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ABSTRACT: We have studied the effect of branching on the solution phase behavior of branched
homopolymers using grand canonical Monte Carlo (GCMC) simulations in conjunction with multihistogram
reweighting and finite-size scaling analysis. The critical temperature (Tc) and the Θ temperature (Θ)
decrease as polymer branching is increased, but the drop in Θ is less pronounced than that of Tc. The
critical volume fraction (φc) rises with the degree of branching. Branched polymers are found to obey the
Shultz-Flory relationship and exhibit a power-law behavior in φc vs chain length, with similar scaling
exponents as those for their linear counterparts. Comparisons of the GCMC results are made to results
of the lattice cluster theory (LCT). It is observed that the LCT significantly underestimates the impact
of polymer branching on the critical behavior of polymers. We speculate this discrepancy between the
two formulations to be due to an inadequate representation of the variation of polymer conformations
with branching and neglect of fluctuations in the LCT theory.

1. Introduction

Branched and hyperbranched polymers (dendrimers)
have received a lot of attention recently due to their
emerging applications in catalysis,1 nanomaterial syn-
thesis2 and biomedicine.3,4 Understanding the role that
branching plays in determining the rheological and
thermodynamical properties of a polymer melt or its so-
lution is currently an active area of research. Although
significant advancements have been made in elucidating
the conformational properties of branched polymers,5
comparatively little progress has been made in under-
standing the impact of branching on the miscibility and
critical behavior of polymers in solution. In this study,
we investigate the effect of branching on the liquid-
liquid phase separation and critical parameters of
polymer solutions using Monte Carlo simulations.

Within a certain polymer concentration range, a
polymer-poor solvent solution phase separates into a
polymer-lean and a polymer-rich phase to minimize its
overall free energy. Such a phase separation leads to a
reduction both in the number of enthalpic interactions
between the polymer and the solvent and in the mixing
entropy. The mixing entropy and enthalpy are complex
functions of the polymer structure. Intuitively, one
expects that a branched polymer will display fewer
unfavorable polymer-solvent interactions than a linear
polymer with an identical molecular weight. This would
imply that the branched polymers should exhibit an
increased miscibility and lower upper critical solution
temperatures as compared to linear polymers. Recent
experiments involving measurements of the cloud points
of linear and star-branched polystyrene polymers in a
methylcyclohexane solvent show a drop in the critical
temperature (Tc) as the degree of branching increases,
a trend consistent with the above heuristic argument.6-8

From the viewpoint that branched polymers are gener-
ally more compact that their linear counterparts, we
expect that the critical volume fraction (φc) of branched
polymers should exceed that of the linear polymers with
similar molecular weights. As far as experiments are

concerned, contrasting observations have been made
regarding the dependence of φc on branching, with some
experiments showing an increase in φc with branching,6
while others showing no discernible effect of branching
on φc.8

Several theoretical approaches have been proposed to
model the effect of branching on Tc and φc. It is well-
known that the classic Flory-Huggins theory9 does not
capture the effect of branching on polymer phase
separation. The polymer theories which do capture the
effect of branching include a scaling theory developed
by Daoud et al.,10 a theory developed by Saeki,11 which
replaces the standard mixing entropy term of Flory-
Huggins with a combinatorial entropy term more ap-
plicable to star polymers, and the lattice cluster theory
due to Freed and co-workers.12 All these theories predict
a drop in Tc and a small rise in φc as a polymer becomes
more branched. However, the magnitude of these trends
as well as predictions of Tc and φc have yet to be properly
compared with experimental results. Another drawback
of these theories is that they are all based on a mean-
field approximation which neglects the effects of fluc-
tuations. The predictions for Tc and φc through these
theories have therefore often been inaccurate. To the
best of our knowledge, there does not presently exist
any renormalization theory which properly incorporates
both the effect of fluctuations and branching on the
phase behavior of polymers. A majority of Monte Carlo
simulations, which naturally incorporate the effect of
fluctuations, have focused more on the conformational
properties of polymers rather their critical and phase
behavior.13-18 The remaining Monte Carlo studies have
investigated the phase behavior of a very restricted
subset of isomers of short alkanes.19,20 Making concrete
conclusions about the role of branching from these
studies has been impossible. Hence, in short, our
understanding of the effect of branching on the phase
behavior of branched polymers remains rather poor.

