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Single-molecule force spectroscopy provides a powerful approach for investigating molecular tran-
sitions along specific reaction coordinates. Here, we present a general analytical model for extracting the
intrinsic rates and activation free energies from force measurements on single molecules that is applicable
to a broad range of pulling speeds and device stiffnesses. This model relaxes existing limitations to
perform force measurements with soft pulling devices for proper theoretical analyses and, in fact, allows
experiments to specifically exploit device stiffness as a control parameter in addition to pulling speed for a
reliable estimation of energetic and kinetic parameters.
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Single-molecule force spectroscopy has revolutionized
the way thermodynamics and mechanisms of biomolecular
processes are studied [1]. These sophisticated techniques
involve imposition of controlled forces to single molecules
or complexes and relating the observed responses to the
characteristics of the underlying molecular free energy
landscape. Often, in these experiments, one end of the
molecule is held fixed and the other is pulled at a constant
speed along the desired reaction coordinate. The applied
force increases linearly in time until a “‘rupture force” is
reached signifying a transition between molecular states
[Fig. 1(d)]. The transition could physically correspond to,
for instance, unfolding of proteins and RNA [2,3] or dis-
sociation of ligand-receptor complexes [4]. Typical outputs
from such experiments include distribution of rupture
forces p(F), rate of rupture k(F) at a given force F, and
mean rupture force F(F) at a given loading rate F = 9,F.
Each of these quantities contains information about the
intrinsic free energy landscape of the molecule being
pulled, namely, the activation barrier height U™, the barrier
distance x*, and the spontaneous transition rate k.

An outstanding theoretical issue concerns the reliable
extraction of the above intrinsic kinetics and energetics of
molecules from single-molecule pulling experiments.
Though recent analytic models [5,6] employing pulling
speed as a control parameter have made tremendous
progress in tackling this question, their applicability is
typically limited to measurements obtained using ‘soft”
pulling devices. In other words, the models cannot quanti-
tatively explain differences in the measured distribution of
rupture forces when pulling devices of different stiffnesses
are used, e.g., optical traps versus atomic force microscope
(AFM) or two AFM cantilevers of different stiffnesses. As
pointed out recently [7,8], neglection of such stiffness-
related effects can have profound consequences on the
deduced energetic and kinetic parameters. This inability
to properly treat device stiffness leaves the pulling speed as
the sole control parameter for generating force measure-
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ments, which further limits reliable extraction of U*, x*,
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and kg, especially if the range of accessible speeds is
narrow. In this Letter, we address these pertinent issues
in single-molecule biophysics through a theoretical frame-
work that explicitly accounts for the compliance of the
pulling device. Our general approach not only elucidates
the impact of device stiffness on the measured rupture-
force spectrum but facilitates a considerably more reliable
extraction of the relevant thermodynamic and kinetic pa-
rameters of molecular transitions from force measurements
obtained using devices with a wide range of compliances
and pulling speeds.

We begin by treating the force-induced molecular tran-
sition as a thermally activated escape of a particle over a
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FIG. 1 (color online). (a) Cartoon of a single-molecule pulling
experiment. (b) Theoretical analog of (a) showing tilting of the
combined free energy landscape with time 7 due to force F
exerted via a spring. (c) Probability distribution of escape forces
p(F) for the combination (K, V) [pulling speed: V, pulling
spring stiffness: K] so that KV = 10~* from simulation (solid
stairs) and the fitted theory Eq. (6) (dashed line). (d) Two sample
force traces (dashed lines) and mean force on the particle
recorded by the spring (F(¢)) (dots). In general, (F (1)) < KVt.
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single free energy barrier that is perturbed by an external
force [Figs. 1(a) and 1(b)]. Accordingly, we can consider
the molecule as a particle bound in a free energy landscape
Uy(x) and its dynamic microstate is represented by the
particle position x = x(z), where the mean start position
is (x(0)) = 0. An external force is impressed via a har-
monic spring of stiffness K, which approximates the pull-
ing device. The spring is pulled with speed V such that at
time ¢, the combined free energy surface of the particle and
pulling spring can be expressed by

Ulx, 1) = Uylx) + %K(Vr - x)% (1)

The external force thus “tilts” the energy landscape, di-
minishing both the barrier height as well as the barrier
distance with time [Fig. 1(b)].

