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Abstract Heat-pulse tracers are a promising field method to measure Darcy flux in the hyporheic zone.
Interpretation of data collected from such tests typically assumes knowledge of the direction of local Darcy
flux (vertical) and relies on simplified heat transport models with one-dimensional fluid flow and heat trans-
fer. These assumptions are seldom valid due to complex flow geometry, heterogeneity, and the presence of
localized heat sources. We derive a set of analytical expressions that obviate the need for these simplifying
assumptions, thus substantially improving the capabilities of existing field instruments without requiring
additional measurements. These closed-form solutions account for tensorial nature of heat-transfer parame-
ters, and are obtained by using Green’s functions and rotational coordinate transformations. The approach
simplifies data collection, estimates three-dimensional Darcy flux, relates fluid flow to heat-transfer proper-
ties of the host medium, and can facilitate inverse modeling. Field applications of our solutions and their
ramifications for data collection and analysis are discussed.

1. Introduction

Over the last decade, analyses of heat transfer in the hyporheic zone became an important tool for
groundwater-surface water interaction studies. Such analyses are facilitated by the emergence of simple,
miniaturized and computerized temperature measuring devices, which collect high-resolution data at low
cost (Anderson, 2005; Constantz & Stonestrom, 2003; Rau et al., 2014).

The vast majority of experimental studies rely on two assumptions to interpret field data. First, the direction of
one-dimensional (1D) flow is assumed to be known and fixed. Second, heat transport can be adequately
described by the 1D analytical Suzuki-Stallman solution (Stallman, 1965; Suzuki, 1960). When stream tempera-
ture fluctuations have a strong vertical periodic component, analyses of its amplitude and phase yield informa-
tion about the properties and 1D flow velocity. In fact, several recent studies found that such methods are
prone to significant bias in locations with a pronounced horizontal velocity component (Angermann et al.,
2013; Lautz, 2010; Rau et al., 2012; Reeves & Hatch, 2016; Roshan et al., 2012). However, hyporheic processes
have substantial horizontal heat-transfer components that must be considered. While 1D and 2D analyses
remain popular (e.g., Schneidewind et al., 2016), the 3D studies necessary in field work are more scarce (e.g.,
Boano et al., 2014) due to the complexity of flow geometry. This observation provided impetus for development
of other heat-based tracer techniques, which offer significant advantages over natural thermal tracer tests.

Most of these techniques for characterization of multidimensional flow fields are performed using continu-
ous steady heat sources and require significant experimental and computational resources. For example, a
heavily instrumented and computationally intensive method of Ballard et al. (1996) allows one to character-
ize three-dimensional (3D) water flow and solute transport at a scale of about 1 m. A somewhat simpler
experimental design of Labaky et al. (2007) relies on a two-dimensional (2D) flow assumption to infer plane
flow at a scale about 0.1 m. These methods require drilling that may be very invasive.

Recently, substantial progress has been made in design of less invasive and more robust methods, whose
support scale ranges from �0:01 m (Yang et al., 2013) to �0:1 m (Angermann et al., 2013; Lewandowski
et al., 2011). Such spatial resolution is well suited for hyporheic flow characterization. These methods utilize
heat sources of transient rate, and heat energy pulses on the order of 1 kJ, and offer a viable alternative to
natural temperature tracer tests (Angermann et al., 2013; Lewandowski et al., 2011; Rau et al., 2012, 2014;
Yang et al., 2013). A typical instrumental setup comprises a heat source and surrounding sensors that are
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inserted into a streambed in a regular cylindrical pattern, coaxial with the vertical line across the streambed
(Figure 1). Short heat pulses as a heat tracer allow one to reduce a field experiment’s time and to confine
the spatial scale of averaging the Darcy flux measurements. The energy generated by a heat pulse from a
point or linear source propagates in the subsurface by mechanisms of heat conduction, advection and dis-
persion; temperature measurements can be used to estimate Darcy flux. If Darcy flux varies both spatially
and temporally, heat-pulse tracer tests are a viable alternative or a complement to natural heat-tracer tests
that use temperature time series recorded by thermal sensors deployed in several observation points. One
can expect heat pulse techniques obtain better estimates of multi-dimensional flows, whereas one-
dimensional methods be better at obtaining time-series estimates.

