This is a direct confirmation of the Maxwell–
Stefan model, and proves the validity of the EF–NEMD
method. Second, the fact that the DEFNS1 simulationsdis-
agreewith the EF–NEMD results having the same external
driving force indicates that the difference is due to the fact
that the former method includes the effect of control volumes
which the latter method excludes. Having just shown that the
hybrid and DCV–GCMD methods are formally equivalent,
the above statementin turn implies that the difference in the
DCV–GCMD approach and the other methodsalso lies in
the treatment of the control volumes.

In order to understand the role of control volumes in the
DCV–GCMD simulations, a mass-transfer model has been
developed. The model represents the DCV–GCMD simula-
tions as a combination of reaction~R!, diffusion ~D!, and
convection~C! processes; henceforth the model is referred to
as the RDC model. The model attempts to find an explana-
tion as to why the transport coefficientsL computed from the
DCV–GCMD method increase and approach corresponding
coefficients computed from EMD or EF–NEMD methods as
the MC:MD ratio is increased when a streaming velocity is
imposed, and why these transport coefficients do not show a
similar increase when a streaming velocity is not imposed.

B. RDC model

The RDC model, in brief, assumes that the insertion and
deletion mechanism in the two control volumes may be mod-
eled as a first-order reversible reaction with parametersk1

andk3 representing the rates of insertions/deletions in CV1
and CV2, respectively. Diffusion is modeled using Fick’s law
with transport diffusivity Dt , while convection is repre-
sented by the convective velocitiesv1 , v2 , andv3 in CV1,
transport region and CV2, respectively. The above analysis
ultimately leads to standard mass-transfer governing equa-
tions and boundary conditions in each of the three regions of
the DCV–GCMD simulation cell, i.e., the two control vol-
umes, and the transport region@Eqs.~A5!–~A13!#. Details on
the derivation and implementation of the model are given in
the Appendix.

The model was applied to the high~H! gradient DCV–
GCMD simulations performed in the 6.7 Å pore of Model 1.
These results are representative of the rest of the simulations
conducted in this work, hence we chose to restrict our analy-
sis to these conditions. The six parameters in the RDC model
were obtained using the procedure outlined in the Appendix,
and their values are given in Table IV. The solid lines in

Figs. 5 and 6 show the concentration and flux profiles as
predicted by the model. The agreement with the simulation
results is excellent. Analysis of the model parameters given
in Table IV indicates that the discrepancy between the
DCV–GCMD simulations and the other methods is due to
two types of resistances induced by the control volumes. The
first resistance, denoted as the ‘‘concentration resistance,’’
arises from the fact that the control volumes are not able to
replenish the concentration near the control volume–
transport region interfaces fast enough to maintain the re-
quired concentrations at the two interfaces. The existence of
such a resistance in the DCV–GCMD simulations is appar-
ent from the concentration profiles in Fig. 5, shown in the
insets. At small values ofk1 andk3 , which corresponds to a
small MC:MD ratio, the interfacial concentration corre-
sponding to CV1 becomes lower than the required value of
c2` . Likewise, the interfacial concentration corresponding
to CV2 becomes higher than the required value ofc1` . This
results in an actual concentration gradient that issmallerthan
the nominal value, which ultimately results in a lowering of
the flux. An increase in thek value or the MC:MD ratio
causes the interfacial concentrations to reach their required
values, resulting in a lowering of this resistance. Addition of
a streaming velocity to newly inserted molecules generates
convection in the same direction as diffusion, which helps in
further minimizing the concentration resistance. This con-
vective flux helps in enhancing the interfacial concentrations
by supplying molecules to the CV1 interfaces and transport-
ing molecules away from the CV2 interface at higher rates
compared to a purely diffusional mode of transport.

From the above arguments, we expect that the fluxes in
both DCVNS-type and DCVWS-type simulations would as-
ymptotically reach theN0 value as the MC:MD ratio is in-
creased. However, there is not much indication of an increase
in the flux with the MC:MD ratio for the DCVNS-type simu-
lations. In fact, in the case of DCVNS3 simulations the
fluxes remain well below theN0 value even though the in-
terfacial concentrations at this high MC:MD ratio have been
maintained very well. On the other hand, the DCVWS-type
simulations correctly show this expected flux increase and its
approach towards theN0 value as the MC:MD ratio is in-
creased. This immediately suggests the presence of some
other type of resistance which becomes substantial for sys-
tems where a streaming velocity is not imposed on the newly
inserted molecules.

