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1 Monte Carlo Chain Regrowth Move in a
Finite Geometry

Before beginning this study, it was hypothesized that very strong counte-
rion condensation would necessitate the use of a specialized move for the
chain regrowth. If the counterions are strongly condensed there is a high
local density in the region where the chain is to be regrown, complicating
regrowth. Though overlap may be avoided with Rosenbluth biasing, there
is still a tendency for the chain to regrow in a position highly similar to
the chain just removed, since that position gave order to the local counte-
rion density. Therefore, a specialized Rosenbluth/distance-bias move that
regrows both the chain and its associated counterions was developed in the
expectation that it might be more effective at exploring configuration space.
The proof of detailed balance is provided here, and also an analysis of the
move’s effectiveness.
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1.1 Proof of Detailed Balance

A complete polyelectrolyte chain regrowth step consists of two distinct steps,
each with subparts. The first step is the deletion of one entire chain, com-
pleted one monomer at a time, with the deletion of any required counterions
at each monomer deletion step. The second step is the reverse process: the
addition of one entire chain, completed one monomer at a time, with the
addition of any required counterions at each monomer addition step. The
only requirement is that the entire move be electroneutral.

Consider two configurations A and B, each containing Ng grafted chains
of N monomers. Each chain requires Nion counterions for electroneutrality.
The statistical mechanics of a move from a state A to a state B, where A
and B differ in the configuration of one chain and its counterions is presented
here.

The polymer to be deleted is selected at random, so the probability of
deletion is given by,

Pmer−
rand =

1

Ng
(1)

The jth counterion to be deleted is selected from a set of NionNg + 1 − j
remaining counterions with a probability given by,

P ion−
bias (j) =

exp[−βQbu
Aj
j ]

∑NionNg+1−j
i=1 exp[−βQbu

Aj
i ]

(2)

where uAj
j is the electrostatic energy of the jth counterion selected for removal

with the jth unit of charge on the removed chain, which is in configuration
A. uAj

i is the electrostatic energy of the ith counterion in the system with
the jth unit of charge on the removed chain. The strength of the bias is
modulated using Qb, a factor used to multiply the electrostatic energy, which
is computed as the interaction of two monovalent particles. For example, if
a charged chain of length N = 5 has the charge sequence [1 2 0 0 0], then,
when removing the 3rd counterion the interaction energy with the 2nd bead
is used. If the counterion were instead to be selected for deletion at random,
the probability would be given by,

P ion−
rand (j) =

1

NionNg + 1− j
(3)

The position selected using Eq. 2 selects counterions for removal with respect
to a single monomer. If Ntrial hypothetical positions for removed counterions
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are nominated using Eq. 2, then the probability of selecting one favorable
position from among them is given by

P trial−
bias (j) =

exp[−βuAj
j ]

∑Ntrial
m=1 exp[−βuAj

m ]
(4)

where uAj
j is the electrostatic energy of the jth removed counterion with the

monomers and associated counterions of chain A not yet removed. uAj
m is

the electrostatic energy of the mth hypothetical trial counterion with the
monomers and associated counterions of chain A not yet removed. If one
of the hypothetical trials were selected at random, the probability would be
given by,

P trial−
rand =

1

Ntrial
(5)

These hypothetical counterion removal trials are the required analogoues
to real counterion placement trials that will be attempted during chain re-
growth. They improve chain regrowth because the energetics with the entire
electroneutral subsystem of a chain and its counterions can be taken into
account.