Models used to interpret heat-pulse tracer tests lag behind developments in instrumentation, sensors, and digi-
tal data collection. That is because most, if not all, analytical models rely on a number of oversimplifying
assumptions. For example, Yang et al. (2013) considered 2D heat transfer in a fixed flow plane, whose orienta-
tion must be known a priori; this is seldom the case in hyporheic studies. In addition, they entirely ignore heat
dispersion. Other models do consider heat dispersion but ignore heat conduction (e.g., Lewandowski et al.
[2011, p. 3252]; and Angermann et al. [2013]). Ad hoc procedures for estimation of the magnitude and direction
of Darcy flux, which have no hydrodynamic basis, yield dispersivity values that are inconsistent with established
trends (Angermann et al., 2013, Figure 8) and cannot be extended to other instrument configurations. That
indicates a need for new heat-transfer models, which would lead to more robust field data interpretation.

Despite its current shortcomings, the transient heat-pulse approach is promising because it relies on exist-
ing field instrumentation (e.g., developed by Lewandowski et al., 2011) and yields data adequate for 3D
interpretation. With proper interpretation methods, it also eliminates a need for reinsertion of instruments
into the subsurface. Rather than using numerical codes, e.g., VS2D and COMSOL (Constantz & Stonestrom,
2003; Reeves & Hatch, 2016), we posit that more efficient analytical tools are essential for data interpreta-
tion, especially in the context of inverse modeling.

Our analysis of heat transfer in the hyporheic zone provides tools for estimation of Darcy flux with arbitrary ori-
entation in three dimensions. The modeling tools account for heat dispersion, flexible source type (point or
distributed), and heat-pulses of finite duration and heat-pulses with periodicity components. The latter capa-
bility may provide an effective strategy for delineation of the test scale. The versatility of our analytical model
maximizes the information content of both existing data sets and measurements that can be collected with
existing instrumentation without modification of field procedures. Although stimulated by hyporheic zone
studies in stream-aquifer interactions, our solutions are broadly applicable to chemical tracers.

2. Problem Formulation

Even in homogeneous and isotropic soils, thermal conductivity j is a positive-definite second-rank tensor
and heat transfer is described by a convection-dispersion equation (Anderson, 2005; Bear, 1972; Ciriello
et al., 2015; Ingebritsen et al., 2006)

Figure 1. Left: Heat source embedded into the hyporheic zone beneath a stream. Right: Schematic representation of a
heat-pulse sensor (after Angermann et al., 2013). The heat source (red) is surrounded by an array of temperature sensors
(green). In the experimental setup of Angermann et al. (2013), the sensors are arranged in a circle with diameter 7 cm
with vertical spacing of 3 cm between the sensors on the same rod.
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@T
@t

5r � ðjrTÞ2qwcwq � rT1F: (1)

Here Tðx; tÞ is temperature of the medium at point x5ðx; y; zÞ> and time t; qw and cw are the density and
specific heat capacity of water, respectively; the heat capacity qc is calculated by a mixing rule (e.g., Bear,
1972) such that

qc5nqwcw1ð12nÞqscs; (2)

where n is porosity, and qs and cs are the density and heat capacity of hosting medium (solids); Fðx; tÞ is a
prescribed source of heat; and q5ðqx ; qy ; qzÞ>52Krh is the Darcy flux vector, with K and h denoting
hydraulic conductivity and hydraulic head, respectively. To simplify the subsequent presentation, we recast
(1) as

@T
@t
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For thermally isotropic aquifers, the thermal dispersion tensor D is completely characterized by two disper-
sivity parameters, aL and aT (e.g., equation (10.4.17) in Bear [1972], equation (5) in Burnett & Frind [1987], p.
46 of Zheng & Bennett [2002], and equation (26) in Lichtner et al. [2002]). These parameters have dimen-
sions of length (Bear, 1972; Ingebritsen et al., 2006) and must be obtained experimentally.