In this paper, we use extensive grand canonical Monte
Carlo (GCMC) simulations in conjunction with multi-
histogram reweighting and finite size scaling analysis
to obtain the phase coexistence envelopes and the
critical points of lattice polymers with varying degrees
of branching. Subsequently, we are able to test the
accuracy of the lattice cluster theory, which is the most
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sophisticated of the three theories mentioned above, and
properly evaluate the role of fluctuations on the phase
behavior of branched polymers. Another objective of this
study has been to evaluate the scaling behavior of the
critical (Tc and φc) and conformational parameters
(polymer radii of gyration) of branched polymers with
respect to their polymerization index, and compare them
with those obtained for linear polymers.

2. Model and Simulations Methods
Our system is composed of a branched lattice homo-

polymer with a polymerization index r on a cubic lattice
with a coordination number z ) 26. In this study, r is
varied within the range r ) 65 to r ) 389. The linear
portions of the polymer are modeled as a series of con-
nected nearest-neighbor lattice sites, while the branch
points consist of a single site connected to more than
two linear portions of the polymer. The five different
polymer architectures studied consist of a linear chain
(L), lightly branched polymers with one (B1), two (B2),
and four branches (B4), and a highly branched second
generation dendrimer (D). We ensure that the length
of the free ends of the branches and the length of the
separators between two neighboring branch points are
kept equal for consistency except for round-off of non-
integer chain lengths. Figure 1 gives schematic illustra-
tions of the polymer structures studied. Solvent mole-
cules occupy all lattice sites not excluded by the
polymer.

Nearest neighbor polymer and solvent sites interact
with each other through the energy parameters εpp, εps,
and εss. Because of lattice coordination constraints, there
is a single relevant energy parameter ε defined as

The reduced temperature is then given by

where kB is the Boltzmann’s constant. For convenience,
the asterisk superscript will be omitted from the re-
duced temperature henceforth. A cubic simulation box
of length L along with periodic boundary conditions

along the three coordination axes is employed. The
polymer volume fraction φ is therefore defined as

where N is the number of polymer chains within the
simulation box.

Our GCMC simulations are conducted at a constant
chemical potential of µ, temperature T and volume V )
L3. The polymer chains are inserted and deleted accord-
ing to the configurational bias method21 with acceptance
criteria given by

where â ) 1/kBT, ∆U is the internal energy change of
the system upon inserting or deleting a polymer, while
W is the magnitude of the bias (weight) applied in
generating polymer conformations using the Rosenbluth
procedure.22,23 For enhanced sampling of the phase
space, we also allow for translation of polymer chains
and regrowth of individual polymer branches. The
acceptance criterion for the translational moves is

where ∆U is the internal energy change of the system
upon translation of a polymer chain, while the ac-
ceptance criterion for regrowth moves is

where Wdel and Wgrow refer to the Rosenbluth weights
corresponding to deleting a polymer branch and regrow-
ing it, respectively.

The simulations yield a histogram fµi,âi(N, U) of the
frequency of occurrence of N polymer chains with a total
internal energy U. The distribution fµ,â(N, U) is formally
described by

where Ω(N, V, U) is the microcanonical partition func-
tion (density of states) and ¥(µ, V, T) is the grand
canonical partition function. Using eq 8, it can be shown
that a histogram at a set of conditions µ and â may be
used to predict the histogram at any other condition µ′
and â′ using the relation

However, such an extrapolation is not practical far from
the original â and µ as the statistical accuracy of the
histograms becomes low away from their peak value.
Because of this, one needs to generate several histo-
grams at different sets of conditions µ and â and then
combine them using a suitable procedure. In this study,
the simulations were performed at values of µ and â
near the anticipated critical point. The different histo-
grams were then combined using the procedure of

Figure 1. Schematic of the five polymer structures considered
in this study: (a) linear (L), (b) single branch (B1), (c) two
branches (B2), and (d) four branches (B4), and (e) dendrimer
(D) for r ) 37. The dark colored beads represent branching
points.

ε ) 2εps - εpp - εss (1)

T* )
kBT
ε

(2)

φ ) rN
L3

(3)

Pins ) min[1, 1
W

V
N + 1

exp(-â∆U + âµ)] (4)

Pdel ) min[1, WN
V

exp(-â∆U - âµ)] (5)

Ptrans ) min[1, exp(-â∆U)] (6)

Pregrow ) min[1,
Wdel

Wgrow
exp(-â∆U)] (7)

fµ,â(N, U) ) Ω(N, V, U) exp(â(µN - U))/¥(µ, V, T)
(8)

fµ′,â′(N, U)

fµ,â(N, U)
∝ exp[(â′µ′ - âµ)N - (â′ - â)U] (9)
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Ferrenberg and Swendsen24-26 to generate a “universal”
histogram applicable to a broader range of µ and â given
by

where Nh represents the total number of histograms
being combined, Ki represents the total number of
observations in run i, and Ci represents a set of
constants determined by solving the following set of
equations iteratively with eq 10:

The final step, according to the mixed-field finite-size
scaling theory,27,28 requires one to map the combined
distribution (histogram) Pµ,â(U, N) to a distribution in
the ordering operator M given by

where s̃ is a field-mixing parameter which controls the
strength of coupling between the energy and density
fluctuations near the critical point. At the critical point,
the probability distribution, PL(x), should follow a
universal distribution corresponding to Ising-type criti-
cality with short-range interactions. The scaling pa-
rameter x is given by

where a(L, r̃) is a nonuniversal parameter dependent
on the system size L and r̃, which is a system-specific
quantity controlling the degree of field mixing. Mc is the
value of M at the “guessed” critical point. The quantity
a(L, r̃) is chosen such that a unit variance is observed
in the distribution PL(x). Hence, the procedure for
obtaining the critical point involves tweaking the pa-
rameters µ, â, and s̃ in eqs 10-13swhich changes both
the value of Mc as well as the distribution of M about
itsuntil the best match between PL(x) and the ideal
Ising distribution is obtained. The values of µ and T thus
obtained represent the apparent critical point µc and
Tc respectively. The critical volume faction, φc, is
obtained as the weighted average of φ with the distribu-
tion Pµ,â(N, U) at the critical point, as given by

It is well-established that the critical points obtained
using this procedure are power-law functions of the
system size L.28 Since only the critical points obtained
in the infinite system-size limit (i.e., L f ∞) are
physically meaningful, one is expected to extrapolate
the critical points obtained at finite system sizes to the
infinite system size limit. However, such an extrapola-
tion was not utilized in the present study, as the finite-
size corrections to the chemical potential for comparable
systems were found to be small.29 It should be noted

that the simulation box sizes employed in this work
were consistently 5-10 times larger than the radii of
gyration of the polymers. All critical data presented in
this study hence correspond to reported finite system
sizes only.

The procedure for obtaining accurate critical points
involves running several short exploratory simulations
(∼0.1-1 million MC steps) at varying conditions of µ
and T to pinpoint the approximate location of the critical
point. Frequent jumps in the density (polymer volume
fraction) as well as the presence of a steep density-
chemical potential curve are the most visible signatures
of an approaching critical point. Histograms from 5 to
10 medium-range simulation runs (∼50-100 million
MC steps) in the vicinity of the approximated critical
region are then combined and used along with the
mixed-field finite-size scaling analysis to yield prelimi-
nary estimates of the critical point. Finally, one to three
very long simulation runs (∼200-1000 million MC
steps) are performed to obtain accurate estimates of the
critical point.

“Two-phase” transitions in our simulations are signi-
fied by the appearance of two peaks in the combined
histogram Pµ,â(U, N) corresponding to the polymer-lean
and polymer-rich phases. The conditions for phase
coexistence across the two phases are equality of tem-
perature, chemical potential and pressure (osmotic
pressure of the polymer chains). The first two criteria
are satisfied by construct. The pressure of a phase (P)
may be computed to within a multiplicative constant
using the relation

To impose the third criterion, one must therefore equate
the integral of the histogram Pµ,â(N, U) corresponding
to the two phases in Pµ,â(N, U). The coexistence densities
for a subcritical temperature T < Tc are thus obtained
by reweighting the histogram (i.e., by manipulating µ)
until the two peaks in Pµ,â(N, U) have equal volumes
under them (or equivalently, the two peaks in Pµ,â(N)
have equal areas). Portions of the coexistence envelope
sufficiently far from the critical point cannot be ac-
curately obtained via the histograms near the critical
point, and the following procedure is adopted for obtain-
ing accurate estimates of the two coexistence volume
fractions φlean and φrich. First, rough estimates of the
coexistence chemical potential at, e.g., T ) 0.9Tc are
obtained using histograms near the critical point. Ad-
ditional simulation runs are now performed around this
new T and µ to obtain accurate values of φlean and φrich.
At the same time, the resulting histograms are com-
bined with the existing histograms near the critical
point to now estimate the coexistence µ at even lower
temperatures. The procedure is repeated until the
desired temperature range has been covered. More
details on this procedure is available elsewhere.24

The structural properties of the branched polymers
in the form of the radius of gyration of polymer chains
(Rg) are also computed during the simulation runs via
the relation

where ri denotes the coordinates of the polymer bead i,

Pµ,â(N, U) )

