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Monte Carlo simulation and molecular theory of tethered polyelectrolytes
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We investigate the structure of end-tethered polyelectrolytes using Monte Carlo simulations and
molecular theory. In the Monte Carlo calculations we explicitly take into account counterions and
polymer configurations and calculate electrostatic interaction using Ewald summation. Rosenbluth
biasing, distance biasing, and the use of a lattice are all used to speed up Monte Carlo calculation,
enabling the efficient simulation of the polyelectrolyte layer. The molecular theory explicitly
incorporates the chain conformations and the possibility of counterion condensation. Using both
Monte Carlo simulation and theory, we examine the effect of grafting density, surface charge
density, charge strength, and polymer chain length on the distribution of the polyelectrolyte
monomers and counterions. For all grafting densities examined, a sharp decrease in brush height is
observed in the strongly charged regime using both Monte Carlo simulation and theory. The
decrease in layer thickness is due to counterion condensation within the layer. The height of the
polymer layer increases slightly upon charging the grafting surface. The molecular theory describes
the structure of the polyelectrolyte layer well in all the different regimes that we have studied.

© 2007 American Institute of Physics. [DOI: 10.1063/1.2747600]

I. INTRODUCTION

Grafted polyelectrolyte systems are widespread in na-
ture. Within the human body, polyelectrolytes are found lu-
bricating the joints and attached to the surface of cells. In-
spired by biological systems, scientists are trying to reduce
mechanical wear using lubrication by polyelectrolytes.l
Thermally2 and electrically responsive3 polyelectrolyte
brushes have also been created and may be useful in sensor
applications. Recent reviews'® summarize much of the
progress on grafted and ungrafted polyelectrolytes.

For neutral polymers in good solvents, entropic forces
due to volume exclusion determine the structure, and the
configurations are self-avoiding random walks.” The behav-
ior of neutral, grafted polymers on a single wall are deter-
mined by the interplay between the elastic entropy of the
chains and the intermolecular excluded volume. The struc-
tural and thermodynamic properties of these systems have
been explained in previous work utilizing scaling,&9 analyti-
cal self-consistent field theory, numerical self-consistent
field, and molecular theories,lo_13 as well as molecular dy-
namics and Monte Carlo simulations'*>™" (for reviews see
Refs. 10, 16, and 17). Polyelectrolytes present the additional
complexity of electrostatic forces. The structure of a poly-
electrolyte brush is determined by a competition between
Coulomb repulsion among the chains that tends to straighten
them and a moderation of this effect by counterions that
screen the charged monomer interactions. Excluded volume
effects become important at high grafting densities. The
competition between excluded volume and electrostatic in-
teractions is rather complex, and a complete understanding
of the structural features of end-grafted polyelectrolytes has
not yet been attained. However, there have been some in-
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sightful studies that have provided the basic understanding of
these systems. These approaches include scaling
theories,”'®'” and numerical self-consistent field approaches.
Israéls et al.”® used a lattice self-consistent field theory to
examine the effect of salt on weakly charged unquenched
polyelectrolytes on uncharged walls. Von Goeler and
Muthukumar®' developed a self-consistent field theory and
studied the role of salt concentration and short range repul-
sive interactions on the density profiles of the brushes.
Borisov et al.”> have examined weakly charged quenched
polyelectrolytes attached to a solid charged surface. For a
review see Refs. 4 and 5.

The purpose of this work is to study the structure of
end-grafted short polyelectrolytes using accurate Monte
Carlo simulations and a molecular theory. The specific sys-
tems of interest are unsalted tethered layers composed of
short chains. Most of the work on polyelectrolyte brushes
concentrates on the long chain limit. However, there is a
large range of experimental systems in which the understand-
ing of the properties of relatively short chains is important.
Short chain systems include self-assembled monolayers3 and
brushes composed of DNA used for sensing and detection.”
In the limit of short chains the molecular details become
important, and thus analytical approaches based on infinitely
long chains have to be considered with care. The Monte
Carlo technique provides nearly exact properties of the
model system, and a comparison with the molecular theory
provides the means to determine the quality of the approxi-
mations used in its derivation. The comparison of these ap-
proaches with analytical predictions provides the complete
spectrum of the ranges, where each theoretical approach can
be applied.

© 2007 American Institute of Physics
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An end-tethered polymer layer with a fixed monomer
charge, independent of the pH of the solution, is called a
quenched brush. All of the systems examined in this work
are quenched brushes with no added salt. According to the
scaling theory,24 unsalted quenched brushes may exist in the
quasineutral, osmotic, or Pincus regimes, and also perhaps in
a collapsed regime. If excluded volume effects dominate
over electrostatic effects, as occurs at very high grafting den-
sities, the brush height scales as it does for neutral brushes,
and this regime is called the “quasineutral” regime. For neu-
tral brushes, the height of the brush goes as hx N o-(é/ 3 , where
N is the polymer chain length and o, is the grafting density.
In the intermediate regime of surface coverage, all of the
counterions become condensed inside the chain. In this “os-
motic regime,” the osmotic pressure of the ions is the domi-
nant effect, and the brush stays stretched regardless of the
grafting density. There is no dependence on grafting density.
If the charge density is lowered, the brush enters the “Pin-
cus” regime. Here, the height of the brush depends linearly
on the grafting density. In the Pincus regime the counterions
extend beyond the brush, and the osmotic pressure of the
counterions is not sufficient to overwhelm the repulsive
forces between monomers arising from electrostatic interac-
tions. Csajka et al. # put forth an extended scaling theory that
considers the effects of electrostatic correlations that may
cause attractions. This theory predicts the existence of a “col-
lapsed” regime if electrostatic coupling is high, requiring that
the Gouy-Champman length be much less than the brush
height. In some respects, the quasineutral and collapsed re-
gimes are similar, with both showing increasing brush height
with increasing grafting density. In this work we study
whether these regimes are observed for short chain lengths.

