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ABSTRACT We describe a newmesoscopic model of oligonucleosomes that incorporates flexible histone tails. The nucleosome
cores are modeled using the discrete surface-charge optimization model, which treats the nucleosome as an electrostatic surface
represented by hundreds of point charges; the linker DNAs are treated using a discrete elastic chainmodel; and the histone tails are
modeled using a bead/chain hydrodynamic approach as chains of connected beads where each bead represents five protein
residues. Appropriate charges and force fields are assigned to each histone chain so as to reproduce the electrostatic potential,
structure, and dynamics of the corresponding atomistic histone tails at different salt conditions. The dynamics of resulting
oligonucleosomes at different sizes and varying salt concentrations are simulated by Brownian dynamics with complete
hydrodynamic interactions. The analyses demonstrate that the newmesoscopic model reproduces experimental results better than
its predecessors, whichmodeled histone tails as rigid entities. In particular, ourmodel with flexible histone tails: correctly accounts for
salt-dependent conformational changes in the histone tails; yields the experimentally obtained values of histone-tail mediated core/
core attraction energies; and considers the partial shielding of electrostatic repulsion between DNA linkers as a result of the spatial
distribution of histone tails. These effects are crucial for regulating chromatin structure but are absent or improperly treated inmodels
with rigid histone tails. The development of this model of oligonucleosomes thus opens new avenues for studying the role of histone
tails and their variants in mediating gene expression through modulation of chromatin structure.

INTRODUCTION

The hierarchical process through which nuclear double-
stranded DNA packs itself into micrometer-sized nuclei of
cells while maintaining its template-directed gene expression
activities is remarkable (1). At the first level of compaction,
the DNA wraps itself around approximately cylindrical-
shaped protein aggregates known as nucleosomes. This
DNA/nucleosome array then folds itself into the chromatin
fiber, which has a nominal diameter of ;30 nm. The chro-
matin fiber undergoes several higher levels of folding there-
after, culminating in the highly compact chromosomes.
The crystal structure of the nucleosome and the DNA

wrapped around it was first solved in 1997 (2), and more
recently determined at high resolution (3,4). The nucleosome
comprises two copies each of the H2A, H2B, H3, and H4
histones, a single copy of either an H1 or H5 linker histone,
and the DNA double-helix which makes;1.75 turns around
the curved face of the nucleosome core (see Fig. 1). The
central domains of the H2A, H2B, H3, and H4 histones are
fairly rigid and define the nucleosome core, while their
terminal domains, the histone tails, are much more dynamic
and extend outward. The linker histone resides in the tri-
angular space formed between the nucleosome core and the
entering and exiting linker DNAs.

The internal structure of chromatin has been a topic of
intense study over the past two decades. It is likely that
chromatin is compact during the transcription silent states
but flexible and ordered to allow proper unfolding during the
template-directed transcription process. Several models con-
sistent with the above argument have been proposed for the
internal structure of chromatin. These include the solenoid
(5,6), the helical ribbon (7), the cross-linker (8), and the
global irregular zigzag (9) models. At present, most consis-
tent with available data is the irregular zigzag model where
the linker DNA zigzags back and forth across the chromatin
axis; this permits the chromatin fiber to fold and unfold in an
accordionlike fashion. However, structural and energetic
details of this folding/unfolding process and how the chro-
matin fiber further folds into the higher-level condensed
structures are not yet known.
Although the core histone domains clearly maintain the

tightly wound DNA supercoil around the nucleosome, the
positively charged linker histones are crucial for compacting
chromatin by reducing the separation angle between the
incoming and outgoing linker DNAs (10,11). Moreover, the
histone tails critically regulate chromatin structure and func-
tion by charge modification. Namely, the tails’ positive charge
and highly flexible nature allows them to extend and elec-
trostatically interact with the negatively charged regions of
neighboring nucleosomes and proteins. This shielding can
bring neighboring nucleosomes into closer spatial proximity.
Altering the positive charge on the histone tails can thus
substantially modify this attraction between nucleosomes.
Indeed, acetylation of certain residues on the histone tails
(which partially neutralizes the histone tails’ charge) is
believed to be the primary cause for the partial unfolding of
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the chromatin fiber resulting in an enhanced transcription of
genes (12,13). Other covalent modifications of histone tails
involve methylation, phosphorylation, and ubiquitination
(14,15). Collectively, various residue-specific modifications
play important roles in selectively modulating the structure
of chromatin either through direct modification of the phys-
ical histone tail interactions or via the recruitment of chro-
matin modifying proteins; this is known as the histone-code
hypothesis.
Undoubtedly, understanding the physical mechanism

through which histone tail modifications lead to modulation
of chromatin structure is important from the point of view of
transcriptional activation and repression of genes. Due to the
natural variability in the length, position, and constitution of
the histone tails, as well as the anisotropy in the position and

orientation of nucleosomes within the chromatin fiber, we
anticipate tail-specific roles. Thus, elucidating the positional
distribution of individual histone tails and the role of each
unit within chromatin is crucial. Indeed, innovative exper-
imental studies attempting to systematically dissect the role
of each histone tail are only beginning to appear (16–19).
Still, due to the highly dynamic nature of histone tails, only
time and configuration-averaged properties of the histone
tails are generally obtained, rather than transient dynamics of
each histone tail. Thus, theoretical and computational tech-
niques subject to the usual limitations and approximations
have great potential to contribute to an understanding of the
function and properties of histone tails.
Several models of chromatin structure and dynamics have

been developed and examined. The existing theoretical
models can be broadly classified into two categories:

1. Simple but insightful wire-frame, mechanical models
(9,20,21), which relate the structure of chromatin only to
a few geometrical parameters such as the linker DNA
length, linker DNA entry/exit angle, and the nucleosome/
nucleosome twisting angle; and

2. Coarse-grained dynamic models of oligonucleosomes
(22–30), which include stretching, bending, and twisting
of linker DNA and also account for distance- and
orientation-dependent interactions among linker DNA
and nucleosomes using effective energetic potentials.

These representations are typically coupled to computational
sampling techniques such as Monte Carlo and Brownian dy-
namics to determine the structural and dynamical properties of
the oligonucleosomes. The models range in complexity from
nucleosomes treated as spherical particles (22) to models that
treat both the excluded volume surface as well as the elec-
trostatic potential of nucleosomes to high accuracy (24–30).
Our group has recently begun to incorporate the effect

of histone tails into a macroscopic chromatin model (30)
developed several years ago (24), where the nucleosome
cores were treated as rigid bodies and the linker DNAs as
elastic chains. Even though the histone tails were approx-
imated as rigid charged entities that protrude outwards from
the rigid nucleosome core, the study nonetheless demon-
strated theoretically the role of tails in mediating the salt-
dependent folding of oligonucleosomes via electrostatic
interactions with neighboring nucleosome cores.
Here, we extend the recent coarse-grained model of

oligonucleosomes (30) to incorporate flexibility into each
histone tail. This is accomplished by representing the histone
tails as a set of connected charged beads with optimized salt-
dependent charges at the bead centers that reproduce the
electric field surrounding the charged tails. The nucleosome
cores and linker DNA are modeled as in earlier studies (27,30),
where the nucleosome core is represented as a set of discrete
optimized charges on its surface with appropriate excluded
volumes, while the linker DNA is modeled using a discrete
elastic chain model with physically derived parameters (31).

FIGURE 1 Nucleosome core modeling using DiSCO. The top figure

shows the crystal structure of the nucleosome without the histone tail

residues (nucleosome core). The bottom figure shows our model nucleosome
core with discretized charges. The charges on the nucleosome core are

deliberately shown smaller than their excluded volume for clarity, and they

are color-coded according to their magnitude relative to the electronic charge

(e), as shown in the color chart. The surface of the nucleosome core has been
displaced inwards by 2 Å to allow visibility of the charges.
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The effect of linker histone H1 or H5 is not yet considered.
Brownian dynamics simulations with complete hydrodynamic
interactions among the DNA, nucleosome cores, and histone
tails are employed for capturing the dynamics and structure
of oligonucleosomes of different sizes under different salt
conditions.
We demonstrate that the new model of oligonucleosomes

reproduces well a range of available experimental data, in-
cluding salt-dependent variation of maximal extension of
mononucleosomes, self-diffusion coefficients of dinucleo-
some and trinucleosome, and sedimentation coefficients of
12-unit nucleosomal arrays, and better than that of the pre-
vious model with fixed histone tails (30). Predictions con-
cerning the positional distribution of each histone tail at low
and high salt are also presented, illustrating the highly dy-
namic and salt-dependent nature of histone tails, which al-
lows them to mediate internucleosomal interactions to a
moderate degree and, in the case of H3 tails, partially shield
the electrostatic repulsion between the linker DNA emerging
from a nucleosome core. We conclude by suggesting how
the new model may be used to study the role of histone tails
and their modifications and variants in modulating chromatin
structure and dynamics.