The origin of thissecondform of resistance, referred to
as the ‘‘momentum resistance,’’ may be explained by consid-
ering a molecule diffusing from CV1 towards the CV2 in a
typical DCVNS-type simulation. This molecule, having at-
tained a drift velocity in the transport region, given by
N(z)/c(z), is likely to get deleted in the end control volume
and replaced by a molecule with a random velocity vector,
i.e., with a zero drift velocity. Similarly, a molecule on the
verge of leaving the middle control volume and entering the
transport region would have attained some drift velocity
within the control volume itself. However, this molecule also
has some likelihood of getting deleted before it enters the
transport region and replaced with a molecule with a zero
drift velocity. This artificial means of maintaining concentra-

TABLE IV. Parameters for the RDC model for the DCVNS-type and
DCVWS-type simulations.

Simulation
type

Dt

~Å2/ps!
k1

~/ps!
k3

~/ps!
v1

~Å/ps!
v2

~Å/ps!
v3

~Å/ps!

DCVNS1 14.96 3.13 2.05 0.0 20.067 0.0
DCVNS2 14.96 14.79 11.22 0.0 20.104 0.0
DCVNS3 14.96 191.49 312.98 0.0 20.111 0.0
DCVWS1 14.96 3.13 2.05 0.134 20.035 0.150
DCVWS2 14.96 14.79 11.22 0.205 20.025 0.270
DCVWS3 14.96 191.49 312.98 0.263 20.013 0.366
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tion in the control volume through insertion and deletion of
molecules leads to a net loss ofz momentum in the control
volumes, in addition to thez momentum loss that occurs due
to collision of sorbate molecules with the zeolite walls in the
control volumes. This effect results in a resistance wave
which starts from CV2 and propagates upstream towards the
CV1. This resistance wave manifests itself in the form of a
‘‘backward convection,’’ that is a convective flux in the op-
posite direction as shown by the large negative values ofv2

in the model for the DCVNS-type simulations. The momen-
tum resistance should thereforeincreasewith the MC:MD
ratio as the chances for a molecule getting deleted and rein-
serted with a zero net velocity increase with the MC:MD
ratio. We can easily observe this trend from the magnitude of
the convective velocity,v2 , which increases with the
insertion/deletion rate for the DCVNS-type simulations.

In the DCVWS-type simulations, on the other hand, the
momentum loss is much less severe since a streaming veloc-
ity consistent with the prevailing flux in the transport region
is added to the newly ‘‘reinserted’’ molecules. The momen-
tum introduced by the streaming velocity is essentially used
to counteract the interfacial momentum resistance. At this
stage, most of thez momentum loss that occurs is as a result
of sorbate molecules colliding with the zeolite walls. As ex-
pected, we observe that the magnitude of the convective term
v2 is much lower in the DCVWS-type simulations as com-
pared to the DCVNS-type simulations. It is also noted that as
the MC:MD ratio is increased, the magnitude of the back-
ward convective velocity decreases. This implies that the
momentum resistance interestingly decreases with the
MC:MD ratio in the DCVWS-type simulations, as opposed
to the DCVNS-type simulations where a reverse trend is ob-
served. This decrease in the momentum resistance with the
MC:MD ratio may be explained by noting that with an in-
crease in the MC:MD ratio, the probability of ‘‘old’’ mol-
ecules~with decaying streaming velocities! getting deleted
and replaced by ‘‘new’’ molecules~with renewed streaming
velocities! increases tremendously. In other words, the old
molecules are provided with less time to lose their streaming
velocity through collisions with the zeolite lattice. Further-
more, a smaller fraction of molecules in the control volumes
consist of these old molecules.