There are experimental studies of flexible polyelectro-
lytes end tethered to a single hard wall®>! and polyelectro-
lytes at interfaces, such as an air/water interface.””>® The
surface force apparatus has been used in several studies” ™!
to measure the force experienced by bringing two polymer
brushes attached to mica walls together. Though the most
commonly studied strong polyelectrolyte is sodium polysty-
rene sulfonate (NaPSS), biopolymer systems’ such as
grafted polysaccharides and self-assembled monolayers,3
modified to bear electric charge, are also of interest for bio-
logical and sensor applications. Hayashi et al.*® have exam-
ined systems of grafted poly(L-glutamic acid) and
poly(L-lysine) in water using the surface force apparatus.
Raviv et al.’’ have demonstrated the outstanding lubrication
properties of grafted polyelectrolytes by studying a block
copolymer with a long hydrophilic sodium sulphonated gly-
cidyl methacrylate block. The measurements of the interac-
tions using the surface force apparatus provide only indirect
information on the structure of the layer.

Tran and Auroy25 and Tran et al.”’ observed that grafted
NaPSS chains are strongly stretched in salt-free water be-
cause of the strong electrostatic repulsion between the un-
shielded, like-charged monomers. They found that the brush
thickness is proportional to the chain length, but they found
no dependence on the grafting density, consistent with the
osmotic regime. However, others™ found increasing height
with increasing grafting density. Generally, the experiments
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support the conclusions of Csajka et al.,** reached using the
scaling theory and molecular dynamics simulations. The
brush height scales linearly with the length of the polyelec-
trolyte chains, and the brush height is independent of the
grafting density in the strongly charged regime.

Molecular dynamics (MD) and Monte Carlo (MC) simu-
lations are well suited to examining the predictions of scaling
theories and exposing the underlying physics behind experi-
mental observations. MD is the principal simulation tool
used thus far to study polyelectrolyte brushes. Csajka and
Seidel**** have studied end-grafted polyelectrolyte systems
using a bead-spring model. For strongly charged systems
they observed a chain collapse,42 while at moderate charge
strength Seidel*** predicted that brush height depends
weakly on the grafting density, indicative of the osmotic re-
gime.

MC simulations for polyelectrolyte brushes have been
less numerous than MD simulations. Chen e al.*® used a
lattice MC simulation to examine polyelectrolyte brushes,
treating electrostatic interactions with a screened Coulombic
potential. Counterions were not treated explicitly, and ex-
cluded volume interactions were ignored. In the strongly
condensed regime the charged brush behaved similarly to a
neutral brush. In the weakly screened regime the scaling be-
havior for the brush height followed that of the Pincus re-
gime, as expected. MC simulations have also been used to
study untethered polyelectrolyte chains.*’**

The molecular theory (MT) utilized in this study is an
extension of the single-chain mean-field theory used for neu-
tral brushes'' and recently extended to include electrostatic
interactions.**" The theory explicitly accounts for the con-
formations of the chains, and it includes the size, shape, and
charge distribution of each molecular species in the system.
The theory has been applied to the study of adsorption of
charged proteins on surfaces with and without grafted
polymers.‘lg_51 The theory has been extended to study weak
polyelectrolytes grafted on surfaces of various geometries.52
The predictions of the theory for end-grafted polyelectrolytes
are in excellent quantitative agreement with experimental ob-
servations for the height of polyacrylic acid layers as a func-
tion of surface coverage, pH, and salt concentration.”*>> In
the work presented here we extend the theory to include
counterion condensation. The comparison of the predictions
of the theory with the MC simulations is the most stringent
test for the molecular approach because MC provides for the
exact solution of the identical model system used in the
theory. Moreover, we study the cases where there is no added
salt, and thus electrostatic interactions are not screened. As it
will be shown, the predictions of the theory are in very good
agreement with the simulation results, supporting the as-
sumption that the approximations used in the derivation of
the theory are valid and that the MT can be used as a quan-
titative tool, when full scale simulations are too expensive to
be carried out.

In this work, randomly grafted polyelectrolytes on a
single charged wall are examined using MC simulations.
Counterions are included explicitly and electrostatics are
treated exactly through Ewald summation, not through the
Poisson-Boltzmann approximation. Rosenbluth biasing, a
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novel distance biasing scheme, and the use of a lattice are all
used to speed up calculation, enabling MC simulation to ef-
fectively simulate this complex system in a reasonable
amount of computer time. The effect of grafting density, sur-
face charge density, charge strength, and polymer chain
length are studied. A comparison to MT calculations for the
same model system are made, allowing a direct evaluation of
the validity range of the theory.

In the next section we present the model system fol-
lowed by the details of the MC simulations. Following that,
we present a short derivation of the molecular theory with an
emphasis on the novel features, namely, the inclusion of
counterion condensation in the theory. Section III presents
the results of the calculations using both methods, followed
by some concluding remarks and directions for future work.