The second step is chain regrowth. The first bead is always placed at the
designated tethering location. The probability of selecting a direction for the
jth new monomer is given by,

Pmer+
bias (j) =

exp[−βuBj
j ]

∑Z
k=1 exp[−βuBj

k ]
(6)

where uBj
j is the electrostatic energy of the jth monomer with monomers

and their associated counterions inserted thus far. uBj
k is the electrostatic

energy of a monomer in the kth possible position with the monomers and
their associated counterions inserted thus far. If the direction of growth were
selected at random,

Pmer+
rand =

1

Z
(7)

The position for the jth added counterion is nominated from a set of V
positions with a probability given by,

P ion+
bias (j) =

exp[−βQbu
Bj
j ]

∑V
i=1 exp[−βQbu

Bj
i ]

(8)
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where uBj
j is the electrostatic energy of the jth unit of charge on chain B with

the selected jth counterion. uBj
i is the electrostatic energy of the jth unit of

charge on chain B with a counterion in the ith position.
The position selected using Eq. 2 may be occupied or be placed in a

position energetically unfavorable to the inserted chain as a whole. If instead
Ntrial positions are nominated using Eq. 2 but one unoccupied position among
those nominated positions is selected, then the probability of selecting one
unoccupied position is given by

P trial+
bias (j) =

exp[−βuBj
j ]

∑Ntrial
m=1 exp[−βuBj

m ]
(9)

where uBj
j is the electrostatic energy of the jth trial counterion with all pre-

viously successfully inserted monomers and counterions for chain B. uBj
m is

the electrostatic energy of the mth trial counterion with all previously suc-
cessfully inserted monomers and counterions for chain B. If instead one of
the trials is selected at random, the probability is given by,

P trial+
rand =

1

Ntrial
(10)

If the counterions are added without distance bias and without avoidance of
occupied sites, but truly at random, the probability is given by,

P ion+
rand =

1

V
(11)

Because the probability of regrowing the entire polyelectrolyte is the prod-
uct of all the individual event probabilities, the probability of going from
configuration A to B is given by,

α(A → B) =
Nion∏

j=1

P ion−
bias (j)

P ion−
rand (j)

Nion∏

j=1

P trial−
bias (j)

P trial−
rand (j)

N∏

j=2

Pmer+
bias (j)

Pmer+
rand (j)

Nion∏

j=1

P ion+
bias (j)

P ion+
rand (j)

Nion∏

j=1

P trial+
bias (j)

P trial+
rand (j)

(12)
All five terms are ratios of the odds of an event to the odds of that same

event if it all events of its kind were equally probable. The events are 1)
counterion selection for removal among all counterions with 2) adjustment
for respect to entire removed system 3) direction selection for growth of new
chain 4) counterion position nomination for addition and 5) selection among
those positions with respect to added system.
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The condition of detailed balance is given by,

N(A)α(A → B)acc(A → B) = N(B)α(B → A)acc(B → A) (13)

where N(A) is the probability of being in state A, α is a the probability of a
transition between states, and acc is the probability of accepting a trial move
to a new state. Rearrangement gives,

acc(A → B)

acc(B → A)
=

N(B)

N(A)

α(B → A)

α(A → B)
(14)

Recognizing that α(B → A) is derived similarly as Eq. 12, substituting values
of N(state) and α, and then performing some cancellation of terms, it can
be written,

acc(A → B)

acc(B → A)
= exp[−β(UB − UA)]

N∏

j=2

∑Z
k=1 exp[−βuBj

k ]
∑Z

k=1 exp[−βuAj
k ]

×
Nion∏

j=1

∑V
i=1 exp(−βQbu

Bj
i )

∑NionNg+1−j
i=1 exp(−βQbu

Aj
i )

∑V
i=1 exp(−βQbu

Aj
i )

∑NionNg+1−j
i=1 exp(−βQbu

Bj
i )

×
Nion∏

j=1

∑Ntrial
m=1 exp(−βuBj

m )
∑Ntrial

m=1 exp(−βuAj
m )

(15)

The product over monomers is Rosenbluth biasing [1]. The product over the
counterions with the sums over the volume is a distance bias. The product
over the counterions with the sums over the number of trials is, in prac-
tice, incorporated into the Rosenbluth bias term as the chain is grown. The
acceptance criteria that fulfills the requirements of detailed balance is:

acc(A → B) = min(1, R.H.S. of Eq. 15) (16)