To recap the above analysis, the concentration and mo-
mentum resistances work in an antagonistic fashion with re-
spect to the MC:MD ratio in the simulations where no
streaming velocity is added to newly inserted molecules.
That is, as the MC:MD ratio is increased, the concentration
resistance decreases while the momentum resistance in-
creases, and vice versa. This helps to explain why some of
the fluxes in the DCVNS-type simulations exhibit nonmono-
tonic dependence with the MC:MD ratio, and always remain
lower than the correspondingN0 values as the MC:MD ratio
is increased. On the other hand, when a streaming velocity is
imposed to the newly inserted molecules, the two resistances
work together with respect to the MC:MD ratio. That is, both
the resistances decrease with an increase in the MC:MD ra-
tio, and vice versa. Consequently, the fluxes under the con-
dition that a streaming velocity is imposed increase mono-
tonically with the MC:MD ratio and approach the

correspondingN0 value asymptotically. In the limit when the
number of insertion/deletion attempts per GCMC step is very
large and that the GCMC routine is called every time step,
the flux would ideally reach the limit ofN0 . At this stage,
the diffusive flux would be zero everywhere inside the con-
trol volume as the concentration resistance would also have
been entirely eliminated due to the large MC:MD ratios used.
Also, all the molecules in the control volume would be re-
placed every time step and thus the convective flux in the
control volumes would be identical to the purely diffusive
flux in the transport region. As a result, the flux profile would
remain absolutely flat, spanning both the control volumes
and the transport region. We notice that the DCVWS3 simu-
lations are quite close to this stage~refer to Fig. 6!. The
simulations at this stage present no net loss ofz momentum
due to insertion and deletion of molecules in the control
volumes, and hence start resembling the EF–NEMD simula-
tions where no loss of momentum occurs due to momentum
propagation across periodic boundary conditions.

Last, it is interesting to note that while the transport
coefficients from the DCVNS1 simulations for the AlPO4-5
pore are lower than the transport coefficients obtained from
the EMD and EF–NEMD simulations, the differences are
not as great as they are for the model pore system. A clue to
the origin of this difference can be obtained by noting in
Table III that the transport coefficient of methane in
AlPO4-5 pore is an order of magnitude lower than the trans-
port coefficient in the model pore. The reason is that the
AlPO4-5 pore is more corrugated than the model pore,
which gives rise to higher energy barriers for diffusion. Dif-
fusion in AlPO4-5 therefore takes place via infrequent acti-
vated ‘‘jumps,’’ while diffusion in the model pore is a more
continuous process. This suggests that the concentration re-
sistance in systems with large energy barriers for diffusion is
small as compared to that in ‘‘smoother’’ pores, such as the
model system. This is because the factorAk/Dt, which de-
termines how fast molecules are replenished at the interfaces,
is very large whenDt is small. Additionally, the momentum
resistance is expected to be small when diffusional barriers
are high, since diffusion takes place by a series of infrequent
jumps. In between ‘‘hops’’ these molecules have little or no
residual momentum, so their deletion does not impact the
overall flux as much as it does for systems with low energy
barriers.

The above reasoning has interesting implications when
applied to systems where the microporous material intro-
duces large energy barriers for diffusion of certain sorbates,
as is the case with many sorbate–zeolite systems. These bar-
riers could be due to constrictions in the pores or the pres-
ence of cations. For such systems, the contribution of both
the concentration and the momentum resistance is expected
to be small in the DCV–GCMD simulations. We therefore
expect that the transport coefficients obtained from the base-
line DCV–GCMD method, i.e., without streaming velocity
and having low MC:MD ratios, will closely resemble those
computed using the EMD or EF–NEMD method in sorbate-
zeolite systems where the energy barriers are much larger
than the ones in the methane–AlPO4-5 system. This still
does not change the fact, however, that the DCV–GCMD
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method isstill an inefficient method for obtaining transport
coefficients.

IV. SUMMARY AND CONCLUSION

Three different molecular dynamics methods have been
compared for the calculation of nonequilibrium transport co-
efficients in microporous materials. Two different pore sys-
tems were examined: an idealized pore of varying pore di-
ameter formed from an fcc lattice of oxygen atoms, and an
actual AlPO4-5 zeolite pore. For all cases, the transport co-
efficients calculated from EMD and EF–NEMD agreed with
each other. The transport coefficient computed in a DCV–
GCMD simulation varied, depending on whether or not a
streaming velocity was added to newly inserted molecules
and what the stochastic:deterministic move ratio was. Trans-
port coefficients calculated using the DCV–GCMD method
agreed with the results from the other two techniques only in
the limit of very high stochastic:deterministic move ratios
and when streaming velocities were added to molecules in-
serted in the control volumes.