An important distinction from previous models is that
we do not invoke the soft-spring approximation which
would have defined the system free energy as U(x, 1) =
Uy(x) — KVitx and the corresponding perturbing force
measured by the spring as (F(¢)) = KVt where (- - -) de-
notes an average over many experiments. However, in
general, for an arbitrary spring stiffness, one finds that
before rupture occurs

(F(1)) = KVi/x = F(1) 2

where y > 1 is a constant. The origin of y can be explained
by approximating Uy(x) =~ K,,x?/2, where K,, is the cur-
vature of the energy landscape at its minimum. Assuming
that the particle relaxes much faster than the time scale of
pulling (quasistatic pulling) and that it possesses negligible
inertia due to overdamping implies that the mean force
acting on it before escape from the energy well is
(=0, U(x, 1)) = 0. Solving for (x(z)) gives (F(¢)) =
K[Vt — {x(1))] = 1+I§<‘7Km' The quantity y =1+ K/K,,
thus characterizes departure from the soft-spring approxi-
mation and is a crucial factor modulating the rupture
process as shown later (also see [9]).

Next, we derive expressions for the experimentally
accessible quantities: k(F), p(F), and F(F). Using a cu-
bic polynomial Uy(x) = F.(x — x*/2) — F,(x — x*/2)3
where F.=3U"/2x* is a critical force and F, =
2U*/x*3 [5,10,11] with Eq. (1) to evaluate the instanta-
neous Kramers’ escape rate [14,15] and switching the
variable from ¢ to F via Eq. (2) yields

Mﬂxo=k%X2—§;yﬂ“wm_w_“”“W”~ 3)
c

Here, y = x(K) = 1 + Kx*?/6U* and k, is the rate con-
stant determined at zero force and corresponds to the
unperturbed Uy (x).

The above relation implies the rupture rate can be con-
trolled independently via F and y (i.e., K) (also see [7]). As
the exponential term dominates over the prefactor, even
small variations in y resulting from changes in device
stiffness are expected to strongly modulate k(F). Further,

it hints that the problem of reliably extracting k, F., and
U* from a master plot [5] with a narrow range of permis-
sible pulling speeds might be overcome by utilizing de-
vices with different stiffnesses.

The probability distribution of rupture times can be ex-
pressed as p(t) = _dfT(tt) = k(t)s(t). Here, s(¢) is the sur-
vival probability of the particle in its native state at time ¢.
The first equality is a continuity relation while the sec-
ond [16,17] appears from an asymptotic solution
(BU* > 1) of the Smoluchowski equation assuming neg-
ligible barrier recrossing. In constant speed experiments,
the above equalities may be rewritten by changing ¢ to F
via Eq. (2)

_ds(F) _ K(F)s(F)
dF F

Integrating the second equality in Eq. (4), F [{ds/s =
— 5 k(F)dF after substituting Eq. (3) gives

F(s) = FC)([I - {1 - ,BIU* 1n<1 - /\}3{1(;)()}2/3] (5a)

q = exp[BU{1 — x’}] = exp(—0.58Kx™)  (5b)
ke ko 1
X = . = =
BxFx* B KVx*

The approximation in Eq. (5b) is good if Kx*?/6U* < 1.
Physically X represents the ratio of the intrinsic rate of
thermal energy transfer across the barrier k,/ 3 and the rate
at which energy is externally supplied to the molecule
KVx*.

The escape force distribution p(F) can be evaluated by
inverting Eq. (5a) to s(F) and substituting in Eq. (4)

The above expression clearly reflects the importance of
two control parameters, K and V, which is also exemplified
from the distribution of rupture forces p(F) in Fig. 1(c).
The p(F) for these two cases with constant “KV” but
distinct K and V will be indistinguishable to the soft-spring
based models which enforce F = KV as the only control
parameter, whereas Eq. (6) (dashed lines) can effectively
model the difference.