∑
i)1

Nh

fµi,âi
(N, U) exp(-âU + âµN))

∑
i)1

Nh

Kiexp(-âiU + âiµiN - Ci)

(10)

exp(Ci) ) ∑
N

∑
U

Pµi,âi
(N, U) (11)

M ) N - s̃U (12)

x ) a(L, r̃)(M - Mc) (13)

φc )
r

V

∑
N

∑
U

N × Pµc,âc
(N, U)

∑
N

∑
U

Pµc,âc
(N, U)

(14)

∑
N

∑
U

Pµi,âi
(N, U) ∝ ln ¥(µi, V, Ti) ) âiPiV (15)

Rg ) (1r∑i)1

r

(ri - rcm)(ri - rcm))1/2

(16)
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while rcm denotes the coordinates of the center of mass
of the polymer chain.

3. Lattice Cluster Theory
A quite sophisticated theory for predicting the ther-

modynamics of polymers is the lattice cluster theory pro-
posed by Freed and co-workers.12,30 Starting from the
same lattice-based polymer-solvent system employed
by Flory and Huggins,9 the LCT is based on enumerat-
ing the mixing entropy and the mixing enthalpy of a
polymer solution with the aid of cluster diagrams. This
leads to a more rigorous prediction for the free energy
of mixing than that originally derived by Flory and
Huggins. LCT is equally applicable to branched poly-
mers as well as structured solvent molecules occupying
more than a single site. According to LCT, the free
energy change (∆A) accompanying the mixing of a
lattice polymer with a solvent is given by

where NT ) rNp + Ns is the total number of lattice sites
available to the polymer and solvent. The first five terms
on the right-hand side of eq 17 represent the athermal
entropy of mixing, while the subsequent terms represent
the enthalpy of mixing. The constants ai (i ) 0, 1, 2)
and Ai, Bi, Ci (i ) 1, ..., 4) are given by

The terms N(i) in the equation above are given by

where N1, N2, N3, N⊥, N11, and N12 are combinatorial
terms that depend on the molecular structure of the
polymer and its molecular weight r. Ni (i ) 1, 2, 3)
represents the number of i sequential bonds in the
polymer architecture, N⊥ represents the number of ways
in which three bonds meet at a lattice site, and N11
represents the number of nonsequential bonds in a
polymer chain31 while N12 represents the distinct num-
ber of ways of choosing a single bond and two sequential
bonds in the polymer chain. Table 1 tabulates the
expressions for Ni, Nij, and N⊥ for the five different
polymer architectures considered in this study in terms
of the polymerization index r. Note that eq 17 reduces
to the classic Flory-Huggins mixing free-energy when
only O(âεz) terms are considered.

The coexistence points are computed by equating the
chemical potential of the polymer and solvent in the
polymer-lean and polymer-rich phases. The chemical
potentials of the polymer (µp) and the solvent (µs) are
computed via the relationships

The critical point of the polymers (Tc, φc) are evaluated
via the following equations

The complete set of LCT expressions for the chemical
potentials and their derivatives are provided in the
Appendix.

4. Results and Discussion
The critical parameters (Tc and φc) obtained via Monte

Carlo simulations for the polymer structures of Figure
1 and polymerization indices (r) are tabulated in Table
2. The results clearly indicate that branching has a
profound effect on the critical parameters of a polymer.
This dependence of Tc and φc on branching may be
visualized better by plotting them vs the parameter Nb
which characterizes the degree of branching of a poly-
mer. The quantity Nb denotes the total number of
branches present in a polymer, inclusive of the first and
second generation branches. Nb is therefore equal to 0,
1, 2, 4, and 6 for the polymers structures of the type L,
B1, B2, B4, and D of Figure 1, respectively.

Figure 2 shows that an increase in the degree of
branching causes a lowering of Tc for polymers of all
molecular weights r. Intuitively, the drop in Tc with
branching occurs as a result of the polymer chains
becoming more compact as the degree of branching
increases (see Table 2 for values of the mean radii of
gyration Rg of the polymers chains computed from the
Monte Carlo simulations at the critical point), which
decreases the amount of enthalpic interactions between
neighboring polymer chains. A lower temperature is

N(i) ) Ni/M for i ) 1, 2, 3, ⊥

N(ij) ) Nij/M for i ) 1, j ) 1, 2 (19)

∆µp ) r∆A
NT

- r(1 - φ)
∂∆A/NT

∂φ
(20)

∆µs ) ∆A
NT

- φ
∂∆A/NT

∂φ
(21)