To explain the source of differences in the methods, re-
sults from a hybrid simulation technique that employs an
external field to drive diffusion between two control volumes
maintained at equal chemical potential were first compared
with DCV–GCMD and EF–NEMD simulations under the
same nominal conditions. The results obtained validated the
EF–NEMD method, as well as the Maxwell–Stefan model
commonly invoked to describe diffusion in microporous sys-
tems. The results also showed that the control volumes used
in the DCV–GCMD simulations introduce some form of
mass transfer resistance to transport. Next, we developed a
simple mass-transfer model to understand in more detail the
origin of this resistance. It was found that two types of mass
transfer resistances exist in the DCV–GCMD method. The
first form of resistance arises from the inability of the control
volumes to maintain their interfacial concentration, while the
second arises due to momentum losses caused by the inser-
tion and deletion of molecules. It was shown that with the
imposition of a streaming velocity to newly inserted mol-
ecules in the control volumes and the use of large stochas-
tic:deterministic ratios, both forms of resistances can be
eliminated. The model is able to correctly predict the con-
centration and flux profiles in the DCV–GCMD simulations.
The model also predicts that the inaccuracies caused by ne-
glect of a streaming velocity for inserted molecules along
with a small MC:MD ratio in the DCV–GCMD simulations
are reduced for systems with high activation barriers for dif-
fusion.

It is reasonable to consider whether the fluxes in the
EMD and EF–NEMD simulations are actually artificially
high due to propagation of momentum across periodic
boundaries. For simulating transport along a macroscopic
pore, the use of periodic boundary conditions would seem to
be justified, as this is a more physically realistic model than
one in which there are stagnant ‘‘control volume’’ fluid ele-
ments spaced along the pore. On the other hand, the use of
stagnant control volumes, where no streaming velocity is im-
posed to newly inserted molecules, would be appropriate for
examining transport across well-mixed interfaces or where a

stationary bulk fluid is in contact with a confined phase. In
such systems, interfacial mass and momentum transfer ef-
fects as observed in the DCV–GCMD simulations become
very important. This is especially true in microscale or me-
soscale devices when the transport medium is short and the
interfacial resistance may be as important as the resistance in
the medium. For these cases, either a full DCV–GCMD
simulation or a hybrid simulation~such as the DCNEF1
method! that utilizes an external force to drive diffusion and
two reservoirs at the same nominal chemical potential are
appropriate methods.

Finally, the computational performance of the three
simulations was compared and it was determined that the
DCV–GCMD method is much less efficient than either the
EMD or EF–NEMD technique. For the systems examined
here, the DCV–GCMD simulations took roughly 5 times
more CPU time than the other methods to get similar results.
This is due mainly to the overhead associated with maintain-
ing control volumes at a given chemical potential. We con-
clude that EMD or EF–NEMD are the best methods to use
when examining diffusion along a pore, and that boundary-
driven techniques such as DCV–GCMD are better suited for
examining interfacial transport, where the use of control vol-
umes has a necessary physical basis.
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APPENDIX

In the RDC model, the GCMC routine can be modeled
as a ‘‘differential controller’’ or a first-order reversible reac-
tion that maintains the concentration of molecules at the
‘‘set-point’’ value, cavg

dc

dt
52k~c2cavg!, ~A1!

wherec is the instantaneous concentration,k is a first-order
rate constant dependent on the rate of insertions and dele-
tions. Assuming that the concentration gradients are small,
the diffusion of molecules may be modeled using Fick’s law

Jz52Dt~c!
dc

dz
, ~A2!

whereJz is the diffusive flux along the axis of the pore~i.e.,
thez direction! while Dt(c) is the transport diffusivity of the
molecules in the microporous material. We also include the
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possibility of convection occurring within the pore. The con-
vective flux can be expressed asvzc, wherevz is the mac-
roscopic convective velocity in thez direction. The total flux
within the control volume in thez direction, Nz , is then
given as the sum of diffusive and convective fluxes

Nz5Jz1vzc52Dt~c!
dc

dz
1vzc. ~A3!

Combining Eqs.~A1! and ~A3! under the assumptions of
steady state, we obtain the following second-order differen-
tial equation which governs mass transport in the control
volumes

Dt~c!
d2c

dz2
2vz

dc

dz
2k~c2cavg!50. ~A4!