FLEXIBLE-TAIL MODEL

Our coarse-grained model of chromatin (oligonucleosomes)
consists of three components: nucleosome core, DNA linker,
and histone tails. Each component requires a different mod-
eling strategy. Building on our earlier model of chromatin
(30), we regard the histone tails as flexible entities rather than
rigid protrusions from the nucleosome core. Details of the linker
DNA and nucleosome core modeling are given elsewhere
(24,25,27,30), so their modeling is only briefly described. The
histone tail modeling is provided in greater detail.

Nucleosome core and DNA linker

Model

Fig. 1 illustrates the basic nucleosome core comprising the
eight core histones H2A, H2B, H3, and H4 (excluding their

terminal regions) accompanied by 1.75 turns of DNA
wrapped around it. Our model is based on the recent crystal
structure of the nucleosome by Davey et al. (3) with PDB
code 1KX5. Table 1 lists the protein residues that constitute
our definition of the histone tails. Briefly, these include
N-terminal portions of all the core histones and short C-
terminal portions of H2A. Since the nucleosome core is fairly
rigid, themotion of the nucleosome core is effectivelymodeled
using rigid-body dynamics. For hydrodynamic purposes, the
nucleosome cores are considered as spheres with a hydrody-
namic radii Rc (see full parameter values in Table 2).
Using the irregular discrete surface charge optimization

(DiSCO) algorithm (27), Nc ¼ 300 discrete charges are
uniformly distributed across a finely-discretized representa-
tion of the nucleosome core surface to mimic the surrounding
electrostatic potential (and electric field). The discrete charges
are assigned optimized values, such their electric field ob-
tained via a Debye-Hückel approximation matches the elec-
tric field of the atomistically described nucleosome core at
distances .5 Å away from the surface of the core. This is
achieved with the truncated-Newton TNPACK optimization
routine (32–34), which is integrated within the DiSCO soft-
ware, as described in Beard and Schlick (25) and Zhang et al.
(27). The electric field landscape of the atomistic nucleo-
some is computed by using the nonlinear Poisson-Boltzmann
equation solver QNIFFT 1.2 (35–37) where the atomic radii
are assigned using the default extended atomic radii based
loosely on Mike Connolly’s Molecular Surface program
(38), and the charges are assigned using the AMBER 1995
force field (39). In addition, to mimic the excluded volume of
the entire nucleosome core, each charge is also assigned an
effective excluded volume, modeled using a Lennard-Jones
potential.
The linker DNA connecting two adjacent nucleosome

cores is modeled using the discrete elastic chain model of
Allison et al. (31,40), as sketched in Fig. 2. Thus, double-
stranded DNA is modeled as a chain of charged beads where
each bead represents a 3-nm-long strand of relaxed DNA.
The hydrodynamic radius associated with each linker bead is
represented by Rl, and each linker bead is assigned a salt
concentration-dependent negative charge according to the

TABLE 1 Flexible histone tail residues selected for the protein bead modeling

All residues Fixed residues

Histone Chains* Terminal PDBy Modelz PDB{ Model§ Charges on bead model (e)

H3 A, E N 1–40 1–8 36–40 8 13,12,11,12,11,12,0,13

H4 B, F N 1–25 1–5 21–25 5 13,11,11,14,0

H2A C, G N 1–20 1–4 16–20 4 13,11,13,12

H2A C, G C 114–128 1–3 114–118 1 11,0,12
H2B D, H N 1–25 1–5 21–25 5 12,12,12,12,12

*Chain labels of histone proteins in the crystal structure 1KX5.pdb.
yAmino acids in 1KX5.pdb belonging to the histone tail.
zProtein beads used to model the histone tail.
{Amino acids represented by the protein bead attached to nucleosome core.
§Identity of the protein bead attached to the nucleosome core.
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procedure of Stigter (41). The linker DNA is governed by
stretching, bending, and twisting potential energy terms.

Geometry

The geometry of an oligonucleosome constituting a total of
N linker DNA and nucleosome core components is shown
schematically in Fig. 3; Il and Ic denote, respectively, the
subset of linker beads and nucleosome cores. Each nucle-

osome core other than the first nucleosome core of the nu-
cleosomal array is attached to two DNA strands, which are
termed the ‘‘entering’’ and ‘‘exiting’’ linker DNA. The two
points on the nucleosome at which the entering and exiting

linker beads are attached enclose an angle u0 about the center
of the nucleosome core, and are separated by a distance of
2w0 normal to the plane of the nucleosome core (see figure).
The first nucleosome core is attached to a single linker DNA.
The center-of-mass positions of the nucleosomal array

components are given by rj, where j ¼ 1, """, N. For dis-
cussion, we will consider the ith component of the array to be
a nucleosome core, as in the figure. The orientation of the
nucleosome core is represented by the mutually orthonormal
set of unit vectors {ai, bi, ci}, where ai and bi lie in the plane
of the nucleosome core. The vector ai points along the
tangent at the attachment site of the exiting linker DNA, bi
points in the direction normal to this tangent and inwards
toward the nucleosome center, and ci ¼ ai 3 bi. The co-
ordinate system of other nucleosome cores is similarly rep-
resented. A similar coordinate system is adopted when j is a
linker bead. The vector aj points from rj toward rj11 when
j1 1 is also a linker DNA bead. When j1 1 is a nucleosome
core, the vector aj points from rj in the direction of the linker
bead’s attachment point. For the case when j is a nucleosome
core and j 1 1 is a linker DNA bead, we have to define
another coordinate system faDNAj ; bDNAj ; cDNAj g. Here aDNAj

points along the exiting linker DNA, i.e., toward rj11

from its point of attachment at the nucleosome core j. Two
additional coordinate systems are required to describe the
trajectory of the wrapped DNA on the nucleosome cores at
the point where it diverges from the core to form the two
linker DNA, as given by fa#i ; b#i ; c#i g and fa1i ; b1i ; c1i g.
The former represents the local tangent on the nucleosome
core at the point of attachment of the entering linker DNA,
while the latter represents the tangent corresponding to
the exiting linker DNA. Note that with this formalism,
fa1i ; b1i ; c1i g[fai; bi; cig. These additional coordinate sys-
tems are required for determining the forces and torques on the
rigid nucleosome core due to DNA bending and twisting at
their points of attachments to the nucleosome cores.
The bending and twisting potential energies of the

nucleosome-linker DNA complex are expressed in terms of
Euler angles {ai, bi, gi} and fa1

i ; b
1
i ; g

1
i g, which trans-

form one coordinate system to the next. The two Euler angles
and their transformations are given below.

To ensure that no torsion is introduced in the Euler trans-
formation fa1

i ; b
1
i ; g

1
i g, we set a1

i ¼ #g1
i . The mathe-

matical details of computing the coordinate system vectors
the associated Euler angles is provided elsewhere (25).

TABLE 2 Parameter values employed in Brownian dynamics
simulations of nucleosomal arrays

Parameter Description Value

l0 Equilibrium DNA segment length 3.0 nm

h Stretching constant of DNA 100 kBT=l20
g Bending constant of DNA LpkBT/l0
s Torsional rigidity constant of DNA 3.0 3 10#12 erg.nm

Lp Persistence length of DNA 50 nm

u0 Angular separation between linker
segments at core

90"

2w0 Width of wound DNA supercoil 3.6 nm

r0 Radius of wound DNA supercoil 4.8 nm

htc Stretching constant for tail
bead attached to core

h

Rc Hydrodynamic radius of

nucleosome core

5.46 nm

Rl Hydrodynamic radius
of linker bead

1.5 nm

Rt Hydrodynamic radius of

histone tail bead

0.6 nm

stt Excluded volume distance for

tail/tail interactions

1.8 nm

stc Excluded volume distance for

tail/core interactions

1.8 nm

scc Excluded volume distance for

core/core interactions

1.2 nm

stl Excluded volume distance for

tail/linker interactions

2.7 nm

scl Excluded volume distance for

core/linker interactions

2.4 nm

e Dielectric constant of solvent 80

kev Excluded volume interaction
energy parameter

0.001 kBT

kevt Tail/tail excluded volume interaction

energy parameter

0.1 kBT

Dt Brownian dynamics simulation timestep 5 ps

fai;bi; gig :

fai; bi; cig/fai11; bi11; ci11g when i; i1 1 2 Il

fai; bi; cig/fa#
i11; b

#
i11; c

#
i11g when i1 1 2 Ic

faDNA

i ; bDNA

i ; cDNAi g/fai11; bi11; ci11g when i 2 Ic

8
><

>:

fa1
i ;b1

i ; g1
i g : fa1

i ; b1
i ; c1

i g/faDNA

i ; bDNA

i ; cDNAi g when i 2 Ic:

(1)
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Energetics

The potential energies associated with linker DNA stretch-
ing, bending, and twisting are respectively given by

ES ¼
h

2
+
N#1

i¼1

ðli # l0Þ2; (2)

EB ¼ g

2
+
N#1

i¼1

b2

i 1
g

2
+
i2Ic

ðbi
1 Þ2; (3)

ET ¼
s

2l0
+
N#1

i¼1

ðai 1 giÞ
2; (4)

where h, g, and s are the stretching, bending, and torsional
force constants; li and l0 are the linker DNA segment lengths
and the corresponding equilibrium lengths, respectively; ai,
bi, gi, and b1

i are Euler angles.
The linker DNA beads and the discrete charges of the

nucleosome cores interact via a combination of electrostatic
and excluded volume interactions, which are respectively

modeled using the Debye-Hückel (UDH) and Lennard-Jones
(ULJ) potentials given by

UDHðqi; qj; ri;jÞ ¼
qiqj

4pe0eri;j
expð#kri;jÞ; (5)

ULJðs; kev; ri;jÞ ¼ kev
s

ri;j

! "12

# s

ri;j

! "6
" #

; (6)

where qi and qj are the charges on two interacting beads
separated by a distance ri,j in a medium with a dielectric
constant of e and an inverse Debye length of k; e0 is the elec-
tric permittivity of vacuum; s is the effective diameter of the
two interacting beads; and kev is an energy parameter
that controls the steepness of the excluded volume potential.
The electrostatic energy of the nucleosome core and linker
DNA system is given by the superposition of three elec-
trostatic interactions: linker/linker, linker/core, and core/core
interactions, as given by

EC ¼ +
N

j.i11

i;j2Il

UDHðqL; qL; ri;jÞ1 +
N

j. i11

i2Il ;j2Ic

+
Nc

k¼1

UDHðqL; qCk
; ri;jkÞ1 +

N

j. i;

i;j2Ic

+
Nc

k¼1

+
Nc

l¼1

UDHðqCk
; qCl

; rik;jlÞ;

(7)

where qL represents the effective charges on the linker DNA
beads, and qCk

represents the kth discrete charge on the nucleo-
some core. The excluded volume energy of the nucleosome-
linker DNA system is given by

EV ¼ +
N

j.i11

i2Il;j2Ic

+
Nc

k¼1

ULJðslc; kev; ri;jkÞ

1 +
N

j.i

i;j2Ic

+
Nc

k¼1

+
Nc

l¼1

ULJðscc; kev; rik;jlÞ; (8)

where the two terms represent excluded volume energies for
linker/nucleosome and nucleosome nucleosome interactions,
respectively. The parameters slc and scc represent the ex-
cluded volume parameters for the two types of interactions,
respectively. No excluded volume interactions are consid-
ered for linker/linker interactions since they remain separated
due to strong electrostatic repulsions. The values for all param-
eters mentioned in this section are given in Table 2.

Histone tails

Our model for the histone tails, which we term the protein-
bead model, began with the thesis work of Qing Zhang (42).

FIGURE 3 (a) Schematic representation of our model nucleosomal
arrays with a total of N nucleosome cores and linker DNA beads. Each

linker DNA is represented by six beads in red for this illustration. For

clarity, nucleosome cores are drawn as gray cylinders while only one out of

10 histone tails with five beads is shown in blue. Missing portions between
the second nucleosome and the last are shown as thick dots. (b) Schematic

representation of the nucleosome core without histone tails showing the

wound DNA supercoil and the relative positions of the entering and leaving
linker DNA. (c) Model geometry showing the coordinate systems adopted

for modeling linker DNA-nucleosome mechanics.

FIGURE 2 Discrete elastic bead model for linker DNA. The top figure

shows the atomistic linker DNA while the bottom figure shows our model.
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It is obtained in two steps (see Fig. 4). First, the fully
atomistic histone tails are simplified using the subunit model
of Levitt and Warshel (43–45). Second, we build the protein
bead model from the subunit model via a matching pro-
cedure where the force field parameters of the protein bead
model are adjusted to mimic the Brownian dynamics of the
subunit model corresponding to that histone tail. This addi-
tional level of coarse-graining avoids severe size inconsis-
tency between the tail subunits and the other units, and also
expedites computations substantially.

Model development

The specific residues constituting the histone tails were
identified based on the experimental study of Tse and
Hansen (16) and are listed in Table 1. A total of 10 histone
tails are modeled: eight N-terminal regions of the H3, H4,
H2A, and H2B histones and two C-terminal regions of the
histone H2A. Next, a subunit model of each histone tail is
constructed where each protein residue is replaced by a
spherical bead located at each amino acid Cb atom (43–45).
This procedure as applied to the H3 histone tail is sketched in
Fig. 4. We use hydrodynamic radii of 3.5 Å for all the
subunits and employ harmonic bonds and angles between
the subunits based on the work of Weber et al. (46). Briefly,
the energy of the subunit model consists of electrostatic,
bond-stretching and bond-angle, nearest-neighbor nonbonded,

solvation, and excluded volume terms. Since the histone tails
are simulated in the absence of salt, the electrostatics of the
subunit model are represented via a Coulombic potential.
The force-field details of the subunit model are provided
in the Appendix. We employ the University of Houston
Brownian Dynamics program (47) to perform Brownian
dynamics on the subunit models corresponding to each of the
10 individual histone tails for 100 ns. The temperature and
timestep of the simulations are set at 300 K and 0.01 ps,
respectively.
For the protein bead model, five adjacent beads of the

subunit model are represented by a single macro bead with an
effective hydrodynamic radius of Rt. Thus, 50 tail beads per
nucleosome are employed to model the 250 or so histone tail
residues that comprise each nucleosome. The center of each
macro bead is placed at the Cb atom of the third amino acid.
For the matching procedure, each bead is assigned a charge
equal to the sum of the charges on the five amino acids it
represents, as tabulated in Table 1. Later, we will show how
these charges are further adjusted for our final oligonucleo-
some simulations. The total intramolecular energy of the
protein-bead histone tail is given by four components:
electrostatics, excluded volume, bond-stretching, and bond-
angle bending, which are described in detail next.
The excluded volume interactions are given by the

Lennard-Jones potential with fixed parameters of kevt and
stt. The electrostatic interactions between protein beads are
modeled via Coulombic terms for the matching procedure
only. In all our subsequent simulations of oligonucleosomes,
we employ the Debye-Hückel potential to model the histone
tail electrostatics. The bond-stretching and bond-bending
potentials are given by quadratic functions of the deviations
in the bond-length and bond-angle from their equilibrium
values, respectively. For a histone tail consisting of Nb pro-
tein beads, the adjustable parameters in our model are: the
equilibrium bond distance between beads, li0, and the asso-
ciated force constants kbi, where i ¼ 1, """, Nb – 1; and the
equilibrium bond angle, ui0, and the associated force con-
stants, kui, where i ¼ 1, """, Nb – 2.
For our protein bead model to realistically represent the

fully atomistic histone tails, we require it to closely re-
produce the dynamical and configurational properties of the
subunit model (assuming that the subunit model reasonably
represents polypeptide flexibility in solution). To this end,
we seek the most suitable values of li0, kbi , ui0, and kui for the
protein bead model to yield the same bond-length and bond-
angle distributions as those observed between every fifth
bead in the Brownian dynamics simulations of the subunit
model. Accordingly, li0 is taken as the average distance
between the subunit beads (5i – 2) and (5i 1 3) observed
in the simulations, and u0i is taken as the average angle
between the (5i – 2), (5i 1 3), and (5i 1 8) subunit beads
observed in the simulations. The chosen values of li0 and ui0
are shown in bold in the third column of Tables 3 and 4,
respectively.