II. MODEL AND METHODS
A. Model

The model system studied represents flexible polyelec-
trolytes tethered to a hard wall. The polymer is modeled as a
chain of N coarse-grained beads occupying consecutive sites
on a simple cubic lattice having a coordination number of
Z=26, with allowed lattice vectors of (0, 0, 1), (0, 1, 1), and
(1, 1, 1), and their reflections. Each counterion bead also
occupies a single lattice site. Lattice spacing is a. The sol-
vent molecules are not included explicitly since they are rep-
resented by the empty lattice sites. The polymer beads, all of
which carry a single negative charge, and the counterions, all
of which carry a single positive charge, interact with each
other through Coulombic and excluded volume interactions.
A snapshot of the model system is shown in Fig. 1.

The dimensionless temperature is defined as

- 47788%akhT _ ﬁ, (1)

e g
where I is the Bjerrum length and is 7.14 A in water (e
=78.5) at room temperature (7=298 K). The inverse of this
dimensionless temperature defines the dimensionless Man-
ning ratio,

_ 1
e=7

The dimensionless Manning ratio relates the strength of the
electrostatic interaction to the distance between the charges.
The grafting density is defined as
N

=—4 3
aw (3)

Q|5

: 2)

Grafting densities from 0.01 to 0.08 are examined in this
work. Images of the grafted polymer surface produced in two
atomic force microscopy studies®™*" show clusters of grafted
polyelectrolytes, but another study2 shows seemingly random
grafting. Exactly what grafting pattern predominates remains
unclear. This study adopts random grafting. Previous work
has examined a fixed triangular lattice pattern.56

Though none of the experimentszs’41 measured the mag-
nitude of the charge on the silica walls, it is known that Si
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FIG. 1. (Color online) Snapshot of Monte Carlo simulation of a system with
£=0.2, L.=40, 0,=0.01, and N=20. Polyelectrolytes that span the periodic
boundaries are shown intact for visual clarity. Counterions are shown as
transparent blue (light) beads and polymer chains as different shades of solid
red (dark) beads. Top and bottom walls are shaded to indicate that they are
not subject to periodic boundary conditions.

forms Si—OH groups with a density dependent on the pH of
the aqueous solvent. Typically, a silica surface might have
2-12 hydroxyl groups per nm?.>’ For example, if a=3.6 A
and the simulated charged wall is 10a per side, this corre-
sponds to approximately 25e to 150e of negative charge on
the wall. The surface charge fraction is defined as

o, = Qwall , (4)
T oel,L,

where Q.. 1s the total charge on the wall and e is the charge
on one electron. This study examines surface charge frac-
tions in the range of —0.8<0,=<+0.2, a range consistent
with experimental observations.

B. Monte Carlo simulations

In our canonical (NVT) ensemble Monte Carlo simula-
tions, the polymer configurations are sampled using a
Rosenbluth-biased chain regrowth procedure, while the asso-
ciated counterion positions are sampled using a standard dis-
placement algorithm. The MC simulation proceeds by ran-
domly attempting counterion displacement and chain
regrowth moves. Chain regrowth is attempted 10%—-80% of
the time, and counterion displacement the remainder. The
percentage of chain regrowth moves attempted is adjusted so
that, on average, all counterions are displaced many times
between successful chain regrowth moves.

The regrowth of a polyelectrolyte chain in the strongly
charged regime has an unacceptably low acceptance rate un-
less biasing schemes are utilized. In particular, Rosenbluth
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biasing58 is required to sample favorable chain configura-
tions. Under a certain limited range of strong charge and
high grafting density, distance biasing is also useful to find
preferable arrangements of each chain’s counterions. We
adopt the distance bias method utilized by Orkoulas and
Panagiotopoulos59 and later by Hynninen et al.?”’ for cluster
moves of a charged ion and its counterions. We modify the
method for the canonical ensemble, polymer chains, and
complications due to a finite geometry. Finiteness increases
the computational times required for electrostatic summa-
tion. The distance bias scheme of Hynninen et al. increases
in complexity in a finite geometry because sums over the
volume become z dependent. The supplemental material®’
provides more details on how finiteness requires alterations
to standard methodologies. The proof of a detailed balance
for this regrowth move is also provided as a supplemental
material.®’ It was found that this distance bias method was
not substantially better than Rosenbluth bias alone in this
particular lattice system. Here, we summarize only the gen-
eral approach of the method.

When a charged monovalent monomer is to be removed,
its counterion i is selected for removal with probability

w(”i)
P=——"— 5
= Seolr) (5)
where
w(r;) = exp[= BQ,U(r))]. (6)

r; is the distance between the counterion to be removed and
the monomer bead, N, is the total number of counterions,
and Q) is a free parameter used to vary the strength of the
distance bias. The removal of all counterions for a chain is
given by the product of the individual removal probabilities,

N,
P= H P;. (7)

The Rosenbluth factor of the removed chain, P(r’ld, is also
calculated.

As Q, is increased, the rate of decay of the probability
distribution function as a function of distance increases. An
examination of the acceptance rates shows that the optimal
Q,, varies greatly with density and temperature, but is typi-
cally in the range 0= Q, =< 10. Generally, the optimal Q, was
larger for high charge density systems than for low density
systems. An important consistency test for any distance bias
algorithm 1is that statistically identical results are produced,
regardless of the value of Q,. Our simulation algorithm ex-
hibits the required consistency, and the results are invariant
with the value of Q,.

The reverse event, the growth of a chain and placement
counterions, is similar. A complete chain cut and regrowth
move is accepted with probability

new pnew
P= min(l, Prold pold exp[— ,BAU]) , (8)

where P"™% denotes the probability of counterion insertion in
the new (attempted) state, P°'“ the probability in the old (cur-
rent) state, P, the Rosenbluth factors, and AU the difference
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in electrostatic energy between the old and new states.