The differential equation governing mass transport in the
transport regions remains the same as in the control volumes
with the exception that the reaction term vanishes since in-
sertion and deletion of molecules is restricted to the control
volumes only.

In the model we only consider the right half of the sym-
metric DCV–GCMD simulation cell shown in Fig. 2~a! for
convenience. The domain of analysis can thus be divided
into three distinct regions: the high concentration control
volume @the right half of CV1 in Fig. 2~a!#, the transport
region, and the low concentration control volume@the por-
tion of CV2 on the rightmost end in Fig. 2~a!#. These three
regions, starting from CV1, are, respectively, denoted by the
symbols ‘‘1,’’ ‘‘2,’’ and ‘‘3.’’ To simplify our analysis, we
consider that the regions 1 and 3 extend to2` and 1`,
respectively. We assume that the concentrations atz52`
and z51` are c2` and c1` , respectively. These concen-
trations are also the set-point concentrations in regions 1 and
3. At the interface between regions 1 and 2 wherez5z20 ,
and at the interface between regions 2 and 3 wherez
5z10 , we impose continuity of the concentration and total
flux profiles. Therefore, the resulting governing equations in
the three regions along with the boundary conditions are
given by

Dt~c1!
d2c1

dz2
2v1

dc1

dz
2k1c152k1c2` , ~A5!

Dt~c2!
d2c2

dz2
2v2

dc2

dz
50, ~A6!

Dt~c3!
d2c3

dz2
2v3

dc3

dz
2k3c352k3c1` , ~A7!

c1~z→2`!5c2` , ~A8!

c1~z5z20!5c2~z5z20!, ~A9!

N1~z5z20!5N2~z5z20!, ~A10!

c2~z5z10!5c3~z5z10!, ~A11!

N2~z5z10!5N3~z5z10!, ~A12!

c3~z→1`!5c1` , ~A13!

where the six unknown parameters areDt , v1 , v2 , v3 , k1 ,
andk3. The above set of second-order differential equations
along with their boundary conditions can be solved using a
finite difference procedure once the six unknown parameters
are known so as to obtain both the concentration and the flux
profiles along the pore axis.

The transport diffusivity,Dt , was obtained as a function
of c from the transport coefficientL using Eq.~3!. Since the
variation in the diffusivity across the transport region was
found to be fairly small (; a factor of 1.2 for the ‘‘H’’
DCV–GCMD simulations in the 6.7 Å pore of Model 1!, we
believe it is reasonable to assume a constant diffusivity for
convenience. The value ofDt chosen for the model was
taken as the mean ofDt values obtained from the EMD and
EF–NEMD simulations. The convective velocities in the
control volumes,v1 andv3, were obtained directly from the
flux profiles shown in Fig. 6. For the DCVNS-type simula-
tions, the convective flux tends to zero inside the control
volumes, implying that the convective velocitiesv1 and v3

are equal to zero. This is not true for the DCVWS-type simu-
lations, however, where the fluxes in the control volumes
asymptotically approach nonzero values. The values ofv1

andv3 for these simulations are therefore nonzero, and can
be estimated by dividing the asymptotic flux value by the
concentration. The parametersk1 and k3 for the DCVNS-
type simulations cannot be determined in a rigorous manner.
Therefore they were treated as adjustable parameters, and
were obtained as follows.

With the prior knowledge thatv15v350 for the
DCVNS-type simulations, it can easily be shown that the
flux decays exponentially in the two-control volumes accord-
ing to

N~z!55 Ntr expSAk1

Dt
~z2z20! D if z<z20 ,

Ntr expSAk3

Dt
~z102z! D if z>z10 ,

~A14!

whereNtr is the constant flux in the transport region. The flux
profiles in the left and right control volumes were then fitted,
respectively, to the two solutions given in Eq.~A14! so as to
obtain the parametersk1 andk3 . We shall assume here thatk
values obtained here for the DCVNS-type simulations re-
main unaltered with the addition of a streaming velocity for
the corresponding DCVWS-type simulations.

The remaining parameterv2 was then obtained by solv-
ing the full set of governing equations@Eqs. ~A5!–~A13!#
using the finite difference method, and then matching the
flux profiles predicted by the model and those obtained from
the simulations by adjusting the value of the unknown pa-
rameter.
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