∂∆µp

∂φ |
Tc,φc

) 0,
∂

2∆µp

∂φ
2 |

Tc,φc

) 0 (22)

â∆A/NT ) φ ln(φ)/r + (1 - φ) ln(1 - φ) +

a0φ(1 - φ) + a1φ
2(1 - φ) + a2φ

3(1 - φ) +

A1φ(1 - φ) + (A2 + B3)φ
2(1 - φ)2 + A3φ

2(1 - φ)2 ×
(1 - 2φ)2 + A4φ

2(1 - φ)2(1 - 6φ(1 - φ) ×
(3φ

2 - 3φ + 2)) + (B1 + B2)φ(1 - φ)2 +

B4φ
3(1 - φ)2 + C1φ(1 - φ)2(1 - 2φ)2 + C2φ(1 - φ)3 +

C3φ
2(1 - φ)3(1 - 3φ) + C4φ(1 - φ)4 (17)

A1 ) âεz/2

A2 ) -(âε)2z/4

A3 ) -(âε)3z/12

A4 ) -(âε)4z/48

B1 ) -âεN1

B2 ) âε(2N(2) + N(3) + 3N(⊥) +
N(12) - N(1)N(2)M)/z

B3 ) -2âεN(1)(2N(1) + N(11) - N(1)2M)/z

B4 ) -4âεN(1)3/z

C1 ) -(âε)2N(1)/2

C2 ) -(âε)2N(2)

C3 ) -(âε)2N(1)2

C4 ) -(âε)2(N(11) - N(1)2M)/2

a0 ) N(1)2/z + [-4N(1)N(2) + 8N(1)3/3 - 2N(1) ×
N(3) + N(2)2 - 2N(1)(N(12) - N(1)N(2)M) +

2N(1)4 + 2N(1)2(N(11) - N(1)2M) - 6N(1)N(⊥)]/z2

a1 ) [8N(1)3/3 + 2N(1)4 + 2N(1)2(N(11) -

N(1)2M)]/z2

a2 ) 2N(1)4/z2 (18)
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therefore required to “coerce” the polymer solution to
phase separate. The relative magnitude of the drop in
Tc with Nb characterized by ((1 - Tc)/Tc|Nb)0) is about
2% for the most branched polymer architecture and
shortest chain considered in this study (D; r ) 65).
Longer chains display smaller drops in Tc with respect
to the degree of branching i.e., the branched polymers
increasingly behave like linear polymers at large po-
lymerization indices. The above observations are con-
sistent with experiments of Alessi et al.8 who observed
that the critical temperatures of branched (star-shaped
with 8 arms) polystyrene (PS) in methylcyclohexane
(MCH) solvent were 5-15 K lower than that for linear
polystyrene of the same molecular weight in the same
solvent, and the difference decreased as the molecular
weight of the polymer increased.

An increase in the degree of branching also causes
the polymer solution to exhibit a higher φc (see Figure
3), as predicted theoretically also.11 Again, this trend
is consistent with the argument that branching gener-
ally results in more compact polymer conformations.
Generally speaking, a dilute homogeneous polymer solu-
tion which is gradually being concentrated, begins to
phase separate when the polymers reach a concentra-
tion where they begin to significantly interpenetrate
with each other. This concentration is typically known
as the polymer overlap concentration φ*, approximately
given by

Roughly speaking, φ* is of the same order of magnitude
as φc. This means that the more compact branched
polymers need to be present at higher concentrations
than their more extended linear counterparts in order

Table 1. Combinatorial Coefficients for the Five Different Polymer Architectures Considered in This Study

L B1 B2 B4 D

N1 r - 1 r - 1 r - 1 r - 1 r - 1
N2 r - 2 r - 1 r + 1 r + 4 r + 5
N3 r - 3 r - 1a r + 3a r + 9a r + 3a

N⊥ 0 1 4 8 8
N11 (r - 2)(r - 3) (r - 1)(r - 4) r(r - 4) (r + 1)(r - 6) r2 - 5r - 8
N12 (r - 3)(r - 4) r2 - 6r + 2a (r - 7)(r + 3)a r2 - r - 54a r2 - 61a

a Formula applicable when the polymerization index of each polymer branch is larger than 1.