Two complications are inherent in the ready calculation of Eq. 15, both
due to the finiteness of the geometry. One complication is that the calculation
of the electrostatic energy in a system periodic in two dimensions and finite
in a third is cumbersome. The second is that the sums over V cannot be
removed from the product as they would in a fully periodic geometry. In a
fully periodic geometry, regardless of a monomer’s coordinate, the sum of its
interactions over every lattice site within V in unchanging. In a geometry
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finite in z the value of the sum is dependant on which layer the monomer
(around which ions are inserted) is located. Nonetheless, the precomputation
of these sums is possible because the precomputation of the energy is possible
when a lattice is used. Just as a lookup table is used to store all possible
exp[−βQbu(rij)], one is also used to store the Lz − 1 possible sums over V .

1.2 Analysis

The computer code for this study was developed in such as way that the
regrowth move could be carried out in the following ways:
1. Chain alone without Rosenbluth
2. Chain alone with Rosenbluth
3. Chain with Rosenbluth together with counterions with no distance biasing
4. Chain with Rosenbluth together with counterions with distance biasing
Method 4 is the one just presented with all terms and Qb $= 0. In method 3,
Qb = 0. In method 2, the 2nd product in Eq. 15 disappears. In method 1, all
the products of Eq. 15 disappear and only simple unbiased NVT MC remains.
The methods are listed in order from lowest acceptance rate to highest ac-
ceptance rate. Though acceptance rates improve as more complex methods
are employed, trial moves take longer. It was found that method 2 was the
fastest overall for the systems studied. Though acceptance rates improved
with method 4, the additional complexity and computer time required for
the distance-biasing repositioning of the counterions during a chain regrowth
offset the gain. However, at a few high charge strength, high-density condi-
tions, for example, ξ = 2.86, σg = 0.04, method 4 had a slight edge. Method
1 was used to check the results of the other methods. In this work, method
2 was used primarily.

2 Implementation and Testing

During each step of MC algorithm development comparisons to existing lit-
erature results were made to demonstrate correct function. Comparison of
our MC algorithm’s results to Chakabarti and Toral’s MC results [2] for an
uncharged chain of length N = 49 and σg = 0.04 (Fig. 1a of Ref. [5]) showed
agreement.

To test the functionality and correctness of our implementation of the 2D
Ewald algorithm of Heyes et al. [3] (HBC), the electrostatic energy of two

6



charge arrangements corresponding exactly to those examined by Widmann
and Adolf [4] were calculated, and the results were compared. The first
test arrangement consists of a checkerboard pattern of 25 charges in the
same plane and a 26th particle raised z = 0.2Lz above the central particle
(of opposite sign). The second test arrangement consists of 100 particles
arranged in a checkerboard, where 99 line in the same plane and one has
been elevated to z = 0.5Lz. Widmann reports that the electrostatic energies
of these two systems are UCoulomb = −86.56586 and UCoulomb = −792.5880,
respectively. Our calculations agree with these results to all decimal places.

Several tests were then carried out to demonstrate the correct functioning
of the Ewald sum lookup table creation scheme. At the beginning of each
simulation the electrostatic energy of the initial geometry is computed using
the HBC method. A precomputed lookup table of the electrostatic energy
is then created. The energy of the same initial particle configuration is then
found using the lookup tables and compared to the whole-system results. If
the results are not the same, the simulation is terminated.

Random grafting was used to create the initial geometries used in the
MC calculations. For each grafting density, typically five different random
sets of tethering locations were used. The average density profile observed
during production runs from each configuration are averaged together to
calculate the density profile of a “random” tethering. The estimated error of
the density in a layer is the standard deviation of the density in that same
layer as found using different starting tethering locations.
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3 Tabulated Results

Table 1: Grafted layer heights found using Monte Carlo simulation for
charged wall systems of σ± = +.2, +.1,−.1, −.2, −.4, and −0.8.