FIGURE 4 Two-step modeling of histone tails. The top figure shows the
atomistic description of the H3 histone tail. The middle figure portrays

the subunit model corresponding to that tail. The bottom figure shows the

protein-bead model developed in this study derived from the subunit model.
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To obtain the ideal force constants kbi and kui, we perform
Brownian dynamics simulations of the protein bead model at
the same conditions as the subunit model simulations with
varying values of force constants. The standard deviations in

the bond-length and bond-angle distributions of the protein
bead model are collected, and the values of kbi and kui that
produce the best match between these standard deviations
and those accumulated from the subunit model simulations
between the aforementioned subunits, are chosen. The selec-
ted values of the force constants for each histone tail are
provided in bold in the fifth column of Tables 3 and 4.
We next compute the electric field surrounding a his-

tone tail from the superposition of Debye-Hückel potentials
arising from the bead charges in the protein bead model of a
histone tail at different salt conditions. Recall that each pro-
tein bead carries a charge equal to the sum of the charges of
its constituents. We found that the electric field of the protein
bead model consistently underestimated the electric field
computed for the fully atomistic histone tail (by solving the
Poisson-Boltzmann equation with QNIFFT 1.2 (37)) at high
salt conditions. On the other hand, the protein bead model
overestimated the electric field of the histone tails at low salt
conditions. This trend can be explained by the variation in
the magnitude of the effective charges on the nucleosome
core and linker DNA beads with salt concentration; effective
charges higher in magnitude than the actual charges are
required to accurately reproduce the surrounding electro-
static potential at high salt, and vice versa. It was therefore
deemed necessary to rescale the charges on the histone tail
beads. We found that rescaling the bead charges by factors of
0.75, 0.80, 0.90, 1.05, and 1.2 corresponding to salt
concentrations of 0.01, 0.02, 0.05, 0.1, and 0.2 M yielded
the best possible matches between the electric fields of each
histone tail and its corresponding protein bead model.

Energetics

Once the protein beadmodel for each histone tail has been built
and parameterized, the histone tails must be properly attached
to the nucleosome core. We use a simple harmonic spring that
attaches thefirst beadof eachhistone tail (as given inTable 1) to
its idealized position in the nucleosome crystal structure (see
Fig. 3). The stretching energy of histone tail beads is therefore
composed of two terms: stretching of tail beads with respect to
its immediate neighbors within the same tail, and an additional
contribution due to the displacement of the histone tail bead
from its assigned attachment site, as given by

EtS ¼ +
N

i2Ic
+
Nt

j¼1

+
Nbj#1

k¼1

kbjk
2
ðlijk # ljk0Þ2 1

htc

2
+
N

i2Ic
+
Nt

j¼1

j rij # rij0j2: (9)

In the first term, Nt represents the number of histone tails per
nucleosome core, Nbj is the number of beads in tail j, kbjk is
the stretching constant of the bond between the k and k 1 1
beads of the jth histone tail, and lijk and ljk0 represent the dis-
tance between consecutive tail beads k and k 1 1, and their
equilibrium separation distance, respectively.
In the second term, htc is the stretching bond constant of

the spring attaching the histone tail to the nucleosome core,
rij is the position vector of the first tail bead in the coordinate

TABLE 3 Bond-stretching comparisons of our protein
bead model with the subunit model for the five different
pairs of tails; values in bold denote parameters chosen
for the protein bead model

Subunit model Protein bead model

Tail
Bond
i-j

Average
[Å]

SD
[Å]

kb
(kcal/mol/Å)

Average
[Å]*

SD
[Å]*

N-ter H3 1-2 14.8 2.4 0.09 15.6 2.3

2-3 13.4 3.1 0.06 15.0 3.0

3-4 14.5 2.9 0.07 15.6 2.9
4-5 15.0 2.5 0.07 16.1 2.6

5-6 14.8 2.7 0.07 16.2 2.6

6-7 13.9 2.8 0.07 15.1 2.9

7-8 13.7 2.3 0.11 14.9 2.4
N-ter H4 1-2 13.2 2.6 0.10 14.1 2.6

2-3 13.9 2.4 0.10 15.2 2.4

3-4 13.7 2.7 0.06 14.8 2.8

4-5 14.4 1.8 0.20 14.7 1.8
N-ter H2A 1-2 13.4 2.7 0.08 14.1 2.6

2-3 14.5 2.5 0.09 15.3 2.5

3-4 11.0 3.4 0.03 14.5 3.4

C-ter H2A 1-2 14.1 2.7 0.07 15.7 2.6
2-3 12.6 3.1 0.07 13.7 3.0

N-ter H2B 1-2 13.5 2.8 0.08 14.7 3.1

2-3 12.7 2.6 0.10 14.1 2.3
3-4 15.2 2.4 0.08 16.2 2.4

4-5 14.2 2.6 0.08 15.1 2.7

*Average bond length and their standard deviation obtained from protein

bead model simulations using the parameters in bold match those obtained

from subunit simulations.

TABLE 4 Bond-angle comparisons of our protein bead model
with the subunit model for the five different pairs of tails; values
in bold denote parameters chosen for the protein bead model

Subunit model Protein bead model

Tail

Angle

i-j-k
Average

["]
SD

["]
ku

(kcal/mol/rad2)

Average

["]*
SD

["]*

N-ter H3 1-2-3 115.8 29.5 1.1 108.6 28.8
2-3-4 116.7 30.2 1.0 108.1 28.6

3-4-5 117.3 24.3 1.7 111.3 25.4

4-5-6 123.0 29.2 1.2 117.6 27.8

5-6-7 111.8 30.7 1.2 110.4 29.3
6-7-8 114.9 26.5 1.5 110.5 27.2

N-ter H4 1-2-3 112.5 31.8 1.0 103.2 31.8

2-3-4 116.3 27.5 1.1 106.0 25.8

3-4-5 111.6 36.5 0.5 103.6 35.5
N-ter H2A 1-2-3 121.2 28.4 1.1 108.5 29.0

2-3-4 100.1 29.5 0.6 100.1 29.3

C-ter H2A 1-2-3 113.8 32.1 1.0 100.7 31.8

N-ter H2B 1-2-3 118.4 32.7 0.9 104.9 35.1
2-3-4 118.9 31.5 0.6 103.9 28.4

3-4-5 124.5 24.2 1.6 113.8 26.7

*Average bond angle and their standard deviation obtained from protein

bead model simulations using the parameters in bold match those obtained
from subunit simulations.
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system of its parent nucleosome, and rij0 is its ideal position
vector in the crystal configuration. The intramolecular bend-
ing contribution to the histone tail energies, EtB, is given by

EtB ¼ +
N

i2Ic
+
Nt

j¼1

+
Nbj#2

k¼1

kujk
2
ðuijk # ujk0Þ2; (10)

where uijk and ujk0 represent the angle between three con-
secutive tail beads k, k 1 1, and k 1 2, and their equilibrium
angle, and kujk is the corresponding bending force constant.
The total electrostatic energy of oligonucleosomes due to

the histone tails is given by the superposition of various
Debye-Hückel potentials energy terms arising from the
interaction of histone tail charges among themselves and
with nucleosome and linker bead charges, as given by

where qTij
represents the magnitude of the charge (in terms

of the electronic charge e) on the jth protein bead in the ith

histone tail.
The first term in Eq. 11 represents electrostatic energy

arising from histone tail/linker DNA bead interactions. The
second term in the equation arises from interactions between
histone tail charges and the charges on its parent-nucleo-
some. Note that the first bead of each histone tail, which is
attached to the nucleosome core, does not interact with that

nucleosome core’s charges. The third term represents
interactions between charges on the histone tails and non-
parent nucleosomes’ charges. The fourth term represents
intermolecular electrostatic interactions across different
histone tails belonging to different nucleosome cores, and
the fifth term represents intermolecular interactions between
histone tails belonging to the same nucleosome cores. The
last term represents intramolecular interactions between
charges within the same histone tails; three consecutive
charges within the histone tails do not interact electrostat-
ically with each other.
The excluded volume interaction energy between the

histone tail beads and the rest of the oligonucleosome com-
ponents is given similarly by

where stl, stc, and stt are excluded volume size parameters
for tail/linker, tail/core, and tail/tail interactions, and kevt is
excluded volume energy parameter for tail/tail interactions.
As in Eq. 11, the six terms in Eq. 12 respectively represent
the van der Waals energies of histone tail beads interacting
with: the linker DNA beads, parent nucleosomes charges,
non-parent nucleosome charges, histone tail beads associated
with non-parent nucleosome cores, beads of other histone
tails belonging to the parent nucleosome core, and beads

EtC ¼ +
N

i2Ic
+
Nt

j¼1

+
Nbj

k¼1

+
N

l2Il

UDHðqTjk ; qL; rijk;lÞ1 +
N

i2Ic
+
Nt

j¼1

+
Nbj

k¼2

+
Nc

l¼1

UDHðqTjk ; qCl
; rijk;ijlÞ

1 +
N

i 6¼j

i;j2Ic

+
Nt

k¼1

+
Nbj

l¼1

+
Nc

m¼1

UDHðqTkl ; qCmrikl;jmÞ1 +
N

j. i

i;j2Ic

+
Nt

k;m¼1

+
Nbj

l¼1

+
Nbm

n¼1

UDHðqTkl ; qTmn ; rikl;jmnÞ

1 +
N

i2Ic
+
Nt

j 6¼k

+
Nbj

l¼1

+
Nbk

m¼1

UDHðqTjl ; qTkm ; rijl;ikmÞ1 +
N

i2Ic
+
Nt

j¼1

+
Nbj

l. k12

UDHðqTjk ; qTjl ; rijk;ijlÞ; (11)

