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We develop an “end-transfer configurational bias Monte Carlo” method for efficient thermodynamic
sampling of complex biopolymers and assess its performance on a mesoscale model of chromatin
!oligonucleosome" at different salt conditions compared to other Monte Carlo moves. Our method
extends traditional configurational bias by deleting a repeating motif !monomer" from one end of the
biopolymer and regrowing it at the opposite end using the standard Rosenbluth scheme. The
method’s sampling efficiency compared to local moves, pivot rotations, and standard configurational
bias is assessed by parameters relating to translational, rotational, and internal degrees of freedom
of the oligonucleosome. Our results show that the end-transfer method is superior in sampling every
degree of freedom of the oligonucleosomes over other methods at high salt concentrations !weak
electrostatics" but worse than the pivot rotations in terms of sampling internal and rotational
sampling at low-to-moderate salt concentrations !strong electrostatics". Under all conditions
investigated, however, the end-transfer method is several orders of magnitude more efficient than
the standard configurational bias approach. This is because the characteristic sampling time of the
innermost oligonucleosome motif scales quadratically with the length of the oligonucleosomes for
the end-transfer method while it scales exponentially for the traditional configurational-bias method.
Thus, the method we propose can significantly improve performance for global biomolecular
applications, especially in condensed systems with weak nonbonded interactions and may be
combined with local enhancements to improve local sampling. © 2007 American Institute of
Physics. #DOI: 10.1063/1.2428305$

I. INTRODUCTION

Biopolymers such as RNA, DNA, proteins, polysaccha-
rides, and chromatin pose a considerable challenge to ther-
modynamic sampling. The sheer number of degrees of free-
dom, and hence, favorable configuration regions involved
has made molecular dynamics, Brownian/Langevin dynam-
ics, and Monte Carlo simulations all viable yet limited ap-
proaches. Strong nonbonded intramolecular interactions
!!kBT" like hydrogen bonding in proteins and polysaccha-
rides and strong electrostatics in single-stranded RNA/DNA
and chromatin confer a highly corrugated free energy land-
scape that further exacerbates their sampling. Hence, pro-
hibitively long simulations are required to sample the entire
energy landscape of the biopolymer due to their tendency to
get trapped in deep local energy minima separated by large
energy barriers. In the case of chromatin, the nucleoprotein
complex in which protein spools called nucleosomes are
linked to one another by wound DNA, structural complexity
resulting from charged histone tails protruding from each
nucleosome core which lead to numerous possible folding
arrangements make configurational sampling of the ther-
mally accessible configurational space challenging.

Brownian dynamics !BD" and Langevin dynamics !LD"
methods, which replace the solvent molecules of molecular

dynamics by a more computationally affordable stochastic
heat bath, offer a direct route to obtaining the configurational
and dynamical properties of biopolymers.1,2 The simulations
are, however, limited by the magnitude of the integration
time step and generally lead to regional sampling. Further-
more, the computation of the hydrodynamic diffusion tensor
in BD can be very demanding, limiting the overall sampling.
The BD/LD methods are, hence, more suited to simulating
biopolymers with weak intramolecular nonbonded interac-
tions, especially where hydrodynamic interactions are impor-
tant.

Monte Carlo !MC" methods, on the other hand, offer
more flexibility with the type and size of jumps attempted in
the configurational phase space, though they are clearly rec-
ognized as having limitations as the number of variables in-
creases. Several MC methods, many tailored for polymer
simulations, have been developed to sample the complex en-
ergy landscape of biopolymers. The simplest involves local
perturbations to monomer positions or bond/torsion angles
with a straightforward Metropolis acceptance criteria

Pacc = min#1, exp!− "U/kBT"$ , !1"

where "U is the energy difference between the proposed and
original configurations. Examples of such local moves in-
clude translations, rotations, crank-shaft rotations, and pivot
rotations !see Ref. 3 for a comprehensive review". Such local
moves are typically combined with larger perturbations to
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sample space more globally, such as regrowing the entire or
large portions of the biopolymer. The configurational-bias
MC !CBMC" method4 lies at the heart of these global MC
moves.

It is well-known that the acceptance probability of re-
growing a self-avoiding lattice chain via a MC procedure
where each new segment is placed randomly at one of the
neighboring sites of the previously inserted segment
!whether occupied or not" decreases exponentially with the
length of the polymer due to an increased tendency for
segment/segment overlaps.5 The original CBMC scheme6,7

was developed to overcome this limitation by inserting new
segments at one of the unoccupied neighbor positions either
with equal probabilities #P!j"=1/n, where n is the number of
trial sites and j is the selected site$ or with probabilities
proportional to the trial position’s Boltzmann weights #P!j"
=exp!−#Uj" /%k=1

n exp!−#Uk", where Uj is the selected posi-
tion’s external energy$. This bias toward successful chain
insertion is then corrected in the acceptance criterion through
the computation of the Rosenbluth factor W, which equals
the product of the sum of the Boltzmann weights of trial
positions for each segmental insertion: W=&i=1

N %k=1
n

exp!−#Uk", where N is the number chain segments. The new
acceptance criteria is then given by

Pacc = min'1,
Wnew

Wold
( , !2"

where Wnew and Wold are the Rosenbluth factors of generat-
ing the new polymer configuration and retracing the old con-
figuration using the Rosenbluth scheme.