We have used the method of Heyes et al.”* to do sum-
mation of the electrostatic energy. This particular method is
not the fastest known, as it scales as N> with the number of
particles, compared with the recent MMM2D method of Ar-
nold and Holm,* which scales as N¥3 with the number of
particles. However, because of the lattice geometry, the
Ewald sum may be precomputed once at the beginning of the
simulation,** and not at every simulation step.

C. Molecular theory

The basic idea of the MT is to to treat each molecular
species exactly, namely, considering the intramolecular and
surface interactions exactly while the intermolecular interac-
tions are treated in an approximate way. This is true for non-
electrostatic interactions. The electrostatic interactions are
obtained by the inclusion of the charge distribution of each
polymer conformation, the explicit inclusion of counterions
and their charges, and the consideration of the possibility of
counterion condensation on the polymer chain. The electro-
static potential is determined by coupling the electrostatic
and packing interactions through the minimization of the to-
tal free energy functional. The end result is a theory that is
much more general than the commonly used Poisson-
Boltzmann approach since the MT explicitly includes the
size, shape, conformations, and charge distribution of all the
molecular species as derived next. For a complete derivation
of the theory (without counterion condensation) and the ap-
proximations involved, the reader is referred to Ref. 52.

We consider exactly the same system as that treated in
the simulations, namely, N, grafted polyelectrolyte mol-
ecules with N segments each on a planar surface (z=0) with
a total surface area A. The grafting density (surface cover-
age) is then given by o,=N,/A. The surface may be either
charged with a surface charge density o, or neutral. Each of
the N segments is charged as in the simulated system. The
polyelectrolyte layer is in contact with a solution containing
counterions and solvent. No salt ions are assumed to be
present. Since the whole system is assumed to be electroneu-
tral, the charges on the surface and polymer brushes are ex-
actly counterbalanced by the counterions in the solution.
Each polymer bead, as well as each counterion, occupies a
single lattice site. The remaining space is filled by the sol-
vent molecules, which also occupy a single lattice site. The
interactions considered are identical to the simulated system,
i.e., electrostatic interactions between the charged species
and excluded volume interactions between all the molecular
species, which translates to single occupancy for each lattice
site.

The first step in the derivation of the theory is writing
the free energy density (per unit area), F/A, as a functional
of the density of counterions, density of solvent, the prob-
ability distribution function (pdf) of the chain conformations,
and the electrostatic potential. We write all the expressions in
continuum space since the approach is applicable to any type
of molecular description, as shown for realistic chain models
in Refs. 52 and 54. We then discretize the equations for a
lattice, to be applied to the system of interest here, i.e., the
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simulated systems. Furthermore, we assume that the system
is inhomogeneous only in the direction perpendicular to the
surface. This assumption is justified a posteriori by the very
good agreement between the theoretical predictions and the
MC results. For the consideration of inhomogeneities in
more than one direction, see Refs. 52 and 65.

The free energy functional is given by

/%F =02 P(a)ln P(a) + f ps(2)(In py(z) - 1)dz

+fp+(z)(ln p+(z)vs—1)dz+J(T(np(Z)){f(Z)
X[In f(2)]+ (1 = f@)[In(1 = f(2)) + BALS plYdz
+B f dz[{p,(2))(z) - %e(Vzw(z))z]- )

The first term is the conformational entropy of the grafted
polymers. The second and third terms correspond to the mix-
ing (translation) entropy of the solvent and counterions, re-
spectively. v is the volume of a solvent molecule, which in
the case treated here is the same as the volume of a polymer
segment (v,) and that of the counterion (v,). The next inte-
gral in Eq. (9) includes the mixing and free energy terms
related to counterion binding, where (n(z)) denotes the aver-
age number of polymer segments per chain at distance z
from the surface, f(z) represents the fraction of polymer seg-
ments at z that are charged, and thus (1—f(z)) is the fraction
that have counterions bound to them. A(u$},) is the differ-
ence in standard free energy between two charged units sepa-
rated by an infinite distance and the bound counterion on the
polymer segment. The last two terms in the free energy ex-
pression [Eq. (9)] are the electrostatic contribution, with
(p,(2)) representing the total charge density at z given by

(pe(2)) == af(2)(n(2)) + p,(2), (10)

where the negative charge in the polymer and the positive in
the counterion has been accounted for. In Eq. (9) i(z) is the
electrostatic potential at z. € is the dielectric constant of the
medium (for the case of varying dielectric environment see
Ref. 52).

The single occupancy requirement, hard core excluded
volume interactions, is introduced through packing con-
straints. Namely, at each distance from the surface the avail-
able sites are occupied by polymer segments, solvent, or
counterions. This reads

K@D, + (1 - f(2) (v, +v,) ]+ p.(2)v,
+p(2v,=1. (11)

The first term is the contribution from the polymer segments.
There are two types of polymer segments that need to be
considered: those that are charged and the ones that have a
counterion condensed. Note that in considering two types of
polymer segments, we are also considering two types of
counterions, condensed and free. This has also been done in
the free energy as p,(z) is the density distribution of free
counterions. The second term in the constraint equation [Eq.
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(11)] includes the contribution from the free counterions, and
the last term is the solvent contribution.