As collating p(F) requires hundreds of experiments,
reporting its mean and standard deviation against F from
a small number of experiments is more practical. Using the
procedure described in Ref. [6], one can derive expressions
for F = [} F(s)ds and o

p(F) = “)

(5¢)

_ aXE (aX)12/3
FEEXP—F—5—¥%4 |
BU x
— [1— e”XEL(qX)]—1/3
op =\ —F2=" BUX .(7b)

T V6 B+ gX)
Here, E\(u) = [ ;"%Zdz is the exponential integral [18]
which can be approximated as e“E;(u) = In(1 + ¢~ /u)

108301-2



PRL 104, 108301 (2010)

PHYSICAL REVIEW LETTERS

week ending
12 MARCH 2010

100 . — r L T T S
| % 2,5x107 % 5,2x10 ]
02 f " 2 5x10” W 5,2x10” X g, 125x107 -
+2,5410° + 5,2x10° " 8,1.2:10’4
E A Constant Force e -6 :
~10%E + 8,1.25x10" 3
s
= ! G, 2x107) (5,2x107) | :
10°F  a, :
p K=2 - E
sF K=5.- ]
10° - k=8~ 7]
1 "
0

FIG. 2 (color online). Escape rate k(F) as a function of applied
force F plotted for different values (K, V) of pulling spring
stiffness K and speeds V obtained from simulation (symbols)
[5,25]. k(F) obtained from constant-F simulation without using
pulling spring is shown by solid triangle symbols. The dashed
lines corresponds to Eq. (3). Inset: Probability distribution of
escape forces p(F) from simulation (bars), and the dashed lines
are fits using Eq. (6).

where y = 0.577 ... is the Euler constant. Note that when
x = 1 (g = 1), Eq. (7) becomes identical to the prediction
from soft-spring theory [6].

Equations (3), (6), and (7) provide the necessary expres-
sions that capture the dependence of U*, x*, and k, on
single-molecule force and rate measurements, which can
be used to extract these quantities from constant-F and
constant-V experiments. To demonstrate the applicability
of these expressions, we have performed Brownian dynam-
ics simulations [19] of a particle in an energy well,
Uy(x) = —34x> + 17x* [Fig. 1(b)], at kgT =1 in the
constant-V and constant-F setup [20]. In constant-V simu-
lations, the particle is pulled by stiff harmonic springs with
K =258 (BKx*?/2=1,25, 4, respectively) whereas
for the constant-F simulations, with other conditions re-
maining unchanged, a fixed force F is applied to the
Brownian particle without using any pulling spring. Note,
however, for practical purposes, very stiff springs can
cause barrier recrossings [21], especially at small pulling
speeds. This effect occurred negligibly in our simulations.

Figure 2 (solid triangles) shows k(F) from the
constant-F simulations and its reduction for the
constant-V simulations as the stiffness of pulling spring
is raised for all applied forces recorded by the spring, with
the strongest reduction observed at low forces. The change
in p(F) at constant stiffness as a function of the pulling
speed is displayed in Fig. 2 inset (bars). The corresponding
spectrum F(F) plotted in Fig. 3 (symbols) also reveals an
amplification of rupture force with increasing spring stift-
ness for all loading rates (cf. [7]). Importantly, we establish
good agreement of our expressions, Egs. (3), (6), and (7)
(dashed lines), with their respective simulated results in
Fig. 2, Fig. 2 inset, and Fig. 3 using the parameters U* =
17, x* =1, and ky =9 X 1078 that correspond to the
quartic potential used in our simulations. We also obtain

excellent agreement by least-square fitting of data in Fig. 2
with Eq. (3), which yields U* =16.95 £0.32, x* =
1.02 £ 0.01, and ko = (8.99 = 0.48) X 1078, Note that
the theoretical Kramers escape rate for this potential is
ko = 3BDU* exp(—BU*)/mx*™? = 8.4 X 1073, The excel-
lent agreement between our model, derived using a linear-
cubic potential, and simulations, conducted with a quartic
potential, emphasizes the generality of the linear-cubic
potential in deriving meaningful analytic expressions for
the rupture force and rates.