The CBMC scheme was generalized to continuously de-
formable polymers8,9 with weak and strong intramolecular
interactions !bond stretching, bending, and torsion" by modi-
fying the trial segment generation procedure—to sample trial
segments from a Boltzmann distribution corresponding to the
bonded interaction energies. Other variants of the CBMC
method include the end-bridging algorithm,10,11 which re-
grows interior portions of the polymer while keeping end
segments fixed; the recoil growth algorithm,12 which pre-
vents polymers from reaching “dead-alleys” by looking sev-
eral monomers ahead before attempting a move; and the
pruned-enriched Rosenbluth algorithm, which selectively en-
riches polymer conformations with high Rosenbluth
weights.13

We propose a simple modification of the traditional
CBMC scheme, which we call the end-transfer CBMC
method, that leads to dramatic improvement in its sampling
efficiency. Rather than regrowing deleted portion of a poly-
mer from the same “cut” end, as in the traditional CBMC, we
regrow the deleted portions of the polymer at the opposite
end in the same spirit as the reptation algorithm.3

After describing this CBMC modification in detail and
showing that it conserves microscopic reversibility, we apply
it to sampling oligonucleosomes modeled using our recent
coarse-grained flexible-tail model14 and compare its perfor-
mance to other moves !local, pivot rotations, and traditional
CBMC". We characterize sampling efficiency using param-
eters relevant to the different degrees of freedom of the
biopolymer. We find that, under all conditions tested here

!medium to high salt", our method improves sampling by
several orders of magnitude compared to the traditional
CBMC scheme. Our approach also leads to better sampling
than other moves under high salt conditions, but falls short of
the pivot rotation method at low to medium salt conditions.
The difficulty at low salt can be explained by reduced elec-
trostatic salt-screening effects which lead to large electro-
static energies/barriers that dramatically reduce the method’s
acceptance ratios. Thus, though the sampling of complex but
moderately charged/neutral biopolymers may be substan-
tially improved through the end-transfer CBMC scheme, ad-
equate sampling of highly charged systems such as chroma-
tin remains a challenge, especially when salt-screening
effects are small.

II. METHOD DEVELOPMENT

A. Concept

The main concept of the end-transfer CBMC scheme
!deleting portions of the biopolymer from one end and re-
growing them at the opposite end" is sketched in Fig. 1.
Without loss of generality, it suffices to focus on the simula-
tion of single biopolymers where only intramolecular inter-
actions are considered; extensions to biopolymers interacting
with the surroundings is straightforward. We denote the poly-
mer’s two ends by “head” and “tail,” arbitrarily. Each repeat-
ing unit of the biopolymer !depicted as circles in Fig. 1"
could represent a nucleosome plus the associated linker
DNA in the case of chromatin, four actin monomeric sub-
units in the case of an F-actin filament, etc. In general, the
repeating unit may be asymmetric !e.g., in chromatin" so the
direction of regrowth depends upon which of the two end
motifs is selected. The size of the cut portion must be an
integer multiple of the size of the repeating motif to preserve
the polymer’s integrity in the case of asymmetric biopoly-
mers. To preserve microscopic reversibility, both “head-to-
tail” !H→T" and “tail-to-head” !T→H" must be employed
and applied with equal probability of 1/2.

If the above “cut and regrow” scheme is performed ran-
domly !without any biases in the transition matrix" and in a
stepwise manner beginning at the polymer termini, the ac-
ceptance probability is given by the standard Metropolis cri-
terion

Pacc = min'1, exp)−
Ugrow − Ucut

kBT
*( . !3"

Here, Ugrow and Ucut, respectively, represent the interac-
tion energies of the regrown motif at its new and original
locations/configurations with the rest of the polymer. For ex-
ample, in the first end-transfer move in Fig. 1, Ucut represents
the energy of interaction between motif 7 at the tail end with
motifs 1–6 plus its internal energy, and Ugrow represents the
interaction energy of the regrown motif 7 at the head end
with motifs 1–6 plus its internal energy. Unfortunately, such
a random regrowth of polymer ends usually results in very
low acceptance rates.

As in CBMC, the acceptance probability of the end-
transfer moves may be considerably improved by employing
the Rosenbluth scheme for regrowing biopolymer motifs.
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Consider a biopolymer as N repeats of each building block,
itself of nR segments. The total nRN segments interact within
the biopolymer through a bonded force field, Ubond, compris-
ing of stretching, bending and torsion terms, and a non-
bonded force field, Unonb, comprising long-ranged interac-
tions such as van derWaals and Coulomb.

Consider first the implementation of the T→H end-
transfer move. A pseudocode for this move is provided in the
Appendix. According to the Rosenbluth scheme, the nR seg-
ments of the motif are inserted one after the other at the head
end in the following order: i=nR , . . . ,1. First, k trial posi-
tions of segment nR are generated by sampling from the Bolt-
zmann distribution corresponding to the bonded interaction
energy between segments nR and nR+1, i.e., the probability
of choosing a particular position j for segment i is given by

Pbond
j = Anorm

i exp!-Ubond
i,j /kBT" , !4"

where Anorm
i includes the Jacobian and the distribution’s nor-

malization constant.4 The nonbonded !external" Boltzmann
factor of each trial position j is computed and summed to
yield the Rosenbluth weight for the insertion of segment i,15

as given by:

wH
i = %

j=1

k

exp!− Unonb
i,j /kBT" . !5"

Next, one of the trial position s is selected with a prob-
ability

Pnonb
s = exp!− #Unonb

i,s "/%
j=1

k

exp!− #Unonb
i,j " . !6"

The remaining segments nR−1, . . . , 1 are also inserted
using the above procedure and their Rosenbluth weights are
recorded to yield the cumulative Rosenbluth weight

WH = &
i=1

nR

wH
i . !7"

The cumulative Rosenbluth weight of the original motif
configuration at the tail end, WT, is computed by retracing
the old configuration from segments nRN−nR+1 onwards.
For each segment, k−1 trial positions of segment i are gen-
erated; the original segment position becomes the kth trial
position. The Rosenbluth weight for each segment i is then
computed as

wT
i = exp!− Unonb

i,o /kBT" + %
j=1

k−1

exp!− Unonb
i,j /kBT" , !8"

where Unonb
i,o represents the external energy of segment i in

the old conformation o. The cumulative Rosenbluth for the
motif in the old conformation/position is given by

WT = &
i=nRN−nR+1

nRN

wT
i . !9"

Finally, the regrown H motif is chosen with a probability
of

Pacc
T→H = min'1,

WH

WT
( . !10"

FIG. 1. Comparison of end-transfer CBMC !left box" and regular CBMC !right box" schemes for a biopolymer comprising of seven repeating motifs depicted
as circles. Empty and shaded circles represent unsampled and sampled !regrown" motifs, respectively. Biopolymers A1 and A2 represent the starting
conformations, and E1 and E2 represent final well-sampled conformations. The following sequence of moves are illustrated for the end-transfer CBMC
scheme: transfer/regrowth of segments 1 from head to tail !B1", transfer/regrowth of segment 1 from tail to head !C1", and transfer/regrowth of segment 7
from tail to head !D1". The following sequence of moves are illustrated for the standard CBMC scheme: regrowth of segment 7 !B2", regrowth of segments
1 and 2 !C2", and regrowth of segments 1–3 !D2".