The pdf, the density of solvent and counterions, the frac-
tion of bound counterions, and the electrostatic potential are
determined by the functional minimization of the free energy
[Eq. (9)] subject to the packing constraints [Eq. (11)] with an
explicit consideration of the charge distribution [Eq. (10)].
This is done by the introduction of Lagrange multipliers
B(z) to yield, after some algebraic re'clrrangement52 for the
pdf,

Pla)= cl] exp{— f Br(z)n(z; @)

—f [(z) - 1nf(z)]n(z;a)dz}, (12)

where ¢ is the normalization constant. The first term in the
exponential represents the (nonelectrostatic) repulsive inter-
actions that the polymer in conformation « feels, and the last
one is the electrostatic contribution with the explicit inclu-
sion of the role of counterion condensation.

For the density of free counterions the free energy mini-
mization leads to

p+(z) = C expl- Bmr(2)v, — BY2)], (13)

where the constant C is determined by the condition that the

total number of counterions is equal to the total number of

polymer segments (recall that we are treating only the salt-

free case, as that is the case treated in the MC simulations).
The solvent density profile is

ps(z)vs = eXP[— BW(Z)vs]’ (14)

and the fraction of charged polymer segments at z obtained
from the minimization (and some algebraic rearrangements)
is

1
1+ py(2)exp[- BAuy ]

Finally, the minimization of the free energy functional
[Eq. (9)] with respect to the electrostatic potential leads to

PV (z)

oz

f2)= (15)

== Ix(p,(2)), (16)

with the average charge at z given by Eq. (10).

Equation (16) demonstrates that the molecular theory
presented here goes well beyond the Poisson-Boltzmann
equation since the average of the charge density explicitly
includes the conformations of the polymer chains, the size
and shape of each of the molecular species, as well as the
specific condensation equilibrium. A thorough discussion of
the advantages of the theory, its range of application, the
physical significance of all the terms, as well as the limita-
tions of the approach can be found in Ref. 52.

The next step is the application of the derived equations
to the systems of interest here. The only unknowns to calcu-
late any desired conformation or thermodynamic property of
the polymer layer are the lateral pressures and the electro-
static potential as a function of the distance from the surface.
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Since we are only interested in the case of lattice chains in
the present application, we discretize the above derived
equations directly for a lattice in which the lattice step size as
well as the lattice site volume are taken as unity (for the
application of the theory to off-lattice systems, including
mixtures of molecules of different sizes, shapes, and charge
distributions, see Refs. 49, 51, 52, and 66). Then, the explicit
equations to be solved are the coupled constraint [Eq. (11)]
and the generalized Poisson equation [Eq. (16)], in the lat-
tice, which are

o(n()) +p, (i) +pi)=1, i=1,...,L (17)

Z

and
)
AW (D) == p, ()= Ep, @), i=1,.. L, (18)
where A? is the second difference operator defined by

A2g(i)=g(i+1)-2g(i)+g(i—1). The pdf in lattice form is
given by

L,
P) = é exp| = 3 = 7 (i) = W' (1)~ In fDn(iza) |,
i=1

(19)
while the solvent density is given by
ps(i) = exp[— 7' (i)] (20)
and the counterion density is
p+(i) = Cexp[— 7'(i) - W' ()], (21)

where the lateral pressures 7' (i) and the electrostatic poten-
tial W' (i) in Egs. (18)—(21) are unitless quantities, defined by
7' (i)=B7(i)v, and V' (i)=BY(i)e.

The Poisson equation requires the specification of two
boundary conditions. In order to have the same system as in
the simulations, the boundary conditions should be that the
charge at the grafted surface, i=0, is o, while the charge at
the surface L, should be equal to zero. The charge is given by
the gradient of the electrostatic potential. Thus, the boundary
conditions for the lattice system are

V(1) -V (0) = éo, and W' (L. + 1) =W/ (L)=0. (22)

Note that the way the differences are defined, the derivatives
are calculated exactly at the surfaces. Moreover, it should be
clear that there are no layers O and L_+1, but they are needed
to define the derivatives.

Equations (17) and (18) represent a set of coupled 2L,
nonlinear equations to determine the complete set of values
for 77’ (i) and W’ (i). The input necessary to solve the equa-
tions are the polymer surface coverage, the surface charge
density, the value for the standard free energy for ion con-
densation, and the set of polymer conformations. To this end,
depending on the chain length, we can generate all the pos-
sible self-avoiding configuration by exhaustive counting for
short chain length or generate a large set of self-avoiding
walks using the Rosenbluth-Rosenbluth algorithm. Note that
for a given chain length the set of conformations is generated
once, and then the same set is used for all the different con-
ditions. From each generated polymer conformation the set
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of occupation numbers is used. The set of nonlinear equa-
tions is solved by standard numerical methods.

The value of Au. is the difference between the free and
bound counterion states. In the bound state most of the poly-
mer conformation will be such that the counterion can be in
contact with more than one polymer segment. The only type
of polymer configurations in which there is only one contact
is that where two consecutive bonds are linear. Therefore, the
free energy value should be ,BA,ugczc & with C>1. We
have taken the value C=1.5 in all the calculations.

lll. RESULTS AND DISCUSSION

Results have been obtained using MC calculations and
MT theory for polymer chains of length N=10 and 20 at
grafting densities of 0,=0.01, 0.04, and 0.08. The charge on
the grafting surface, o,, ranged from o,=+0.2 to 0,=-0.8.

Regardless of chain length, all monomer density profiles
found using MT theory and MC simulation exhibit an en-
tropic depletion near the wall, a peak in the monomer density
profile adjacent to the region of depletion, and a gradual
decay, as has been seen in previous mean-field calculations™
as well as in Monte Carlo simulations®® for much longer
chains.