Table 2. Critical Point Data via Monte Carlo Simulations
and Lattice Cluster Theory for the Different Polymer

Structuresa

Monte Carlo lattice cluster theory

Tc φc Rg Tc φc

r ) 65 L 16.732 0.159 5.189 19.3199 0.116 80
L ) 30 B1 16.633 0.166 4.549 19.3187 0.116 82

B2 16.518 0.171 4.102 19.3164 0.116 87
B4 16.412 0.177 3.899 19.3132 0.116 94
D 16.364 0.179 3.734 19.3106 0.117 04

r ) 82 L 17.122 0.146 5.698 19.7943 0.105 30
L ) 40 B1 17.025 0.152 5.060 19.7933 0.105 32

B2 16.914 0.158 4.601 19.7914 0.105 35
B4 16.806 0.163 4.387 19.7887 0.105 40
D 16.763 0.166 4.221 19.7866 0.105 47

r ) 101 L 17.442 0.136 6.438 20.1885 0.095 85
L ) 40 B1 17.349 0.141 5.663 20.1876 0.095 86

B2 17.240 0.147 5.118 20.1861 0.095 89
B4 17.137 0.152 4.873 20.1837 0.095 92
D 17.082 0.155 4.637 20.1821 0.095 97

r ) 149 L 17.980 0.118 8.173 20.8484 0.080 22
L ) 40 B1 17.899 0.122 7.108 20.8478 0.080 23

B2 17.798 0.127 6.313 20.8467 0.080 24
B4 17.696 0.132 5.925 20.8450 0.080 27
D 17.645 0.135 5.634 20.8438 0.080 29

r ) 197 L 18.318 0.107 9.274 21.2654 0.070 47
L ) 50 B1 18.244 0.110 8.073 21.2650 0.070 48

B2 18.152 0.115 7.219 21.2641 0.070 49
B4 18.051 0.120 6.774 21.2628 0.070 50
D 18.002 0.122 6.465 21.2619 0.070 52

r ) 293 L 18.740 0.091 11.397 21.7837 0.058 49
L ) 60 B1 18.674 0.095 9.911 21.7834 0.058 50

B2 18.593 0.099 8.843 21.7827 0.058 50
B4 18.504 0.103 8.318 21.7818 0.058 51
D 18.456 0.106 7.887 21.7812 0.058 52

r ) 389 L 19.001 0.082 13.529 22.1049 0.051 14
L ) 60 B1 18.944 0.084 11.805 22.1047 0.051 14

B2 18.870 0.088 10.405 22.1042 0.051 15
B4 18.789 0.093 9.664 22.1035 0.051 15
D 18.744 0.096 9.136 22.1030 0.051 16

a Also tabulated are the simulation box lengths and the radii
of gyration of polymer chains obtained from Monte Carlo simula-
tions at the critical point. Statistical uncertainties in the simula-
tion results are smaller than 0.005 in the case of Tc and Rg, and
smaller than 0.002 in the case of φc.

Figure 2. Dependence of critical temperature on polymer
architecture for different polymerization indices. The symbols
represent results for r ) 65 (4), r ) 82 (0), r ) 101 (]), r )
149 (O), r ) 197 (+), r ) 293 (×), and r ) 389 (/). Error bars
are smaller than symbol size. The lines are meant to guide
the eye.

Figure 3. Dependence of critical polymer volume fraction on
polymer architecture for different polymerization indices. The
symbolic representation is the same as in Figure 2.

φ* = 3r/4πRg
3 (23)
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to interact at the same degree with each other as the
linear polymers do. Hence, branched polymers begin to
phase separate at higher polymer concentrations than
the polymer concentrations required by linear polymers
to phase separate. The above predictions are in agree-
ment with the experimental results of Yokoyama et al.,6
who observed that φc was equal to 0.03 and 0.04 for
linear and 6.3-arm PS in cyclohexane solvent, respec-
tively. Alessi et al.,8 on the other hand, do not show any
noticeable differences in the φc of star-shaped and linear
versions of PS in MCH solvent. Clearly, more experi-
ments are needed to fully confirm our prediction. A
direct application of eq 23 however overestimates the
magnitude of rise in φc with the degree of branching.
According to the same argument, branched polymers
should also exhibit a higher miscibility than linear
polymers at a given temperature T < Tcsthe polymer
miscibility being given by the polymer volume fraction
on the low polymer density part of the coexistence
envelope (binodal). Indeed, in Figure 4, the low-density
phase coexistence envelopes for a r ) 65 polymer chain
are observed to shift rightwards (and downward) as the
degree of branching increases in Figure 4, thus confirm-
ing an increased polymer miscibility with branching.
Such trends in the polymer miscibility vs Nb have not
been tested experimentally so far.