044107-3 Global biopolymer sampling J. Chem. Phys. 126, 044107 "2007!

Downloaded 29 Jan 2007 to 128.122.250.24. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Note that the acceptance probability expression of Eq.
!8" is typical of all configurational bias methods. The accep-
tance probability for the reverse move, namely the H→T
move, is given by

Pacc
H→T = min'1,

WT

WH
( . !11"

The transfer and regrowth of polymer segments from
one end to the other is what differentiates the end-transfer
CBMC scheme from traditional CBMC schemes. Standard
CBMC schemes involve cutting the polymer at a random
position along its entire length and then regrowing the
shorter half of the polymer via a Rosenbluth scheme !right-
hand side of Fig. 1". The size of the regrown portion there-
fore varies uniformly between 1 and N /2 segments, where N
is the total number of segments in the polymer. Assuming
that the acceptance probability of regrowing a single motif is
given by a, where a$1, the acceptance probability of re-
growing portions of polymer containing n motifs decreases
exponentially !power law" with n as given by an. This means
that polymer sampling by the traditional CBMC method is
rate limited by the sampling of the innermost regions of the
polymer which require the largest cut sizes with the smallest
acceptance probabilities. The centermost segment of the
polymer is therefore sampled approximately with an accep-
tance probability of aN/2. If we define sampling time %1 as the
average number of MC steps taken before the regrowth of a
single motif is accepted, then %1+a−1, and the average MC
steps required to sample the entire length of the polymer, %N,
is given by

%N + %1
N/2. !12"

Consequently, the sampling time of polymers increases
in a power-law fashion with the length of the polymer, mak-
ing the standard GCMC method require prohibitively long
simulations for sampling long polymers chains.

In the end-transfer move, instead, regrowing such large
polymer segments is not required to sample the innermost
segments; the random transfer of polymer motifs from one
end to the other routinely exposes inner regions of the
biopolymer for sampling. Thus, the size of the regrown por-
tions remains short enough !equal to one motif here" to allow
regrowth with high acceptance probabilities. The polymer
chain is exhaustively sampled when each motif has been
transferred from one end to the other at least once. It can be
shown that for a polymer chain composed of N repeating
motifs, the average MC steps required to sample the entire
polymer is given by

%N + %1
N!N + 1"

2
, !13"

where %1 is defined above #see derivation of Eq. !13" in the
Appendix$. Note that the average time needed to sample a
polymer chain now scales quadratically with the chain
length, as opposed to a power-law in the traditional CBMC.

The end-transfer method resembles the reptation algo-
rithm commonly employed in polymer simulations. In a rep-
tation move, a move simply involves deleting a segment

from one end and randomly placing it at one of the neigh-
boring lattice positions of the terminal segment at the other
end; a configurational bias method is not required, and the
acceptance criteria is simply given by Eq. !3". In complex
biopolymers, the repeating unit generally consists of many
segments !nR"; the configuration bias MC approach is pref-
erable to implementing Eq. !3" because of its efficiency in
generating an energetically favorable configuration.

The end-transfer scheme is not limited to transfer/
regrowth of single repeating motifs. Larger portions com-
prised of more than one motif may be regrown, though the
acceptance probability of regrowing larger portion grows ex-
ponentially with size. Thus, even though the entire polymer
will be sampled with a fewer number of accepted moves, the
number of MC steps taken to accept a single end-transfer
move will increase drastically with the size of the regrown
portion. Specifically, if x motifs are transferred/regrown at
each end-transfer step, the sampling time %N will roughly
vary as

%N + %1
x !N/x"#!N/x" + 1$

2
. !14"

If each motif is difficult to sample, i.e., %1 is large, the
end-transfer moves actually become less efficient as the size
of the transferred portions is increased.

B. Proof of microscopic reversibility

Microscopic reversibility for the acceptance criteria in
Eqs. !10" and !11" can be proven by considering the detailed
balance between two states T and H. The two states are con-
nected to one another through an end-transfer move H→T
and its reverse T→H as

&!T"'!T → H"acc!T → H" = &!H"'!H → T"acc!H → T" ,

!15"

where &!T" and &!H" are the thermodynamic probabilities of
occurrence of states T and H, respectively; '!T→H" and
'!H→T" represent the probabilities of generating the trial
configuration H when already in state T, and vice versa, re-
spectively; and acc!T→H" and acc!H→T" represent the
probability of accepting the generated trial moves. We now
assume that &!T" and &!H" are proportional to their Boltz-
mann factors, i.e.,

&!T" = &
i=1

nRN

Anorm
i exp!− Ubond

T,i,o/kBT"exp!− Unonb
T,i,o/kBT" ,

!16"

&!H" = &
i=1

nRN

Anorm
i exp!− Ubond

H,i,s/kBT"exp!− Unonb
H,i,s/kBT" .

!17"

In the above expressions, the overall Boltzmann weights
have been separated into the Boltzmann weights of indi-
vidual segments i, and by bonded and nonbonded terms. Re-
call that the prefactor Anorm

i in Eqs. !16" and !17" contains
terms related to the normalization and Jacobian of the
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bonded interaction of segment i !without double counting".
Note that the configuration/position of motifs in the range 1
to nRN−nR+1 in the initial !T" configuration remains un-
changed during the T→H transition, i.e.,

Ubond
H,i+nR,s = Ubonb,

T,i,o , when i = ¯ , nRN − nR + 1,
!18"

Unond
H,i+nR,s = Unonb,

T,i,o , when i = ¯ , nRN − nR + 1.