In the limit of £é—0 the electrostatic interactions disap-
pear and the counterions distribute evenly across the entire
gap, with some deviation due to excluded volume interac-
tions with the polyelectrolyte chains. Counterion condensa-
tion within the polymer brush is promoted by increasing &.
At £>1 the electrostatic interactions become strong enough
for the counterions to condense immediately adjacent to the
negative charges on the chains, effectively neutralizing the
chain. Therefore, the polyelectrolyte layer behaves similarly
to neutral tethered polymers. Figure 2 illustrates the behavior
of low surface coverage tethered polyelectrolytes
(0,=0.01) between the two limits. At a charge strength of
£=0.2 [Fig. 2(a)] the counterions are spread across the gap of
width L,=40. There is a slight tendency to have an enhanced
counterion density close to the polymer due to the weak
electrostatic attractions. As the Manning parameter increases
from £=0.2 to é=1 [Fig. 2(b)], the monomer density in the
first few layers drops and the density of the counterions in
these layers rises, showing the more dominant role of elec-
trostatic interactions. Interestingly, from the density profiles
it is not clear whether the counterions are condensed or
freely attracted to the polymer layer region due to electro-
static attractions between the oppositely charged groups. The
inset of each curve shows the free and bound counterion
densities as predicted from the theory. At small ¢ there are
almost no condensed ions. However, for £=1 there is a sig-
nificant amount of condensed ions, as would be expected.

At £=4 [Fig. 2(c)] the condensation is so strong (see
inset) that the density profile of the counterions is almost
coincident with the monomer density profile. At £=4 the
polymer layer is less stretched and the behavior is very simi-
lar to that of an uncharged tethered polymer layer. Csajka
and Seidel* also observed a decreased brush extension in
their simulations. Their simulations® were completed at &
=14, a region of extremely strong counterion condensation.
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FIG. 2. Monomer density (solid line) and counterion density (dashed line)
profiles calculated using the mean-field theory. Monomer density (circles)
and counterion density (filled circles) profiles calculated with the Monte
Carlo simulation. Profiles at (A) ¢=0.2, (B) é=1.0, and (C) £=4.0 for o,
=0.01, N=10, and L_=40. Statistical uncertainties are smaller than the sym-
bol size. Insets show free (solid) and condensed (dashed) counterion density
profiles.

Our results are in agreement with their predictions, and even
the short chains shown here can be considered to be in the
quasineutral or collapsed regimes.

It is important at this point to emphasize that the results
shown in Fig. 2 correspond to a very low surface coverage of
polymers. Actually, in the terms typically used to character-
ize neutral tethered polymers, this is the mushroom regime,
in which the distance between grafting points is larger than
the radius of gyration of the neutral polymer chain. The
study of this regime is important for several reasons. First, in
experimental systems such as cell membranes, short polysac-
charides are found on the outer leaflet of the membrane at
low surface coverages. Second, the complete understanding
of the behavior of the grafted chains requires the study of all
the limits from low to high density. Third, from the point of
view of the molecular theory this is the most stringent test
for polyelectrolytes. The reason is that in neutral chains the
molecular theory and the simulations are identical at very
low surface coverages since the theory exactly accounts for
the single-chain properties. However, the addition of electro-
static interactions makes the low density limit the most chal-
lenging for the theory. The fact that there is a close agree-
ment between the MT predictions and the simulations for the
three values of ¢ (for both the polymer segments and the
counterion distribution) implies that the electrostatic interac-
tions, with the inclusion of counterion binding, are well ac-

J. Chem. Phys. 126, 244902 (2007)

0.15 T
0.12
0.08
0.10 0.04 1
p T —
. 5 10 15 20
0.05}
A)E=0.1
0.00 bt
0.15 ——rr————1
Qe,.
0.10f
P
0.05F %o .
N\
B)&=1.0 )
L L o P
0.00 === 10 ., 15 20 25

zZ

FIG. 3. Monomer density (solid line) and counterion density (dashed line)
profiles calculated using the mean-field theory. Monomer density (circles)
and counterion density (filled circles) profiles calculated with the Monte
Carlo simulation. Profiles at (A) §=0.1 and (B) ¢=1.0 for 0,=0.08, N=20,
and L,=40. Statistical uncertainties are smaller than the symbol size. Insets
show free (solid) and condensed (dashed) counterion density profiles.

counted for by the theory. The main difference between the
theoretical predictions and the simulations are for large & and
only in the region very near to the surface.

The predictions of the theory are also in very good
agreement with the MC simulations for a longer chain length
and at high grafting density, as shown in Fig. 3. The figure
shows that for large values of o, there is a larger degree of
counterion condensation in order to reduce the electrostatic
repulsions induced by the high local density of polymer seg-
ments. Even for a low value of & we observe a large concen-
tration of the counterions in the region of the polymer layer.
The entropic gain of spreading the ions, as observed in Fig.
2(a), is overcome by the gain in electrostatic attraction or,
equivalently, the reduction in the interpolymer electrostatic
repulsions. Again, the comparison with the theoretical pre-
dictions demonstrates the validity of the approach for all
conditions of surface and chain length studied here.