Table 2 tabulates the critical parameters from LCT
alongside those obtained via simulations, while Fig-
ure 4 plots the phase coexistence envelopes for the
r ) 65 isomers obtained from both the LCT and
simulations. Several key observations may be made.
First, the LCT consistently overpredicts the value of Tc
and underpredicts the value of φc as compared to
simulations. This overestimation of Tc by the LCT is a
characteristic feature of all mean field theories due to
their neglect of fluctuations.32 There is also an analo-
gous overestimation of the order-disorder transition
temperature Todt in block copolymers by the self-
consistent field theory of Leibler33 when compared to
Fredrickson and Helfand’s theory,34 which includes the
effect of fluctuations.35 Nonetheless, the LCT performs
better than the Flory-Huggins theory for linear poly-
mers. For instance, the Flory-Huggins theory predicts
Tc ) 20.579 for a r ) 65 linear polymer, a worse
prediction than that by the LCT when compared to
Monte Carlo results.

Second, even though the LCT predicts a similar trend
in Tc and φc with branching as the Monte Carlo
simulations, the magnitude of the drops (rises) in Tc (φc)
with branching are 1-2 orders of magnitude smaller
than those predicted by the Monte Carlo simulations.
One possible reason for this discrepancy may be that
the LCT does not properly take into account the differ-
ences in the conformation of polymers with varying
degree of branching. The LCT theory severely under-
predicts the changes in the radii of gyration of polymers
with branching, a key factor governing the critical
behavior of polymers. Another possible reason for the
discrepancy may be the difference in treatment of
fluctuations in the LCT and simulations. We are un-
aware of any theory through which we can evaluate the
impact of fluctuations on the phase behavior of branched
polymers. Several other studies in the past have em-
ployed the LCT to evaluate the role of branching on the
critical properties of polymers.36,37 However, these stud-
ies only considered highly branched polymers (dendrim-
ers with large generation numbers) for their analysis,
where they naturally observed much larger deviations
in Tc than those observed in the current study (see, for
example, Figure 15 of ref 36).

A comparison of the phase coexistence envelopes
obtained via Monte Carlo simulations with those pre-
dicted by LCT shows further disagreement between the
two sets of results. The phase coexistence envelopes
predicted by LCT are much narrower (larger curvature)
near the critical point than those obtained via MC
simulations. Additionally, the LCT phase coexistence
envelopes for the different polymer architectures show
no noticeable change in their shape and location unlike
those obtained via MC simulations which shrink in the
φ direction and shift downward in the T direction. The
agreement between the LCT and MC phase coexistence
envelopes however gets better at higher polymer volume
fractions, the regime where the mean field approxima-
tion of the LCT becomes more valid.

In Figure 5, we have tested the results for Tc of the
branched polymers against the Shultz-Flory relation-
ship38 given by

Clearly, the branched polymers (like their linear coun-
terparts) seem to follow the Shultz-Flory relationship.

Figure 4. Phase coexistence envelopes for the five different
polymer architectures at r ) 65. The symbols represent Monte
Carlo results for L (4), B1 (0), B2 (]), B4 (O), and D (/) type
polymers; the solid lines passing through the symbols are
guides to the eye. The dotted line represents the phase
coexistence envelopes obtained from the lattice cluster theory.
The error bars in the coexistence temperatures and volume
fractions are smaller than size of the symbols.

Figure 5. Inverse critical temperature vs Flory-Shultz
parameter for different polymer architectures. The symbols
represent Monte Carlo simulation results: L (4), B1 (0), B2
(]), B4 (O), and D (+). Error bars are smaller than symbol
size. The dotted lines represent linear fits to the simulation
data.

1
Tc(r)

- 1
Tc(∞)

∝ 1
xr

+ 1
2r

(24)
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The slopes for the branched polymers (≈0.09) are very
similar to those corresponding to the linear polymers.39

Extrapolation of these data to infinite chain lengths
gives Tc(∞) ) 20.84 for the linear polymers (L) and
Tc(∞) ) 20.82, 20.79, 20.73, and 20.68 for branched
polymers of type B1, B2, B4, and D, respectively. It has
been shown that this extrapolated infinite chain length
critical temperature is equal to the Θ temperature of
the polymers, Θ, where the enthalpic attractions be-
tween the polymer segments are exactly balanced by
the excluded volume repulsion (entropic) between these
segments, or when the second virial term in the osmotic
pressure becomes zero.29,40 Given the equivalence of
Tc(∞) and Θ, our simulation results suggest that Θ
decreases minimally with the degree of branching, in
agreement with predictions by the mean field theory of
Candau et al.41

The critical volume fractions obtained from our simu-
lations when plotted in a log-log fashion with respect
to the chain lengths r suggest that φc follows a power-
law scaling with respect to the chain lengths both for
linear as well as branched polymers, as given by

with the coefficient x2 ≈ 0.37 for branched and linear
polymers alike. It has been speculated that very long
chain lengths will eventually raise this coefficient
toward its theoretical value of 1/2.42,43 To the best of our
knowledge, the present study is the first to show that
moderately branched polymers follow similar scaling
relations for Tc and φc as linear polymers. It would be
interesting to investigate in the future if the above
scaling relations hold for highly branched polymers as
well.