The probability of attempting a T→H transition is then
given by

'!T → H" =
1
2&

i=1

nR

Anorm
i exp!− Ubond

H,i,s/kBT"

(
exp!− Unonb

H,i,s/kBT"
% j=1

k exp!− Unonb
H,i,j/kBT"

, !19"

where the prefactor 1/2 accounts for the probability of choos-

ing one of the two end motifs for transfer/regrowth; the sec-
ond term accounts for sampling from the probability distri-
bution corresponding to the bonded force field, and the third
term represents the Boltzmann-factor biased probability of
picking configuration s from the k trial positions. Similarly,
the probability of attempting the reverse move !T→H" is
given by

'!H → T" =
1
2 &

i=nRN−nR+1

nRN

Anorm
i exp!− Ubond

T,i,o/kBT"

(
exp!− Unonb

T,i,o/kBT"
% j=1

k exp!− Unonb
T,i,j /kBT"

. !20"

Substituting Eqs. !16" and !20" into Eq. !15", we obtain

acc!T → H"
acc!H → T"

= '&i=1
nRNAnorm

i exp!− Ubond
H,i,s/kBT"exp!− Unonb

H,i,s/kBT"
&i=1

nRNAnorm
i exp!− Ubond

T,i,o/kBT"exp!− Unonb
T,i,o/kBT"(

('&i=nRN−nR+1
nRN Anorm

i exp!− Ubond
T,i,o/kBT"exp!− Unonb

T,i,o/kBT"/% j=1
k exp!− Unonb

T,i,j /kBT"

&i=1
nR Anorm

i exp!− Ubond
H,i,s/kBT"exp!− Unonb

H,i,s/kBT"/% j=1
k exp!− Unonb

H,i,j/kBT"
( . !21"

Upon canceling like terms and substituting Eqs. !5", !7"–
!9", and !18", the above expression simplifies to

acc!T → H"
acc!T → H"

=
&i=1

nR % j=1
k exp!− Unonb

H,i,j/kBT"
&i=nRN−nR+1

nRN % j=1
k exp!− Unonb

T,i,j /kBT"
=

WH

WT
.

!22"

Finally, using the Metropolis criterion, we obtain

acc!T → H" = ,WH/WT, if WH $ WT

1, if WH ) WT
- , !23"

which is equivalent to our acceptance criterion in Eq. !10".
The acceptance probability of the reverse move #acc!H
→T"$ presented in Eq. !11" can be proven similarly !not
shown".

III. APPLICATION TO CHROMATIN

We test the efficiency of the proposed end-transfer
CBMC scheme in sampling short chromatin segments. Chro-
matin, the system that motivated our algorithm, is a suitable
model system for two reasons. First, chromatin is composed
of negatively charged double-stranded DNA and mostly
positively charged histone proteins. Thus, intramolecular
nonbonded interactions are strong, making adequate sam-
pling a challenge. Second, the complicated architecture of
chromatin, even in the coarse-grained formulation that we
use,14,16 presents hierarchical interactions that are difficult to
balance. We model short segments of chromatin !oligonu-

cleosomes" using the recently developed mesoscopic
“flexible-tail” model, sketched in Fig. 2. The flexible tail
model is briefly described next; Ref. 14 contains full details.

A. Flexible tail model of an oligonucleosome

An oligonucleosome consists of a chain of repeating
units, where each repeating motif consists of a nucleosome
core, linker DNA, and histone tails. The nucleosome core is
treated as a rigid body whose surface is uniformly spanned
by 300 discrete charges; the charges are optimized to repro-
duce the electric field around the atomistic nucleosome
core.17 Each charge is also assigned an effective excluded
volume using a Lennard–Jones potential to prevent overlap
of nucleosome core with the other chromatin components.
Each linker DNA is represented as a chain of nlb=6 charged
beads !for 60 base pairs" with appropriate excluded volume,
stretching, bending and twisting terms in its force field.18–20

The charges have been optimized using the procedure of
Stigter21 to reproduce the far-field electrostatic potential of
double-stranded DNA. The oligonucleosomal arrays are
formed as the collection of these nucleosomes, connected by
linker DNAs. The linker DNAs enclose an angle of 90°
about the center of the nucleosome core, and are separated
by a distance of 3.6 Å normal to the plane of the nucleosome
core !see Fig. 2", following the crystal structure.

Each nucleosome core also serves as the origin for nh
=10 histone tails: two copies each of the N-termini of H2A,
H2B, H3, and H4 histones, and C-terminus of each H2A
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C-terminal domain. Each histone tail is treated as a chain of
coarse-grained beads with a force field comprising of stretch-
ing, bending, charge/charge interaction and excluded volume
terms.14 Briefly, the nhb=50 histone tail beads per nucleo-
some core correspond to 4 for H2A N-termini !nb1=nb2=4",
3 for H2A C-termini !nb3=nb4=3", 5 for H2B !nb5=nb6=5",
8 for H3 !nb7=nb8=8", and 5 for H4 !nb9=nb10=5". The
stretching and bending potentials for interbead lengths and
bond angles !defined by three consecutive beads" are repre-
sented by harmonic potentials with parameters that repro-
duce configurational properties of the atomistic histone tails.
A Lennard–Jones potential provides excluded volume to
each protein bead. Appropriate charges are also assigned to
each histone tail bead to mimic its electrostatics. Each his-
tone chain is attached to the nucleosome core using a stiff
spring. The nucleosome core, linker DNA, and histone tail
charges interact electrostatically with each other through an
effective salt-dependent Debye–Hückel potential.

Using N basic building blocks, the total number of major
!nucleosome core+linker DNA" components in the entire
oligonucleosome is !nlb+1"N, and the total number of his-
tone tail beads is nhbN. Hence, an N-unit oligonucleosome
contains !nlb+nhb+1"N interacting “particles;” a 12-unit oli-
gonucleosome has 684 particles. The array head corresponds
to the first unit and the array tail to the last !N" unit !see
Fig. 2".

B. Implementation of end-transfer CBMC

To implement the end-transfer scheme to oligonucleo-
somes, we consider the T→H move. The first step involves
computing the Rosenbuth weight WT of the existing tail mo-
tif in the oligonucleosome. This is done by retracing the
position and orientation of the nucleosome core, the six
linker DNA beads, and the histone tails in that order, and
computing the segmental Rosenbluth weights at each step.