We next enumerate the incongruity in the above esti-
mates if the simulation data with stiff springs are fitted
using the soft-spring model: k(F) = ky(1 — %)1/2 X
exp[BU{1 — (1 — £)*?}] from Eq. 3) with y =1 [5].
We establish good fits (not shown) and extract for K = 2,5
the estimates U* = 17.88 = 0.24, x* = 1.08 = 0.02, ky =
(271 £0.28) X 1078, and U* =19.39 =0.24, x* =
1.13 £ 0.01, ko= (6.58 =0.05) X 107°, respectively.
Thus, compared to the actual energy landscape parameters,
the estimates of k can be smaller by as much as an order of
magnitude, while U* and x* are off by 14% and 11%,
respectively (for K = 5). Oddly, the above errors arise
despite both K values satisfying the soft-spring criteria
[5], i.e., Kx*2/6U* = 0.02 and 0.05 ( < 1).

To explain this apparent discrepancy, we consider
Eq. (3) in the limit of small forces F < F'. and soft springs
Kx*2/6U* < 1: k(F) = kge PK<"/2¢BFx" Clearly, k(F)
does not reduce to Bell’s expression k(F) = kyeP™" [22].
Thus, the requirement for soft-spring approximation is not
sufficiently met by the condition Kx*?/6U* < 1. In fact,
only by choosing BKx*?/2 < 1 can the device stiffness
truly be neglected. This then defines the ‘““‘correct” soft-
spring limit. Indeed, the stiff springs (K = 2, 5) used in our
simulations do not satisfy the new soft-spring criterion, i.e.,
BKx*?/2 =1 and 2.5. Further, with k, = ¢ #Y", one finds
k(F) oc ¢ BU'+Kx?/2) " \which explains why stiff springs
enhance barrier heights and lead to slower rupture rates,
as captured by both our model and simulations, as well as
experiments of others [7,8].

Interestingly, the new soft-spring criterion K < 2/ 8x*?
is determined by the thermal energy and the barrier dis-
tance and not by the barrier height. Using a 10% tolerance
for error, we obtain a more well-defined criterion K <
0.1 X 2/Bx*>. Consider now the rupture of noncovalent
bonds (e.g., hydrogen bond) (x* ~ 0.2 nm) and an RNA
molecule (x* ~ 10 nm) [3] at room temperature (1/8 =
4.1 pN-nm). Our new criterion states that the soft-spring
model [5,6] will be valid if K =<5 pN/nm and
0.002 pN/nm for the noncovalent bond and RNA, respec-
tively. Comparing against typical K values (in pN/nm) of
magnetic tweezers (1073-1079), optical traps (0.005-1),
AFM (10-10°), and steered molecular dynamics simula-
tion (SMDS) (103-10%) [1], it is clear that force measure-
ments of noncovalent bonds using AFM and SMDS and
those of RNA using optical traps, AFM, and SMDS cannot
be modeled accurately using the soft-spring model, as the
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FIG. 3 (color online). Mean escape force F from simulation
(symbols) plotted against loading rates F for three pulling spring
stiffness K. Fits from Eq. (7a) are displayed as dashed lines.
Inset: The standard deviation o of the escape forces (symbols)
and fits of Eq. (7b) are also displayed (dashed lines).

device stiffness will nontrivially magnify observed rupture
forces or reduce the rupture rates [17,23,24]. In such cases,
the model presented here, which accounts for stiffness
effects, will allow correct prediction of the intrinsic kinetic
and energetic parameters.

The model developed here has two additional implica-
tions. First, rupture-force spectra F(F) retrieved from dif-
ferent techniques are often combined to realize a spectrum
over a large range in loading rates to draw the parameters
of interest. We emphasize that one has to first ascertain if
such a procedure is permissible based on either K <
2/Bx*> or a constant K for all the techniques used.
Second, the parameter estimates are prone to errors due
to the nonlinearity of the fitting functions and necessitate
exploration of a large range of pulling speeds to improve
the reliability, which is not always feasible. Our model
provides a basis for the utilization of both the pulling
speeds and the device itself whose compliance or stiffness
can be varied within a reasonable range to improve the free
energy parameter estimates by simultaneously fitting the
extended space of observables. In conclusion, the analytic
model developed here allows for biomolecular pathways
and their underlying free energy landscape parameters to
be more reliably extracted from single-molecule pulling
experiments.

We thank Olga Dudko and Martin Kenward for discus-
sions and comments.
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