Finally, the scaling behavior (with respect to chain
length) of the mean radii of gyration of the simulated
linear and branched polymers both at the Θ tempera-
ture and in the athermal limit (T f ∞) have been
obtained. The radii of gyration were computed from the
Monte Carlo simulations using eq 16 in the dilute limit
φ , φ*, where the overlap concentration was computed
via eq 23. Additionally, a large temperature of T ()500)
. Tc was employed for computing Rg in the athermal
limit, while a temperature of T ) Tc(∞) was employed
for the Θ point simulations (hence a different T for each
polymer architecture). In Figure 7, we have plotted Rg
corresponding to the five polymer architectures in the
two limits described above. Rg is expected to follow a
power-law scaling behavior with respect to r for all
polymer architectures as given by

where ν is a scaling exponent. In the athermal limit,
we have obtained that ν ) 0.58 ( 0.01, 0.58 ( 0.01, 0.58
( 0.01, 0.57 ( 0.01, and 0.57 ( 0.01 for our L, B1, B2,
B4, and D polymer architectures. Hence, both the linear
and branched polymers exhibit scaling exponents close
to the theoretical value of ν ) 0.588.44 On the other
hand, at the Θ point, we obtain ν ) 0.51 ( 0.01, 0.51 (
0.01, 0.51 ( 0.01, 0.50 ( 0.01, and 0.50 ( 0.01 for the
L, B1, B2, B4, and D polymer architectures. Again, this
is in close agreement with the theoretical prediction of
ν ) 0.5 for chains exhibiting prefectly random walks.
Given the fact that self-avoiding polymers chains begin
to behave like random chains at temperatures close to

the Θ point confirms our presumption of Tc(∞) ) Θ for
all polymer architectures.

5. Conclusions

The primary objective of this study has been to
examine the effect of branching on the phase behavior
and critical properties of polymers. Using grand canoni-
cal Monte Carlo simulations along with multihistogram
reweighting and finite-size scaling analysis, we were
able to accurately determine the phase coexistence
envelopes and critical points for polymers of varying
degree of branching and molecular weights. Our analy-
sis shows that an increase in branching of polymers
leads to a decrease in the critical temperature and an
increase in the critical polymer volume fraction. We
associate these trends to the simultaneous contraction
of the polymer with the degree of branching. In addition,
we have also carried out an exhaustive comparison of
our simulation results with those obtained using the
lattice cluster theory. It has been observed that even
though the lattice cluster theory qualitatively yields
similar trends for the variation of Tc and φc with the
degree of polymer branching polymers, the theory
severely underestimates the magnitude of these trends.
We have noted that branched polymers follow the
Shultz-Flory relation similarly to the linear polymers.
Our branched polymers also follow the same power-law

Figure 6. Critical polymer volume fraction (φ) vs polymeri-
zation index (r) for different polymer architectures in a log-
log plot. The symbols represent Monte Carlo simulation
results: L (4), B1 (0), B2 (]), B4 (O), and D (+). Error bars
are smaller than symbol size. The dotted lines indicate the
power-law relationship between φ and r for five polymer
architectures.

Figure 7. Radius of gyration vs polymerization index in the
(a) Θ temperature limit, and (b) the athermal limit for the five
polymer architectures: L(4), B1(0), B2(]), B4(O), and D(/).
Error bars are smaller than symbol size.

φc ∝ r-x2 (25)

Rg ∝ rν (26)
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behavior, with respect to the chain length, as observed
in the case of linear polymers.

Currently, we have only examined moderately
branched polymers. It would be interesting to examine
the effect of hyperbranching such as in the case of third
and fourth generation dendrimers. It would also be
fruitful for researcher to examine the effect of branching
along the lines of renormalization theories which can
capture the effect of fluctuations directly. A more
thorough analysis in the future concerning the reasons
for the observed discrepancies between the Monte Carlo
and lattice cluster theory will also be quite useful.
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Appendix

The chemical potential of the polymer and solvent,
according to the lattice cluster theory, are given by

while the first and second derivatives of the polymer
chemical potential are given by
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