Figure 3 illustrates this retracing procedure for a trinucleo-
some. The overall Rosenbluth weight of the retraced end
motif is given by

WT = !wC,T")&
i=1

nlb

wL,T
i *)&

i=1

nh

&
j=1

nbi

wT,T
i,j * , !24"

where the first term represents the Rosenbluth weight of in-
serting the last nucleosome core at its original position; the
second term accounts for the Rosenbluth weight for the in-
sertion of the last six linker beads; and the last term accounts
for the insertion of nhb beads on the last nucleosome core.
The histone tail bead positions are retraced starting from the
bead attached to the nucleosome core.

The next step involves regrowth of a complete motif at
the head end of the oligonucleosome. Again, the sequence of
insertions is as follows. The six linker DNA beads are in-
serted first, beginning with the linker bead attached to the
head nucleosome. Next, the nucleosome core is regrown
from the last-inserted linker DNA bead. Finally, the histone
tails are regrown from the inserted nucleosome core, each
tail regrowth beginning with the bead attached to the nucleo-
some core. The overall Rosenbluth weight of the regrown
motif is then given by

FIG. 2. !Color" Coarse-grained oligonucleosome. !a" Repeating motif of an
oligonucleosome consisting of a rigid nucleosome core, six linker DNA
beads and ten histone tails !two hidden from view", and !b" a typical six-unit
oligonucleosome in a moderately unfolded state. The nucleosome itself is
composed of 300 uniformly distributed spherical charges.

FIG. 3. !Color" Implementation of an T→H end-transfer CBMC move in a
trinucleosome illustrating the retrace and regrowth steps. Boxed region en-
closes the original and proposed conformation of the trinucleosome.
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WH = !wC,H")&
i=1

nlb

wL,H
i *)&

i=1

nh

&
j=1

nbi

wH,T
i,j * , !25"

where the first term again is the Rosenbluth weight of insert-
ing the first nucleosome core, the second term is the Rosen-
bluth weight for inserting the six linker beads, and the last
term is the Rosenbluth weight for the insertion of nbi beads
of nht histone tails at nucleosome core 1. The overall !T
→H" move is then accepted with the probability given by
Eq. !10". The reverse move !H→T" is implemented similarly
with the sequence of retracing and regrowth reversed.

C. Simulation details

We use the end-transfer method in combination with
three local Monte Carlo moves to enhance efficiency: trans-
lation and rotation of nucleosome cores and linker DNA
beads and histone tail regrowths.

Translation is performed by choosing a randomly ori-
ented axis passing through a randomly selected linker DNA
bead/nucleosome core, and shifting that component !and its
associated histone tails if the chosen component is a nucleo-
some core" along the axis by a distance sampled from a
uniform distribution in the range !0, 0.6 nm". Rotation in-
volves rotating the selected nucleosome core/linker DNA
bead about one of its axis by an angle uniformly sampled
from the range !0, 36°". Note that while the nucleosome
core may be rotated about either of its three axes, the linker
DNA bead may only be rotated about its interbead axis !see
Ref. 14". The translation and rotation moves are accepted/
rejected based on the standard Metropolis criterion.

Tail regrowth involves selecting a histone tail randomly
and regrowing it in a different conformation using the stan-
dard CBMC algorithm by generating Nt=4 trial positions.

The end-transfer moves are performed by transferring
portions of one repeating motif using Nt=10 trials for linker
DNA and nucleosome core regrowth and Nt=4 trials for tail
regrowths. The four moves—translation, rotation, tail re-
growth, and end-transfer—are performed with frequencies
0.1:0.1:0.6:0.2; the tails are sampled more frequently to ac-
count for their larger numbers !recall that there are 50 tails
beads per nucleosomes". We call simulations with the above
set of moves “L+E” !for local+end transfer".

For comparison, we perform three additional simulations
with different sets of Monte Carlo moves. The first !“L”"
involves only local moves !translational, rotational, and tail
regrowth" in frequencies 0.2:0.2:0.6, respectively. The sec-
ond !“L+ P”" employs pivot rotations in addition to the three
local moves; pivoting involves randomly choosing one linker
DNA bead or nucleosome core, selecting a random axis pass-
ing through the chosen component, and then rotating the
shorter part of the oligonucleosome about this axis
by an angle chosen from a uniform distribution within
!0, 20°". The relative frequencies of attempting the
translation/rotation/tail-regrowth/pivot moves is fixed at
0.1:0.1:0.6:0.2, respectively. The third type of simulations
!“L+C”" employs the standard CBMC algorithm to regrow
large portions of the oligonucleosome in addition to the three
local moves. The size of the regrowth portion is chosen uni-

formly between 1 and N /2 !if N even" or N /2+1 !if N odd"
motifs, and the oligonucleosome end to be regrown is se-
lected with a probability of 1/2. The mechanics of the re-
growth procedure in the CBMC moves are similar to that of
the end-transfer moves, with the exception that the size of
the regrown portions in the CBMC method is not restricted
to single motifs. The relative attempt frequencies of the
translation/rotation/tail regrowth/pivot/oligonucleosome re-
growths are given by 0.1:0.1:0.6:0.2, respectively.

All simulations are performed in the canonical ensemble
at T=293 K and at different monovalent salt concentrations
to assess the impact of the strength of electrostatic interac-
tions on sampling efficiency. We choose two salt concentra-
tions: 0.2 M !medium salt; close to physiological salt con-
centration", where oligonucleosomes are moderately folded;
and 0.5 M !high salt", where electrostatic interactions are
mostly screened and oligonucleosomes exhibit slightly more
extended configurations as compared to those at 0.2 M.

Oligonucleosome sizes range from N=3 to N=12 nu-
cleosomes. The length of the simulations varies between 10
and 50 million MC moves. The initial configuration of the
oligonucleosome corresponds to the square solenoid nucleo-
somal pattern of Ref. 14. We found that the initial state does
not influence the results. All results reflect averages from a
set of four runs started from a different random number gen-
erator seed.

D. Sampling efficiency measures

We quantify the degree of sampling using four param-
eters that characterize four separate degrees of freedom of
the oligonucleosomes that should be properly sampled for
thermodynamic convergence.