EtV ¼ +
N

i2Ic
+
Nt

j¼1

+
Nbj

k¼1

+
N

l2Il

ULJðstl; kev; rijk;lÞ1 +
N

i2Ic
+
Nt

j¼1

+
Nbj

k¼2

+
Nc

l¼1

ULJðstc; kev; rijk;ilÞ

1 +
N

i 6¼j

i;j2Ic

+
Nt

k¼1

+
Nbj

l¼1

+
Nc

m¼1

ULJðstc; kev; rikl;jmÞ1 +
N

j. i

i;j2Ic

+
Nt

k;m¼1

+
Nbk

l¼1

+
Nbm

n¼1

ULJðstt; kevt ; rikl;jmnÞ

1 +
N

i2Ic
+
Nt

j 6¼k

+
Nbj

l¼1

+
Nbk

m¼1

ULJðstt; kevt ; rijl;ikmÞ1 +
N

i2Ic
+
Nt

j¼1

+
Nbj

l. k12

ULJðstt; kevt ; rijk;ijlÞ; (12)
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within the same histone tail. Again, three consecutive beads
within a histone tail do not interact with each other, and the
histone tail bead attached to the nucleosome cores does not
interact with that core. Fig. 5 sketches our model integrating
all the three components of the system.
To reduce computational costs, cutoff distances are em-

ployed for all the electrostatic (rcut,c) and excluded volume
interactions (rcut,v) within a nucleosomal array. We employ
a variable cutoff for both these interactions, which depends
upon the temperature and salt concentration. The cutoff
distances are taken as the distance at which the electrostatic
potential energy and van der Walls energies of the linker
beads becomes 0.5% of the thermal energy kBT. Naturally,
high salt conditions with enhanced screening effects results
in smaller electrostatic interaction cutoffs than low salt con-
ditions. For example, at 0.2 M salt, rcut,c ¼ 7 nm, while at
0.01 M salt, rcut,c ¼ 17 nm.

Forces and torques

The total energy of the oligonucleosome is given by the sum
of all the different interaction energies above:

E ¼ ES 1EB 1ET 1EC 1EV 1EtS 1EtB 1EtC 1EtV:

(13)

The forces on the system components are defined by the
relation

Fi ¼ #=riE; (14)

where ri and Fi are the position vector and deterministic force
acting on component i, respectively. Expressions for forces
on the DNA linker and the rigid nucleosome core due to
stretching, bending, and twisting of DNA, and electrostatic
and excluded volume interactions, are derived elsewhere (24).
The internal forces arising within the oligonucleosome as a
result of stretching, bending, electrostatic, and excluded
volume interactions of the histone tails may also be derived in
an identical fashion. The torque on the linker DNA beads,
which arises due to the twisting potential (Eq. 4), acts only in
the longitudinal direction a and is given by

tai ¼ # s

l0
ðai 1 gi # ai#1 # gi#1Þ: (15)

The torque on each nucleosome core (ti), which acts along
all three coordinate axes, is given as a sum of the three terms

ti ¼ tFi 1 tBi
1 tSi ; (16)

where tFi ¼ +idri 3 Fi is the torque acting on the nucle-
osome core due to forces applied at a positional vector dri
away from the center of mass. The next two torque terms are
associated with the bending and torsional potentials of DNA
linkers entering or leaving the core. We again refer readers to
Beard and Schlick (24) for more details on the two additional
contributions. Note that no torque acts on the histone tail
beads.

SIMULATION DETAILS

Brownian dynamics algorithm

We employ Brownian dynamics (BD) with complete
hydrodynamics to simulate the dynamics of oligonucleo-
somes. A second-order, Runge-Kutta-based Brownian dy-
namics algorithm following the approach of Iniesta and de la
Torre (48) is employed to update the rotational and position
vectors of the various components of the oligonucleosomes.
This approach is based on predicting the value of an arbitrary
time-varying vector p at time t 1 Dt from its value at time t
using the average of the time derivatives of p at times t and
t 1 Dt, as given by

pðt1DtÞ ¼ pðtÞ1 1

2

@pðtÞ
@t

1
@p&

@t

! "
Dt; (17)

where p* is the predicted p(t 1 Dt). The procedures for
obtaining p* and p(t 1 Dt) (using Eq. 17) are referred to as
first and second-order updates, respectively.

FIGURE 5 Repeating motif of an oligonucleosome containing 51-bp
linker DNA. The top figure shows its atomistic representation, while the

bottom figure shows its coarse-grained representation via flexible-tail model.

The histone tails are color-coded as follows: H3 (blue), H4 (green), H2A
(yellow), and H2B (red); the nucleosome cores and linker beads are colored

gray and red, respectively.
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First-order rotational updates of the coordinate frames of
reference ai, bi, and ci are given by

DV&
xi
¼ D̃xi " txiðtÞ

kBT
Dt1DW i; (18)

where DVxi(t) represents the change in the rotational state of
the ith bead about its original coordinate system xi ¼ {ai, bi,
ci}, txi(t) is the instantaneous torque on bead i along vector xi
at time t, Dt is the BD timestep, and D̃xi is the rotational
diffusion matrix. For hydrodynamic purposes, the nucleo-
some core is treated as a sphere with a rotational diffusion
coefficient given by

D̃ai ¼ D̃bi ¼ D̃ci ¼
kBT

8phR3

c

; (19)

where h is the solvent viscosity. For linker DNA beads, only
rotation about the ai axis is allowed and the rotational
diffusion coefficient along that axis is

D̃ai ¼
kBT

4phR2

l l0
: (20)

The term DW i in Eq. 17 represents random (Brownian)
rotations applied to the core along all three reference axes, or
along the ai axis only for the linker DNA beads. The random
rotations obey the fluctuation-dissipation relation given by

ÆDW iDW jæ ¼ 2DtdijD̃xi ; (21)

where dij is the Kronecker delta-function. First-order updates
of the position vectors are now computed by using the
Ermak-McCammon algorithm (49), as given by

r&i ¼ riðtÞ1 +
j

DijðtÞ " FjðtÞ
kBT

Dt1DRi; (22)

where Dij(t) is the configuration-dependent Rotne-Prager
hydrodynamic diffusion tensor, Dt is the timestep, and DRi

represents the random fluctuations obeying the fluctuation-
dissipation relation

ÆDRiDRT

j æ ¼ 2DtDdij: (23)

Determination of DRi requires factorization of the matrix D
such that LLT, where L is a lower triangular matrix. We
employ the standard Cholesky decomposition method to
achieve this (50). The vectors ai, bi, ci, aDNAi ; bDNAi , and cDNAi

are updated according the procedure described in Beard and
Schlick (51).
The second-order rotational updates are computed as

DVxi ¼
D̃xi " ðtxiðtÞ1 t&xiÞ

2kBT
Dt1DW i; (24)

where t*xi is the torque acting on the system components after
the first-order translational and rotational updates. Second-
order updates of the position vectors are computed as (52)

riðt1DtÞ ¼ riðtÞ1 +
j

Dij " ðFjðtÞ1F&
j Þ

2kBT
Dt1DRi; (25)

where Fi* represents the force on bead i computed according
to the temporary position vectors {r*} obtained after the first-
order translational and rotational updates. To save computa-
tional time, the hydrodynamic tensor is computed only every
100 timesteps and is thus assumed to be fixed within that time
frame. Our results remain unaffected with a change in this
frequency as long as the frequency of recalculations is not
decreased further, as found in simulations of supercoiled
DNA (52).

Hydrodynamic interactions

The hydrodynamic diffusion tensor employed within our BD
code is given by

D ¼

D11 D12 " " " D1N

D21 D22 " " " D2N

..

. ..
. ..

.

DN1 DN2 " " " DNN

2

6664

3

7775; (26)

where Dij is a 3 3 3 matrix representing the interactions
between beads i and j. Each Dij can be calculated using
modified forms of the Rotne-Prager tensor for unequal size
beads (53–55). We consider two cases, nonoverlapping and
overlapping beads. In the former,

where no overlap means 2rij . (si 1 sj), and si and sj are
the sizes of the two beads; h is the solvent viscosity; rij ¼
ri – rj is the vector joining the center of mass of the two
beads i and j; rij is the distance between the two beads; and I
is the 33 3 unit tensor. For overlapping beads (2rij, (si1 sj)),
the hydrodynamic tensor is given by

Dij ¼

kBT

6phsi

! "
I for i ¼ j

kBT

8phrij

! "
I1

rijrij
r2ij

 !