A measure of the thickness of the polymer layer is given
by the height, which can be calculated as the first moment of
the density profile,

| N
= a'_NE ZiPi- (23)
gtVvi=1

Figure 4 illustrates the interplay between electrostatic
interactions and elastic free energy. The height of the layer
shows a maximum as a function of the Manning parameter.
At low Manning parameters the electrostatic interactions are
very small due to the large distance (as compared to the
Bjerrum length) between charges. Therefore, the height re-
flects the stretching of the chains due to the elastic free en-
ergy of the chains. As the Manning parameter increases, the
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FIG. 4. Brush height as a function of the Manning parameter calculated
using the mean-field (MF) theory (lines) and MC simulation (symbols) for
grafting densities of 0,=0.01 (dash-dot/triangles), 0.04 (dashed/circles), and
0.08 (solid/squares) for N=10 and L.=40. Statistical uncertainties are com-
parable to the symbol size and tabulated in Ref. 61.

electrostatic repulsions start playing a more important role
and there is an enhancement of the stretching of the chains
due to the charge-charge repulsions. However, when the
electrostatic interactions start to become very dominant, the
system has the option of condensing some of the counteri-
ons, resulting in an effective smaller charge on the chain and
thus a decrease in the film thickness. The height results are
clearly a manifestation of the changes in the detailed profiles
shown in Figs. 2 and 3. The presentation of the height varia-
tions provides a more concise way to show the variations
scanning a larger parameter space, enabling the analysis of
different surface coverages within one picture.

Figure 4 shows the predictions from the MC and those
from the MT. There is good agreement at all surface cover-
ages for all values of the Manning parameter. The best agree-
ment though is found at higher surface coverages. However,
in all the calculations that we have carried out for N=10 and
N=20, we find the maximal error in the predictions from the
theory as compared to the MC to be 6.4% for 0,=0.01 and
3.5% for 0,=0.08. Taking these results with the comparisons
shown for the density profiles in Figs. 2 and 3, we can be
confident in the predictions of the theory as it quantitatively
predicts the detailed structure of the layer within less (some-
times much smaller) than 5% error in most cases of interest.

The examination of Fig. 4 shows that the variation of the
height with the strength of the electrostatic interactions is not
the same for all grafting densities. To see this effect in a
clearer way, Fig. 5 displays the predictions from the MT for
N=20 at seven different surface coverages, ranging from low
to very high. Also included in the figure are the MC results
for three surface coverages. The shape of the variation of the
height is the same for all o,, namely, the presence of the
maximum. However, as the curves are almost parallel in the
limit of low &, this is not the case for £= 1. We see that both
the position of the maximum as well as the decrease as &
increases are density dependent, with the strongest depen-
dence at low surface coverages. The reason for this behavior
can be understood by looking at the different roles of the
electrostatic and the steric interactions in determining the
structure of the layer. For low surface coverages, the electro-
static contributions are the most dominant interaction, and

J. Chem. Phys. 126, 244902 (2007)

FIG. 5. Brush height as a function of the Manning parameter calculated
using the MF theory (lines) and MC simulation (symbols) for grafting den-
sities of ¢,=0.01 (triangles), 0.02, 0.03, 0.04 (circles), 0.06, 0.08 (squares),
and 0.10 for N=20 and L,=40. The line type denoting the molecular theory
results is indicated within the figure. Statistical uncertainties are comparable
to the symbol size and tabulated in Ref. 61.

the intermolecular repulsions between charged groups are re-
sponsible for most of the behavior observed for ¢,=0.01.
For high surface coverages, the steric intermolecular repul-
sion is mostly responsible for the stretching of the chains,
and both intra- and intermolecular electrostatic repulsions
play a more important role. As the steric repulsions are more
dominant in stretching the chains (as o, increases), the maxi-
mum in the height of the tethered layers moves towards
lower values of & The position of the maximal height at
lower & demonstrates that there are more counterions, both
condensed and free, in the region of the polymer at lower &
as o, increases. This is the result of the more dominant role
of intermolecular electrostatic repulsions.

The chain lengths described in this work are relatively
short, and therefore scaling theories that are valid in the limit
of very long chains are not applicable. However, it is inter-
esting to comment that even for these short chain lengths we
start to see the predicted behavior for long chain lengths. For
example, at £=1 we see that there is a very weak depen-
dence of the height on surface coverage. In the scaling limit
&é=1 represents the osmotic regime, where the thickness is
predicted to be independent of surface coverage.'9 We can
also see that the height increases monotonically with o, at
low &, while it shows a minimum for £> 1, with the position
of the minimum being a function of &.

The quantification of counterion condensation is difficult
within the MC simulations due to the way that chains are
generated and regenerated constantly. However, based on the
high quality of the predictions of the theory as judged against
the simulations, we are confident that the theoretical predic-
tions for other quantities not defined in the simulation are
accurate as well. Therefore, we use the predictions of the
theory to show the amount of counterion condensation as a
function of the Manning parameter in Fig. 6. The counterion
condensation is defined as the fraction of the ions that form
pairs with the polymer chain (see insets in Fig. 2). Because
we calculate the counterion condensation only for systems
where the charged chains are exactly counterbalanced by the
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FIG. 6. The counterion condensation fraction ¢ vs the Manning parameter &
calculated using the mean-field theory for o,=0.01 (dash-dot), 0.04 (dash),
and 0.08 (solid) for N=20 and L.=40.

oppositely charged counterions, the counterion condensation
fraction may be calculated from the the fraction of polymer
segments that are charged, and is given by

LZ
(@ =23 (1)), (24)
i=1

with the quantities as defined in Sec. II.