To examine how well an oligonucleosome samples the
surrounding volume, i.e., its translational degree of freedom,
we compute the mean square deviation of the center of mass
position of the oligonucleosomes versus the number of MC
steps t separating the two oligonucleosomes, as given by

*!t" = ./rCM!t + t0" − rCM!t0"/20 , !26"

where rCM!t0" and rCM!t+ t0" are the center of mass coordi-
nates of the oligonucleosome computed from its nucleosome
core positions at times t0 and t+ t0, respectively, and .·0 is an
ensemble average over different origins !t0" and simulation
runs with different random number generator seeds. The rate
of translational sampling, R, may be quantified by taking the
slope of *!t" versus MC steps t as t→+, as is normally done
for computing diffusion coefficients using the Einstein rela-
tion

R 1 lim
t→+

*!t"
t

. !27"

To quantify rotational sampling of oligonucleosomes, we
compute an autocorrelation of the end-to-end unit vector of
the oligonucleosome, as given by

044107-7 Global biopolymer sampling J. Chem. Phys. 126, 044107 "2007!

Downloaded 29 Jan 2007 to 128.122.250.24. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



&!t" = .e!t0 + t" · e!t0"0 , !28"

where e!t0" is the end-to-end unit vector of the oligonucleo-
some after t0 steps !pointing from nucleosome 1 to nucleo-
some N", as given by

e!t0"=
rN!t0" − r1!t0"

/rN!t0" − r1!t0""
, !29"

where rN!t0" and r1!t0" are the positional coordinates of the
two end nucleosomes. The autocorrelation can be fitted to an
exponential curve &!t"=exp!−t /%&" to obtain the rotational
relaxation time %& in terms of number of MC steps.

To characterize internal sampling of oligonucleosomes,
we compute “translation-rotation corrected” mean square de-
viation in the positions of nucleosome cores of oligonucleo-
somes separated by t MC steps during the course of the
simulation, as given by

,!t" =2min)%
i=1

N

/ri
†!t + t0" − ri!t0"/2*3 , !30"

where “min” implies that the two oligonucleosome have
been superimposed onto each other to minimize their relative
deviation from each other before computing the mean square
deviation; ri!t0" is the coordinate vector of nucleosome i of
the oligonucleosome after t MC steps and ri

†!t+ t0" is the
coordinate vector of nucleosome i after t+ t0 steps after the
superposition. The superposition involves determining the
rotation matrix and translation vector that gives the best fit
superimposition of the two sets of molecules based on the
program PDBSUP created by Rupp and Parkin.22 Such a su-
perposition therefore captures only the internal structural ar-
rangements within the oligonucleosome without corruption
from purely translational and rotational modes of the oligo-
nucleosome. The characteristic timescale associated with the
sampling of the internal structure of the oligonucleosome
!relaxation time %," can then be obtained by fitting the ,!t"
versus t plot to a stretched exponential function of the form

,!t" = '41 − exp#− !t/%,"$5 , !31"

where ' and # are best fit parameters.
Note that ,!t" does not differentiate between the sam-

pling of the inner portions of the biopolymer from the rest.
Because the innermost portions of the biopolymer are
sampled infrequently in traditional CBMC simulations, we
define -!t" to characterize the rate of sampling of the inner-
most motif !i.e., the mth nucleosome core, where m
=int4cn /25+1, and the ensuing nlb linker DNA beads" by
computing deviations in its internal structure with MC steps
using the same superposition formalism as above

-!t" =2min' %
i=1

nlb+1

/ri
†!t + t0" − ri!t0"/(3 , !32"

where ri!t0" is the position of the ith nucleosome core/linker
DNA bead at time t0, and ri

†!t+ t0" is its position at time t
+ t0 after superposition. As above, we derive the characteris-
tic sampling time %- by fitting the -!t" to Eq. !31".

IV. RESULTS AND DISCUSSION

We compare sampling efficiency in terms of the mea-
sures above for simulations employing the end-transfer
method !L+E" versus standard CBMC method !L+C", pivot
rotations !L+ P", and local moves only !L" at the two salt
conditions !0.2 and 0.5 M" !Fig. 4".

Figure 4!a" analyzes translational sampling for the dif-
ferent sets of simulations. Mean square deviations in the oli-
gonucleosome center of masses *!t" increase linearly with t
as is typical for a random walk !a representative * - t plot is
shown". The rate of sampling is computed from the slopes of
*!t" versus t and plotted on a logarithmic scale. As expected,
sampling becomes more difficult as the length of the poly-
mers increases and/or the salt concentration is lowered.

Significantly, the efficiency of the end-transfer method
!L+E" compared to the other methods in sampling transla-
tional degrees of freedom of the oligonucleosomes is excel-
lent: the L+E simulations enhance sampling by a factor of
10 !medium salt" and 100 !high salt" over other methods.
This advantage stems from the reptationlike nature of the
move where the biopolymer advances/recedes an entire re-
peating motif at a time. Indeed, reptation moves commonly
employed in lattice polymer simulations are well known for
providing efficient sampling.3

The L+ P approach provides the second best sampling
efficiency, followed by L+C, and L simulations. Surpris-
ingly, the conventional CBMC method !L+C" provides poor
translational sampling, especially for oligonucleosomes at
low salt, due to its extremely low acceptance rates. The con-
servative local moves in L simulations provide the slowest
translational sampling as expected.

The rotational sampling efficiency in Fig. 4!b" shows
that the autocorrelation of the end-to-end separation vector
&!t" decays to zero with a characteristic rotational relaxation
time, %& !see representative plot". A small %& is characteristic
of fast rotational sampling of the oligonucleosomes and vice
versa. Such autocorrelations are typically fitted to an expo-
nential, but we found that stretched exponentials with expo-
nents in the range 0.4–0.8 fit the data better, possibly due to
coupling of multiple rotational modes in the autocorrelation.
The end-transfer moves provide the best rotational sampling
at high salt and second !to pivot moves" at medium salt. As
for translational sampling, local moves and standard CBMC
regrowth of oligonucleosomes are worst. In fact, the rota-
tional relaxation time corresponding to local moves for 12-
unit oligonucleosomes exceeds the simulation length, which
explains the missing data.