σg ξ∗ = 2.86 2.0 1.0 0.5 0.2 0.1
σ± = +.2

0.08 3.04(1) 3.255(8) 3.51(1) 3.63(1) 3.67(1) 3.610(2)
σ± = +.1

0.08 3.60(2) 3.79(2) 3.96(2) 4.02(1) 3.98(1) 3.864(4)
σ± = −.1

0.01 4.47(1) 4.69(3) 4.59(2)
0.04 4.27(1) 4.46(2) 4.476(8) 4.33(1)
0.08 4.11(1) 4.274(9) 4.42(1) 4.46(1) 4.405(7) 4.253(3)

σ± = −.2
0.01 3.0(1) 4.76(1) 4.74(2)
0.04 4.535(7) 4.546(3) 4.61(2) 4.493(7)
0.08 4.147(8) 4.342(6) 4.523(6) 4.579(2) 4.53(1) 4.387(3)

σ± = −.4
0.04 4.29(2) 4.63(2) 4.73(3) 4.67(1)
0.08 4.11(1) 4.345(7) 4.58(1) 4.68(1) 4.679(9) 4.575(3)

σ± = −.8
0.08 4.10(2) 4.37(1) 4.641(9) 4.761(2) 4.803(2) 4.773(2)
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Table 2: Grafted layer heights found using the molecular theory for charged
wall systems at σg = 0.08. Figures are significant to all decimal places.

σ± ξ∗ = 5.0 2.0 1.0 0.5 0.2 0.1
+.2 2.767 3.253 3.502 3.613 3.652 3.635
+.1 3.167 3.620 3.840 3.920 3.911 3.818
−.1 3.625 4.061 4.267 4.332 4.291 4.162
−.2 3.711 4.155 4.368 4.445 4.416 4.290
−.4 3.844 4.265 4.481 4.575 4.578 4.476
−.8 3.981 4.381 4.596 4.705 4.747 4.690

Table 3: Grafted layer heights found using the molecular theory for uncharged
wall systems of N = 10 and N = 20. Figures are significant to all decimal
places.

σg ξ∗ = 5.0 2.0 1.0 0.5 0.2 0.1
N = 10

0.01 3.077 3.885 3.905 3.738 3.387 3.129
0.04 3.236 3.837 4.039 4.057 3.925 3.718
0.08 3.501 3.899 4.101 4.163 4.125 4.005

N = 20
0.01 5.117 7.175 7.417 7.334 6.921 6.348
0.04 5.542 6.945 7.451 7.586 7.555 7.389
0.08 6.198 7.101 7.570 7.749 7.801 7.745
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Table 4: Grafted layer heights found using Monte Carlo simulation for un-
charged wall systems of N = 10

ξ 〈h〉 Std. Dev.
σg = 0.01

4.00 3.589 0.030
2.86 3.849 0.031
2.00 4.054 0.032
1.00 4.155 0.029
0.50 3.958 0.010
0.20 3.510 0.004
0.10 3.181 0.011
0.05 2.961 0.013

σg = 0.04
5.00 3.308 0.024
2.86 3.869 0.028
2.00 4.058 0.029
1.00 4.215 0.028
0.50 4.196 0.020
0.20 4.015 0.008
0.10 3.762 0.007

σg = 0.08
2.86 3.988 0.023
2.00 4.149 0.026
1.00 4.271 0.024
0.50 4.285 0.017
0.20 4.224 0.007
0.10 4.067 0.005
0.05 3.823 0.011
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Table 5: Grafted layer heights found using Monte Carlo simulation for un-
charged wall systems of N = 20

ξ 〈h〉 Std. Dev.
σg = 0.01

1.67 7.591 0.061
1.43 7.737 0.075
1.00 7.922 0.061
0.50 7.827 0.051
0.20 7.266 0.028
0.10 6.582 0.008
0.05 5.724 0.006

σg = 0.04
1.33 7.668 0.023
1.00 7.786 0.029
0.50 7.889 0.027
0.20 7.807 0.019
0.10 7.590 0.014
0.05 7.172 0.019

σg = 0.08
1.00 7.844 0.048
0.50 7.935 0.037
0.20 7.909 0.063
0.10 7.850 0.050
0.05 7.676 0.009
0.02 7.188 0.014
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