The counterion condensation (¢) as a function of the
Manning parameter is shown in Fig. 6. As already discussed
above, there is a sharp increase in the condensation of the
counterions as ¢ increases. Interestingly, we also see a strong
dependence of the counterion condensation on surface cov-
erage. In order to reduce the overall electrostatic repulsions,
a larger fraction of the polymer segments need to have the
counterions bound as the surface coverage increases. This, as
discussed above, is a direct manifestation of the role of in-
termolecular interactions as the surface coverage increases.

Consider now the case in which the grafting surface is
charged. If the wall and the polyelectrolyte are like charged
(a typical polyelectrolyte and silica wall system in water),
the electrostatic repulsions would induce the stretching of the
polymer chains, as compared to an uncharged wall. This ef-
fect is predicted using both MC and MT calculations. As in
all the cases above, there is very good agreement between
the predictions of the theory and the simulations, with less
than 5% difference in the worst case. The increased polymer
layer extension with surface charge is observed for the entire
range of & examined, as shown in Fig. 7. For a layer with a
total charge of —80e at £=0.5, as the total negative charge on
the wall rises from zero to —80e (0,.=-0.8), the polymer
layer height increases by 11%. An increase in height was also
predicted by Borisov et al” using a mean-field theory. If the
wall and the polyelectrolytes are oppositely charged, the
change in layer thickness is larger in magnitude than ob-
served in the like-charged case. Figure 7 shows that in a
system where the total layer charge is —80e and the wall
charge is +20e, the polymer thickness decreases from 4.29 to
about 3.63 (at £=0.5), a 15% decrease. However, if the wall
charge is —20e instead the brush increases in height by only
7%.

J. Chem. Phys. 126, 244902 (2007)

FIG. 7. Brush height as a function of the Manning parameter calculated
using MT (lines) and MC simulation (symbols) for surface charges of o,
=+0.2 (dot-dash/filled circle), +0.1 (dashed/filled triangle), O (solid line/
cross), —0.1 (dashed/triangle), —0.2 (dot-dash/circle), —0.4 (dot-dot-dash/
plus), and —0.8 (dash-dash-dot/diamond) for N=10, 7,=0.08, and L,=40.
Statistical uncertainties are smaller than the symbol size.

IV. CONCLUSIONS

We have examined the structure of grafted polyelectro-
Iyte layers as a function of charge strength, grafting density,
surface charge, and chain length using both Monte Carlo
simulations and the molecular theory.

Monte Carlo simulations and the molecular theory both
show that grafted polymer layers collapse at high charge
strength due to counterion condensation. This effect is simi-
lar to the collapse in bulk solutions of highly charged chains
to dense neutral structures, first predicted by Gonzalez-
Mozuelos and Olvera de la Cruz,53 due to the ionic correla-
tions among condensed ions and the chains.

The layer thickness reaches a maximum at an intermedi-
ate ¢ and falls as the Manning parameter decreases and the
brush enters the weakly charged regime. The molecular
theory agrees quantitatively with the MC results, with a bet-
ter agreement at high grafting densities. It is important to
emphasize that the theory requires the explicit inclusion of
counterion condensation in order to predict quantitatively the
properties of layers under all conditions. We have shown that
counterion condensation can be treated in the theory as a
chemical equilibrium between two different species, the
bound pair and the separated charges. The free energy differ-
ence between the bound pair and the separate ions is an input
for the theory. This type of chemical equilibrium has also
been used within the same theoretical approach to treat acid-
base equilibrium.52 The predictions of the theory are in ex-
cellent quantitative agreement with experimental observa-
tions on polyacrylic acid grafted layers.54’55 Thus, with the
extension of the theory presented here, the molecular theory
can be used in cases where both acid-base equilibrium and
counterion condensation are possible.

We find that there is a weak dependence of layer height
on grafting density at high & Moreover, the film thickness
shows a minimum as a function of surface coverage. At low
¢ the thickness of the layer is a monotonic increasing func-
tion of the grafting density. This result is consistent with
previous simulations®* and scaling theory.19 The simulations
and theoretical predictions for charged surfaces show a mild
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polymer extension for surfaces with the same charge as the
polymer and a larger compression when the surface is oppo-
sitely charged.

The work presented here combines MC simulations with
molecular theory. The aim of the work is to show the prop-
erties of short charged polymers end grafted to surfaces.
While there is a relatively large body of work for long poly-
mers, there is very little on short chain molecules. This range
of chain length is important in biology, e.g., charged short
sugars on membrane surfaces, and they may find important
applications in the the design of charged self-assembled
monolayers. We have shown that an efficient MC algorithm
enables the systematic studies presented here for a variety of
polymer grafting densities and charge strengths and for two
chain lengths. However, this is still time consuming. The
application of the molecular theory is orders of magnitude
more efficient and can be used for realistic chains. The abil-
ity of the theory to quantitatively predict the properties of the
layers, as compared with the MC, for all the conditions stud-
ied, strongly supports the validity of the approximations used
in the derivation of the theory. The main approximation used
in the theory is the neglect of lateral correlations, by assum-
ing that at each z the layer is homogeneous. It is clear that in
all the cases studied here, these correlations play almost no
role in the determination of the properties of the layers. If
lateral correlations are important, it implies that the theory
implicitly includes this effect through the incorporation of
counterion binding by a chemical equilibrium methodology.
Note that the inclusion of the bound-unbound equilibrium is
in essence a multibody effect.”” The next step is to see
whether this approximation is valid on more complex sys-
tems that include salt and the adsorption of charged nanopar-
ticles on surfaces with grafted polymers. Work in this direc-
tion is being carried out.
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