Figure 4!c" analyzes internal degree of freedom sam-
pling via mean square deviations ,!t" for a trinucleosome at
high salt separated by a sampling time t !best fit superposi-
tion". We note that ,!t" increases monotonically until it pla-
teaus at a characteristic internal relaxation time, %,. The com-
puted %, values increase dramatically with the length of the
oligonucleosomes. At high salt, the end-transfer moves pro-
vides the best internal configurational sampling; at medium
salt, pivoting improves sampling by an order of magnitude
than end-transfer. The CBMC move provides the next best
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internal sampling and the local moves provide the worst
sampling for both neutral and charged systems.

Figure 4!d" compares results in terms of sampling only
the innermost motif of the oligonucleosome. The evolution
of the mean square deviation of the center unit also follows a
stretched exponential behavior. The corresponding relaxation
times %- show that the end-transfer moves again provide the
best internal sampling at high salt, while pivoting appears the
best for oligonucleosomes at medium salt. Significantly, the
standard CBMC method performs very poorly—almost like
local moves. The rarity of accepting regrowth of innermost
motifs constitutes the most severe drawback of the tradi-
tional CBMC method.

Thus, the end-transfer CBMC approach provides excel-
lent sampling at high salt but its performance degrades below
that of pivot moves at medium salt. To understand the origin
of this salt-dependent efficiency, we compute in Fig. 5 the
mean acceptance probabilities of the pivot, standard CBMC

and end-transfer CBMC moves with respect to the chain
length at medium and high salt. At high salt, the acceptance
probability of the end-transfer move is roughly two orders of
magnitude smaller that that of pivot moves. As the salt con-
centration is lowered, this disparity between the two accep-
tance probabilities widens. In fact, at medium salt, this gap is
already larger than three orders of magnitude. At even lower
salt concentrations !0.01 M", the acceptance of an end-
transfer move becomes smaller than one in a million. This
drastic reduction in the acceptance probability of the end-
transfer move compared to pivot moves explains why the
end-transfer method is less efficient than the pivot moves at
medium salt. The same reasoning also explains why the stan-
dard CBMC—with even lower acceptance probabilities than
the end-transfer CBMC for long chains—yields poor sam-
pling.

The low probability of acceptance of the end-transfer
moves is expected given the number of histone tails than

FIG. 4. Sampling efficiency of various MC method in terms of four sampling measures: !a" translational, !b" rotational, !c" internal !entire oligonucleosome",
and !d" internal !middle motif". Each box contains a representative correlation function !for a trinucleosome at high salt" used for computing the relevant
sampling measure !top", and the relevant measures for different-sized oligonucleosomes at medium !left" and low salt !right"; the dashed lines are guides to
the eye. Results from simulations employing local !l", pivot !L+ P", standard CBMC !L+C", and end-transfer CBMC !L+E" moves are represented by black,
red, blue, and green symbols/lines, respectively.
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need to be regrown at one step within the highly corrugated
electrostatic landscape surrounding each nucleosome core
and linker DNA. The fact that a single histone tail regrowth
is accepted on an average with a probability of about 0.25
clearly points to the difficulty in inserting all ten tails at a
time. Surprisingly, despite the low acceptance probabilities
of the end-transfer moves, the method still yields remarkably
good sampling efficiency.

It is also instructive to examine the scaling of the struc-
tural relaxation times of the central motif !%-" obtained from
the end-transfer and regular CBMC methods with chain
length N and compare them with analytical predictions based
on scaling arguments #Eqs. !12" and !13"$. Figure 6!a" plots
the standard CBMC relaxation times for both the neutral and
fully charged tail oligonucleosomes versus the chain length
in a log-linear plot; those corresponding to the end-transfer
CBMC method are plotted ina log-log plot in Fig. 6!b". The
linear relationship between log!%-" and N observed in stan-
dard CBMC confirms that the sampling time of the center-
most motif of the oligonucleosome scales in a power-law
fashion with the length of the oligonucleosome. The linear
relationship with a slope of roughly 2 in the bottom figure
confirms the quadratic dependence of sampling time with
chain length. Hence, for large N, the end-transfer CBMC
approach quickly becomes superior to the regular CBMC in
sampling the interior portions of the biopolymer.

The added computational cost in implementing the end-
transfer moves compared to pivot moves stems from gener-
ating multiple trial positions and energy computations for
each segment of the regrown and retraced motif. The CPU
factor is about 3–4. We have not attempted to optimize the
end-transfer moves, but it may be possible to reduce the CPU
cost through careful optimization of parameters involved
!e.g., the number of trials Nt" and through reusage of com-
puted Rosenbluth weights until an end-transfer move is re-
jected. Also, we have used the end-transfer CBMC method
only alongside local moves. Efficiency can be further im-
proved, especially for biomolecules with strong intramolecu-
lar nonbonded interactions, by combining this approach with

global pivot rotations. Such a combination would provide
superior translational sampling as well as good rotational and
intramolecular sampling.

In sum, the developed end-transfer CBMC method pro-
vides excellent sampling of structurally complex biopoly-
mers when nonbonded interactions of an electrostatic origin
are relatively weak. The method, however, loses its superior-
ity over pivot moves when electrostatics effects begin to
dominate, as in low salt conditions, though it still provides
good sampling of the translational degrees of freedom. Still,
the method consistently provides orders of magnitude better
sampling than the traditional CBMC method. This excep-
tional translational sampling and good rotational/internal
sampling makes it highly suitable for sampling condensed
polymers and biopolymers with weak intermolecular and
nonbonded intramolecular interactions to study their collec-
tive properties !as opposed to single-molecule properties"
like phase behavior, thermodynamics and structure.