1
ðs2

i 1s2

j Þ
r2ij

1

3
I# rijrij

r2ij

 !" #

for i 6¼ j
;

8
>>><

>>>:
(27)
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Note that the top expression in Eq. 28 has been theoretically
proven for equal-sized beads (53). No expression is available
for the case of non-equal-sized beads, but we have found that
with a choice of seff ¼ ðs2

i1s2
j Þ

1=2, the tensor remains
positive-definite as it should. Other researchers have likewise
proposed similar expressions (55). In our simulations,si equals
Rc, Rl, or Rt, depending upon whether the component is a
nucleosome core, linker DNAbead, or histone tail protein bead.

RESULTS

We show here how the flexible-tail model for oligonucleo-
somes reproduces existing experimental data, notably better
than its predecessor, which considered the histone tails as
rigid bodies (fixed-tail model). We also present predictive
data on tail distribution as a function of salt. All simulations
were performed at 20"C to be consistent with the experi-
ments conducted at 20–23"C (56–60).

Histone tail configurations

Recently, Livolant and co-workers (17,56) undertook an
exhaustive experimental study on the conformation of
histone tails and their dependence on salt (NaCl) concentra-
tion of the surrounding buffer. They employed nucleosome
core particles with intact histone tails carrying 146 6 3 bp
DNA and performed small-angle X-ray scattering experi-
ments to determine their radius of gyration, Rg, and max-
imum extension of the particle, Dmax. The radius of gyration
of nucleosome particles, which was obtained from the
scattering intensity according to the Guinier approximation,
is defined as

R2

g ¼
R
V r

2rðrÞd3rR
V rðrÞd

3r
; (29)

where r(r) is the mass (electron) density of the nucleosome at
a distance r from its center of mass and V is the volume of the
nucleosome. The other quantity of interest,Dmax, is defined as
the distance at which the function describing the distribution
of the intramolecular distance r between scattering elements
within the nucleosome becomes zero. In essence, Dmax

captures the maximum observable separation distance be-
tween histone tails and hence provides information on
whether the histone tails are collapsed onto the nucleosome
core or extended.
To computeDmax and Rg, Brownian dynamics simulations

were performed on mononucleosomes without the linker

DNA at varying monovalent salt concentrations in the range
Cs ¼ 0.01–0.3 M. The wound DNA length utilized in the
experiments exactly matches the values in the crystal struc-
ture of the nucleosome on which our model is based (3). The
simulations were performed over 50 ms at six different salt
concentrations within the same concentration range investi-
gated by the experimentalists, and Dmax and Rg were com-
puted every 100 timesteps and averaged over the second half
of the simulation run. Dmax was calculated as the maximum
observable distance between two histone tail beads, and Rg

was computed from the formula

R2

g ¼
+Ncry

i¼1
mir

2

i 1+Nt

i¼1
+Nbi

j¼1
MR2

i;j

+Ncry

i¼1
mi 1+Nt

i¼1
NbiM

; (30)

where Ncry is the number of atoms constituting the nucle-
osome core crystal structure excluding those belonging to the
histone tails, mi is the molecular weight of the individual
atoms, ri is the distance of the atoms from the center of mass
of the nucleosome, M is the mass assigned to each histone
tail bead (equal to the total molecular weight of the 10
histone tails divided by the total number of protein beads
representing them), and Ri,j is the distance of the histone tails
protein beads from the center of mass of the nucleosome.
The first and second terms in the numerator and denominator
of Eq. 29 therefore compute the contribution to Rg from the
tail-less nucleosome core and the histone tails, respectively.
Fig. 6 compares our computed salt-dependence of Dmax

values to those obtained by Livolant and co-workers (56).
Both studies predict a moderate increase in the magnitude of
Dmax with salt concentration. The magnitude of this increase
in Dmax from the lowest to the highest salt concentrations
explored here (DDmax ; 2 nm) also agrees well with ex-
periments. The data thus suggest that the histone tails main-
tain a fairly compact conformation at low salt conditions
(relatively small values of Dmax) and gradually extend
outwards as the salt concentration increases.
The extension of histone tails with salt concentrations is

better visualized in Fig. 7, where we plot the positional dis-
tribution of histone tail beads at two different salt concentra-
tions: 0.01 M and 0.2 M. To obtain the figure, we collect the
position vectors of histone tail beads relative to the center of
the nucleosome core, r9i, within a 5-ms Brownian dynamics
simulation of a mononucleosome at time intervals of 25 ns.
We then project these position vectors onto the plane of the
nucleosome core represented by the a-b axis (see Fig. 3), as
given by xi ¼ r9i " a and yi ¼ r9i " b. The individual dots in the
figure therefore represent the collection of points {xi, yi}

Dij ¼

kBT

6phsi

! "
1# 9

32

rij
si

! "
I1

3

32

rijrij
sirij

# $
for i 6¼ j and si ¼ sj
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6phseff

! "
1# 9

32
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seff

! "
I1

3

32

rijrij
seffrij
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8
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sampled in our simulations. The larger spread of the histone
tail bead distribution observed at 0.2 M salt concentration as
compared to 0.01 M salt concentration clearly indicates the
extension of histone tails with salt concentration. This be-
havior can be explained by the diminished electrostatic at-
traction (due to charge screening) between the histone tails
and the nucleosomal DNA as the salt concentration increases
—the overall electrostatic energy of interaction of histone
tails with the nucleosome core becomes less favorable as the
salt concentration is increased from 0.01 M (#63.9 kcal/mol)
to 0.2 M (#18.5 kcal/mol). The generally broad spatial
distributions of the histone tails in Fig. 7 highlights their
highly flexible and dynamic nature, which is totally neglected
in the fixed-tail models.
Note that our values of Dmax consistently overestimate the

values from experiments by 1–2 nm. This likely results from
the tendency of experiments to underestimate the value of
Dmax, as pointed out by the authors (17). Still, at low salt
concentrations, particularly at 0.01 M, the discrepancy is
larger, which can be explained by our Debye-Hückel approx-
imation to the electrostatic interactions between the histone
tails and the nucleosome core. Electrostatic interactions at
distances smaller than the Debye length are more poorly
predicted. Because the Debye length at 0.01 M salt concen-
tration (k#1 ; 7 nm) is larger than the distances spanned by
the histone tails, the electrostatic attraction between the
histone tails and the nucleosome cores is possibly underrep-
resented, thusmaking the histone tails less prone to collapsing
onto the nucleosome core.

The variation in the radii of gyration with salt as obtained
via simulations and experiments is also compared in Fig. 6.
Again, both the experiments and the simulations predict a
moderate increase in Rg with salt; Rg increases by ;0.1–0.2
nm as the salt concentration is increased from 0.01 M to 0.3
M. The consistently larger experimental values of Rg relative
to simulations (by 0.3–0.4 nm) might be explained by the
apparent swelling of the nucleosome cores in the experi-
ments when compared to their structure in the crystal state
(1KX5.pdb). Namely, we observed that the radius of gyration
of the nucleosome core (without the tails) computed from the
crystal structure (3.8 nm, using only the first summation
terms of the denominator and numerator in Eq. 29) is smaller
than that obtained experimentally (4.2–4.4 nm).
In summary, the flexible-tail model predicts correctly the

trends and their respective magnitudes in the conformational

FIGURE 7 Positional distribution of histone tail beads projected onto the
a-b plane of the nucleosome. Top and bottom figures correspond to

monovalent salt concentrations of 0.01 M and 0.2 M, respectively. Color-

coding for the histone tails is as follows: H3 (blue), H4 (green), H2A (yellow),
and H2B (red). The nucleosome core in the background is colored black.

FIGURE 6 Variation of the maximum nucleosome extension (top) and the
radius of gyration (bottom) versus the monovalent salt concentration.
Simulation results are represented by circles and experimental data from

Bertin et al. (56) as squares. The dashed line for the simulation results serves

as a guide to the eye.
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changes that the histone tails undergo as the salt concentra-
tion is varied. The overall high degree of conformational
freedom that each histone tail possesses, in addition to their
dependence on salt conditions, plays a key role in mediating
internucleosomal interactions within folded chromatin at
physiological salt concentrations, and thus the current model
improves upon the fixed tail representation, which com-
pletely neglects such conformational effects.