V. CONCLUSION

Our extension of the well-known configurational bias
Monte Carlo methodology for better sampling of phase space
in complex biopolymers, motivated by reptation moves, in-
volves randomly transferring a repeating motif in a complex
biopolymer from one end to the other and regrowing it using
the efficient Rosenbluth scheme. We assessed efficiency on
mesoscale simulations of oligonucleosomes compared to tra-
ditional CBMC and pivot rotations for four degrees of free-
dom of the biopolymer !translation, rotation, and intramo-
lecular sampling of the entire chain/middle portion". Our
method yields very efficient sampling when charge-charge
attractions within the oligonucleosomes are not too strong.
When nonbonded charge-charge attractions become strong,
however, sampling suffers due to its low acceptance prob-
abilities. Still, the end-transfer method provides several or-
ders of magnitude better sampling than the traditional
CBMC method. This is particularly due to the quadratic scal-
ing between the simulation time required to sample the in-

FIG. 5. Acceptance probabilities of the pivot, standard CBMC, and end-
transfer CBMC moves for different oligonucleosome sizes at !a" moderate
and !b" high salt. Dashed lines are guides to the eye.

FIG. 6. Characteristic sampling time of the oligonucleosome’s innermost
motif with !a" regular CBMC, and !b" end-transfer CBMC moves at differ-
ent oligonucleosome lengths indicating a power-law and quadratic depen-
dence of sampling time with chain length.
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nermost regions of the biopolymer and the chain length, as
compared to the drastic exponential scaling observed for the
traditional CBMC method. Our extension to the standard
CBMC method may thus be further coupled to other tech-
niques like parallel tempering or replica exchange23–25

!where configurations are switched between ensembles at
different temperatures" or stochastic tunneling26 !where large
energy barriers are smoothed out to allow barrier crossings"
to better sample the vast rugged energy landscape of
biopolymers.
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APPENDIX: PSEUDOCODE FOR IMPLEMENTING
T\H END-TRANSFER CBMC MOVE
! N: total number of repeating units in the biopolymer
! n_R: number of segments in each repeating unit
! n_T: number of trial positions generated for each
segment
! k_B: Boltzmann constant
! T: temperature
! R!n_R*N": current coordinates of biopolymer segments
! W_old: Rosenbluth weight of old configuration
! W_new: Rosenbluth weight of new configuration
! RETRACE OLD CONFIGURATION AT TAIL END
W_old=1
Do i=n_R*N-n_R+1, n_R*N
w=0
Do t=1,n_T−1
call genpos !r!t"" ! generate trial position of segment
! based on internal constraints !e.g., bond"
call energy !r!t" ,U!t"" ! calculate external energy of trial
w=w+exp!−U!t" /k_B/T"
Enddo
call energy!r_old!i" , U_old"
w=w+exp!−U_old/k_B/T"
W_old=W_old*w
Enddo
! REGROW NEW CONFIGURATION AT HEAD END
W_new=1
Do i=n_R−1, 1
w=0
Do t=1, n_T
call genpos!r!t"" ! generate trial position of segment
! based on internal constraints !e.g., bond"
call energy !r!t" ,U!t"" ! calculate external energy of trial
w=w+exp!−U!t" /k_B/T"
Enddo
W_new=W_new*w
call rand !q" ! generate a random number between 0 and
1
p!0"=0

p!1"=exp!−U!1" /k_B/T" /w
do t=2, n_T
p!t"=p!t−1"+exp!U!t" /k_B/T" /w
Enddo
do t=1, n_T
if !q!p!t−1" and q!t"" then
select =t ! trial position t has been selected
Endif
Enddo
r_new!i"=r!t" ! store new position in a temporary array
Enddo
! ACCEPT OR REJECT NEW CONFIGURATION
BASED ON ROSENBLUTH CRITERIA
call rand !q"
if !q$W_new/W_old" then ! accept new configuration
do i=n_R*N−n_R+1,1 ! shift indices of polymer
R!i+n_R"=R!i"
Enddo
do i=1, n_R−1
R!i"=r_new!i"
Enddo
Endif

Scaling of the sampling time as a function of polymer
length

The end-transfer scheme applied to a biopolymer can be
simplified to the following mathematical model. The
biopolymer with N repeating motif represents a single file of
balls, where each ball represents a single repeating motif
!Fig. 7". Initially, all balls are white !unsampled"; at each
step, analogous to an accepted end-transfer move, a ball is
selected randomly from one end and placed at the opposite
end; in this process the ball’s color is changed from white to
black !sampled". Note that if a ball is already black, it re-
mains black irrespective of its transfer. The process is re-
peated until all the balls become black. The problem of de-
termining the average time to sample the entire polymer then
is the equivalent of determining the average number of steps
required to turn all the balls black.

FIG. 7. Breakdown of the end-transfer procedure into intermediate steps.
The black balls represent biopolymer motifs that have been transferred at
least one from one end to another and the white balls represent motifs that
are yet to be transferred.
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The following key insight helps solve the problem more
readily: for a transition from n to n+1 black balls to occur,
the black and white balls must be separated out on opposite
ends of the file !see Fig. 7". Only such a situation allows the
possibility of the transfer !with probability 1/2" of a white
ball from one end to the other, and consequently, the color
change from white to black. If this is not the case, both ends
of the file are capped by a black ball and the n to n+1
transition cannot occur. This insight helps us understand why
the process of changing zero black balls to N black balls can
be broken down into N−1 intermediate stages containing
1, . . . , N−1 black balls, in sequence, arranged together at
one of the ends of the file, as shown in Fig. 7. The total
number of steps taken to reach the final configuration with N
black balls .n0 is given by the cumulative sum of average
number of steps required to go from one intermediate stage
to the next, given by .ni−1→i0, where i=1, . . . , N−1.

Clearly, .n0→10=1, as it takes a single end-transfer move
to turn the first ball black. It can be shown that .n1→20 is
given by the infinite series

.n1→20 = 1 · 1
2 + 2 · 1

4 + 3 · 1
8 + ¯ , !A1"

where each term represents the steps taken to transfer a white
ball from one end to other and its associated binomial prob-
ability of occurrence. The above sum represents a combined
arithmetic/geometric progression whose sum is given by
.n1→20=2. Similarly, .n2→30=3 and, in general, .ni−1→i0= i.
This implies that the total number of steps needed to change
all white balls to black is given by

.n0 = %
i=1

N

.ni−1→i0 = 1 + 2 + 3 + ¯ + N =
N!N + 1"

2
. !A2"

Hence, all motifs of a biopolymer get sampled, on aver-
age, in %N=%1N!N+1" /2 MC steps, if each transfer move
takes %1 MC steps for acceptance.
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