Diffusion coefficients

We now compare the flexible-tail model’s self-diffusion
coefficients (Ds) for mononucleosomes, dinucleosomes, and
trinucleosomes at infinite dilution to values obtained exper-
imentally. Mononucleosomes without linker DNA were
employed in our simulations to model the experimental mono-
nucleosomes of Yao et al. (57). Dinucleosomes containing
two linkers and trinucleosomes containing three linkers were
employed to mimic the experimental dinucleosomes (58) and
trinucleosomes (59), respectively. The linker DNA length in
both these models was fixed at seven linker beads to model
the 22-nm-long linker DNA in the dinucleosome and
trinucleosome experiments. All three experimental systems
lack linker histones, as in our basic model. Multiple Brownian
dynamics simulations on individual oligonucleosomes (to
mimic infinite dilution), each starting from a different start-
ing configuration, were performed. Each simulation run was
50-ms long. The self-diffusion coefficients of the oligonu-
cleosomes were computed from the mean-square deviation
of their center of mass as follows

Ds ¼ lim
t/N

ÆjrðtÞ # rð0Þj2æ
6t

; (31)

where Æ" " "æ denotes an ensemble average, and r(t) denotes
the center of mass of the nucleosomal array at time t.
The diffusion coefficients of the mononucleosomes,

dinucleosomes, and trinucleosomes computed in this study
for the fixed-tail and flexible-tail models as well as those
obtained experimentally are plotted in Fig. 8. The quantitative
agreement between the simulation results and the experiments
is excellent. The flexible-tail model matches the experimental
diffusion coefficients better than the fixed-tail model in the
case of dinucleosomes and trinucleosomes. Both models
indicate that the diffusion coefficients of the dinucleosomes
and trinucleosomes increases slightly with the salt concen-
tration, especially between 0.01 M and 0.02 M salt concen-
tration, as in the experiments. For mononucleosomes, the
fixed-tail model performs marginally better than the flexible-
tail model in terms of agreement with experiments. Again,
both models predict the same trend as the experiments, i.e.,
insensitivity to salt. These results demonstrate that Brownian
dynamics simulations of the flexible-tail model reproduce the
Brownian motion and dynamics of oligonucleosomes rea-
sonably well.

Sedimentation coefficients

As a final validation of our flexible-tail model, we demon-
strate that the structure of an oligonucleosome composed of
12 nucleosomes determined from Brownian dynamics sim-
ulations reproduces very well the structure obtained exper-
imentally. Our comparison is against the reconstituted 12-unit
nucleosomal arrays without linker histones employed by
Hansen et al. (60) with linker DNAs of length 62 bps. To
characterize the degree to which the arrays fold, the exper-
iments have determined the sedimentation coefficient, S20,w,
of the arrays at varying monovalent salt concentrations. To
model the above experimental system, we employ both the
flexible-tail and fixed-tail models with 12 nucleosomes and
linker DNAswhere each linker is six beads long. Note that the
six linker DNA beads represent a DNA length of 18 nm, close
to the length of the experimental linker DNA (18.6 nm)
obtained by assuming a rise/basepair of 3 Å. We start the
simulations with two different initial configurations of the
oligonucleosome to sample the feasible range of solenoid and
zigzag conformations as done in Sun et al. (30) (see Fig. 9).
Both sets of simulations yield a similar ensemble of
oligonucleosome conformations. Multiple Brownian dynam-
ics simulation runs with different random number seeds are
performed for each type of starting configuration where each
run is 5–10-ms long. The salt concentration is varied in the
range 0.01–0.2 M, as in the experiments.
Fig. 10 shows two representative array configurations

obtained at the end of the simulation run, one at 0.01 M salt
concentration and the other at 0.2 M salt concentration,
starting from solenoidlike configuration in Fig. 9. Clearly,

FIGURE 8 Dependence of the diffusion constant of mononucleo-

some (solid symbols), dinucleosomes (gray symbols), and trinucleosomes

(open symbols) on the salt concentration. Circular symbols represent experi-

mental values from Yao et al. (57) (mononucleosomes), Yao et al. (58)
(dinucleosomes), and Bednar et al. (59) (trinucleosomes). Square and

triangular symbols represent results from Brownian dynamics simulations of

flexible-tail and fixed-tail model of oligonucleosomes, respectively. The

dashed lines, which represent the mean experimental diffusion values for the
three array sizes, serve to guide the eye.
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the array at the higher salt concentration is more compact,
and closely resembles the irregular zigzag configuration of
oligonucleosomes obtained experimentally (9,20). The fig-
ure highlights the many features of histone tails: their
inherently flexible and dynamic nature, their role in medi-
ating internucleosomal interactions at high salt concentra-
tions, and the tendency of the H3 tails, in particular, to attach
to linker DNAs and screen out electrostatic repulsions. Such
details are not easily obtained via experiments, and a detailed
examination of the role of each histone tail in chromatin will
be reported separately.
Here we focus on model validation via comparisons to

experimentally obtained S20,w values. Neglecting the contri-
bution of linker DNA, the sedimentation coefficient of our
oligonucleosomes were computed using the relation (61,62)

S20;w ¼ S1 11
2R

N9
+
N9

i

+
N9

j. i

1

Rij

 !

; (32)

where N9¼ 12 represents number of nucleosome units in the
oligonucleosome, R is the effective radius of the nucleo-
somes (taken as the hydrodynamic radius Rc here), S1 is the
S20,w of a mononucleosome taken as equal to 11.1 Svedberg
(S), and Rij is the distance between two nucleosomes. The
reported values sedimentation coefficients have been aver-
aged over all the different starting configurations once the
evolution of the sedimentation coefficient with time has
stabilized, typically after 3–4 ms.
The sedimentation coefficients computed from our Brown-

ian dynamics simulations using the fixed and flexible-tail

models are plotted versus salt concentration in Fig. 11 along
with corresponding values obtained from experiments (60)
and Monte Carlo simulations of the fixed-tail model (30).
Both the experimental and the simulation data show an

FIGURE 10 Configuration of the 12-unit nucleosomal array at the end of

5-ms runs at 0.2 M (left) and 0.01 M (right) salt concentration. Insets show
corresponding stacking patterns without histone tails. In the main figures, the

histone tails are color-coded according to: H3 (blue), H4 (green), H2A
(yellow), and H2B (red); the nucleosome cores and linker beads are shaded
gray and red, respectively. In the insets, the nucleosome core is white and the

wrapped 1 linker DNA is red.

FIGURE 9 Two starting configurations for the 12-unit nucleosomal array
simulations corresponding to a solenoidlike (solenoid with straight linkers)

configuration (left) and zigzag (right). Insets show corresponding stacking

patterns without histone tails. In the main figures, the histone tails are color-

coded according to: H3 (blue), H4 (green), H2A (yellow), and H2B (red); the
nucleosome cores and linker beads are shaded gray and red, respectively. In

the insets, the nucleosome core is white and the wrapped1 linker DNA is red.

FIGURE 11 Sedimentation coefficients versus salt concentration obtained

using Brownian dynamics of the oligonucleosome model developed in this
study (open circles). Also shown are sedimentation coefficients obtained

experimentally by Hansen et al. (60) (open triangles), and those obtained

theoretically using the fixed-tail model (open squares and diamonds). The
open squares represent results obtained by Sun et al. (30) via Monte Carlo
simulations and the open diamonds represent results obtained via Brownian

dynamics simulations in the current study.
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increase in S20,w as the salt concentration is increased, in-
dicating an increased compaction of the nucleosomal arrays
with the salt concentration. The widely accepted explanation
for this trend is that the increased electrostatic screening at
high salt concentration decreases linker/linker electrostatic
repulsions and allows the linker DNA to come closer to each
other, which naturally results in a compaction of the arrays.
Our calculations suggest that reducing the salt concentration
from 0.2 M to 0.01 M results in a 15-fold increase in the total
electrostatic repulsion energy between the linker DNAs for
moderately folded oligonucleosomes with S20,w ' 38. The
data also show that the flexible-tail model reproduces the
experimental S20,w much better than the fixed-tail model.
The fixed-tail model underestimates experimental S20,w by
;3 S at low salt concentration (0.01 M) and overestimates
S20,w by ;2.5 S at high salt concentrations (0.2 M).
We offer two possible explanations for the more dramatic

unfolding of the fixed-tail nucleosomal arrays compared to
flexible-tail arrays at 0.1 M salt. First, the fixed-tail model
cannot account for the partial screening of the linker/linker
electrostatic repulsions by the tails; note how the H3 tail of
the flexible-tail model achieves this in Fig. 10. Second, the
fixed-tail model leads to artificially large angles between the
entering and exiting linker DNAs on each nucleosome due
to electrostatic attraction between the linker beads and the
two fixed H3 tail protrusions (see Fig. 1 of Sun et al. (30))
resulting in highly extended nucleosomal arrays. The angles
between the entering/exiting linker DNAs are smaller in the
flexible-tail nucleosomal arrays because the more mobile H3
tails (relative to the linker beads) are pulled toward the linker
beads, and thus the linker beads do not separate as much as in
the fixed-tail model.
At 0.2 M salt concentration, the fixed-tail arrays fold

more strongly than the flexible-tail arrays. Our explanation
here is that the fixed-tail model results in abnormally large
internucleosomal attractive electrostatic energies as com-
pared to the flexible-tail model. Compare the mean core/core
attractive electrostatic interactions of #5.8 kcal/mol per
nucleosome core (fixed tails) (30) versus #0.9 kcal/mol per
core (flexible tails). The core/core energy in the latter
scenario includes both direct core-core interactions as well as
the internucleosomal core-core interactions mediated via the
histone tails. Considering that the chromatin pulling exper-
iments by Cui and Bustamante (63) estimate an internucleo-
somal attraction energy of #2 kcal/mol for linker-histone
inclusive chromatin and that oligonucleosomes lacking the
linker-histones (such as those explored in this study) are
expected to yield smaller values of internucleosomal ener-
gies, our estimate of the internucleosomal electrostatic energy
is reasonable. The significantly smaller core/core interactions
in the flexible tail simulations are caused by the ability of the
flexible histone tails to interact strongly with both the linker
DNA (See Fig. 9) and the wound DNA around their parent
cores, which discourages the histone tails from protruding
out and interacting with other distant nucleosomes, as will

be described separately (unpublished work). This feature of
histone tails is missing in the fixed-tail model where the
histone tails are long and highly charged rigid protrusions
of the nucleosome core, which beg to interact with other
nucleosome cores.

SUMMARY AND FUTURE APPLICATIONS

The developed coarse-grained model for oligonucleosomes
(chromatin), compatible with Brownian dynamics simula-
tions with complete hydrodynamics, is the first to our knowl-
edge to include histone tails contribution directly, so that
both the flexibility and charge distribution of the histone tails
are properly incorporated. The nucleosome cores (without
the histone tails) are modeled using the DiSCO approach
developed previously (25,27), which essentially treats the
electrostatic and excluded volume interactions of the nucle-
osome core as a set of discrete charges distributed uniformly
on the surface of the core. The linker DNA is represented in a
standard fashion using the discrete elastic bead model with
physically established parameters. The histone tails are mod-
eled as a chain of charged coarse-grained beads with op-
timized Debye-Hückel charges and force-field parameters
that yield similar conformations as the subunit model of
the atomistic histone tails. The comparison of results using
Brownian dynamics simulations for the new model against
existing experimental data on oligonucleosomes shows very
good agreement. In particular, the model matches the histone
tail conformations at different salt conditions, dynamics of
short oligonucleotides (dimers and trimers of nucleosomes),
and structure and energetics of 12-unit nucleosomal arrays.
Of particular importance to the correct representation of
chromatin is the histone tails’ ability to dynamically interact
with both linker and wound DNA; the flexible tails are
required for correctly balancing tail-mediated internucleoso-
mal interactions and electrostatic shielding of DNA linker
repulsion. The cumulative geometric and energetic effect
leads to conformations of nucleosomal arrays that agree with
experiments.
The flexible-tail model of oligonucleosomes developed

here can now be applied to many intriguing problems in
chromatin structure and activity. Fundamentally, the model
offers a systematic way to dissect the role of each histone tail
in chromatin folding under physiological salt conditions. For
example, the position distribution of each histone tail may be
determined at varying salt concentrations to investigate the
role of each tail in chromatin condensation (for example,
whether tails prefer to remain free and unbound, bound to
either the linker DNA or the nucleosomal DNA of parent or
neighboring nucleosomes). The associated timescales of bind-
ing and unbinding events can also be estimated. Relevant
experimental data on the positional preference of histone
tails are emerging by Hansen group (18,19). Additionally,
it will be interesting to investigate how the tail-mediated
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interactions change with the size of the nucleosomal arrays
and what subunits of the chromatin fiber may define an ap-
propriate building block for yet further coarse-grained models
of chromatin. Brownian dynamics simulations should also
allow us to investigate the dynamics of folding and unfolding
at high and low salt concentrations, which may have profound
applications in the repression and activation of genes.
The development of the flexible-tail model also opens

opportunities to explore the impact of a range of histone tail
modifications and variants on chromatin structure. Though it
is well appreciated that acetylation of certain histone tail
residues is associated with gene activation, it is not known
whether this effect is mainly physical, i.e., due to reduction
of electrostatic charge on the tails resulting in a concomitant
reduction in tail-mediated internucleosomal interactions, or
more biological, as a signal for recruitment of certain chro-
matin associated proteins. The effect of acetylation—and
many other histone tail modifications such as ubiquitination,
methylation, and phosphorylation—may easily be treated in
our flexible-tail model through shifts in the charge carried by
the protein beads of the histone tails, and concomitant ad-
justments in parameters related to the excluded volume of the
histone tail protein beads, stretching and bending. A similar
approach could also be followed to investigate the effect of
the incorporation of histone tail variants such as H2A.X and
H2A.Z.
Of course, further improvements in the flexible-tail model

can be envisioned. The effect of linker histones (H1 or H5)
may be incorporated, either through changes in the effective
linker/linker interactions, or through incorporation of addi-
tional charged protein bead units to model the linker histones.
Interchromatin fiber interactions, which likely play an
important role in higher-order folding of chromatin, may
also be pursued (64).

APPENDIX

The subunit model (43–45) in the University of Houston Brownian

Dynamics program (47) represents each amino-acid residue as a sphere

(subunit) with its center located at the Cb of the amino acid. Identical

hydrodynamic radii of 3.5 Å are assigned for all the subunits, and harmonic
bond stretching and bond angle bending potentials are employed according

to Weber et al. (46). The temperature and time step of the Brownian

dynamics simulations is set to 300 K and 0.01 ps, respectively. Simulations
on each histone tail are performed for 100-ns time intervals. The energy of

the subunit model is defined as

Esubunit ¼ Eele 1Ebond 1Eangle 1Ennnb 1Escsi 1Eexv; (33)

Eele ¼
1

4pe0e
+
N

j. i12

qiqj

rij
; (34)

Ebond ¼
kb
2
+
N#1

i¼1

ðbi # b0Þ2; (35)

Wangle ¼
ka
2
+
N#2

i¼1

ðui # u0Þ2; (36)

Ennnb ¼ +
N#1

i¼3

2 +
6

k¼1

Ai

kcos½ðk # 1ÞFi)1Bi

ksin½ðk # 1ÞFi); (37)

Escsi ¼ s +
N

j. i12

gðrijÞ; gðrijÞ ¼ 1# 0:5ð7x2 # 9x3 1 5x6 # x8Þ;

(38)

Eexv ¼ +
N

j. i12

fexvðrijÞ; fexvðrijÞ ¼ eij 3
r0ij
rij

 !8

#4
r0ij
rij

 !6

1 1

" #

;

(39)

where Eele, Ebond, Eangle, Ennnb, Escsi, and Eexv are the Coulombic

electrostatic energy, the bond energy, the bond-angle bending energy, the

nearest-neighbor nonbonded energy, the side-chain solvation interaction

energy, and the excluded volume energy; N is the number of subunits in the
tail; and rij is the distance between subunits i and j. The value e0 is the

electric permittivity of vacuum; e is the solvent dielectric constant; qi and qj
are the charges on subunits i and j, respectively (1 1e for lysine and arginine,
#1e for aspartic acid and glutamic acid, and 0 for the rest of the amino
acids); bi is the bond length between subunits i and i 1 1; the equilibrium

bond length b0¼ 5.14 Å and the bond constant kb¼ 40 kcal/mol/Å2 (44,46);

ui is the angle between subunit i, i 1 1, and i 1 2; ui0 ¼ 87.2" is the
equilibrium bond angle and the bond angle constant is given by ka¼ 40 kcal/

mol/rad2 (44,46); Fi is the dihedral angle defined for subunits i – 2, i – 1, i,
and i1 1 withFi¼ 0 corresponding to the eclipsed conformation; Ai

k and B
i
k

are the coefficients dependent on the identity of the subunit i (44); s is the
side-chain solvent interaction force constant dependent on subunit i (44); x¼
rij/9, rij , 9 Å; and eij and r0ij are the excluded volume force constant and

distance dependent on subunits i and j (44).
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