2.1. Thermal Conductivity Tensor
In the absence of flow, the thermal conductivity of a water-saturated medium is a scalar j0 related to the
thermal conductivities of water (jw) and solids (js) by (e.g., Ingebritsen et al., 2006, p. 134)

j05j12n
w jn

s ; so that D05
j0

qc
: (4)

The units and typical values of these and other thermal properties of water and solids are listed in Table 1.
The tensorial nature of the thermal conductivity j or thermal dispersion D stems from both convection and
dispersion. Unlike its mass transport counterparts (the hydrodynamic dispersion tensor), the thermal con-
ductivity tensor is much less studied experimentally (Bear, 1972; Gelhar et al., 1992; Rau et al., 2014), and rel-
atively little information is available about anisotropy of the thermal properties. A few analyses of field
studies of subsurface heat transfer suggest that thermal conductivity is indeed a tensor (e.g., Anderson
[2005] and de Marsily [1986, p. 279]). Following Rau et al. (2012) and Bons et al.(2013), we assume a linear
dependence of these tensor parameters on magnitude of the Darcy flux. This assumption is widely used in
the context of subsurface solute transport (Zheng & Bennett, 2002), although there are some indications
that, under certain conditions, heat dispersion might follow a power law (rather than linear) relation (Bons

et al., 2013; Rau et al., 2012).

Parameterization of D is far from straightforward and must account
for a number of factors. First, dispersive processes in water-saturated
geologic materials are often deemed to be less significant for heat
transfer than for solute transport, because the thermal conductivity of
solid matrix exceeds that of water by more than an order of magni-
tude (e.g., Bear [1972, p. 651]; and de Marsily [1986]) and the role of
water in creating dispersion effects is often neglected (Coutelieris &
Delgado, 2012; Yang et al., 2013). Second, a scale effect in thermal
anisotropy may be expected, similar to that observed for mass-
transport processes (e.g., Gelhar et al., 1992; Zech et al., 2015). We
adopt a general (‘‘classical’’) parametrization of the thermal dispersion
tensor for isotropic media (e.g., Bear [1972], equation (10.4.17); Burnett
& Frind [1987], equation (5); Zheng & Bennett [2002, p. 46]; and Licht-
ner et al. [2002], equation (26)). The tensor depends on material

Table 1
Values of Thermal Properties of Water and Solids Used in Our Simulations (After
Reeves & Hatch [2016] and Irvine et al. [2015])

Parameter Units Value

specific heat capacity of water, cw J/(kg�K) 4184
specific heat capacity of solids, cs J/(kg�K) 800
density of water, qw kg/m3 998
density of solids, qs kg/m3 2650
thermal conductivity of water, jw W/(m�K) 0.6
thermal conductivity of solids, js W/(m�K) 8.4a

aAlternatively, if volumetric fraction (nq) of quartz in a mixture is known,
then one can compute thermal conductivity of solids from a relation
(Farouki, 1986) js5jnq

s;qjð12nqÞ
s;nq , where js;q and js;nq are the thermal conduc-

tivities of quartz and non-quartz components in a mixture, respectively.
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properties and Darcy flux characteristics; guided by the observations
reported in Figure 8 of Angermann et al. (2013) for the experimental
setup described by our model, we assign to the principal components
of this tensor values reported in Table 2. These values are used for
illustrative purposes only. Our analytical solutions can also accommo-
date pure heat conduction by setting the dispersivity coefficients to 0,
if data interpretation suggests small or negligible contribution of heat
dispersion. We use non-zero values for the dispersivity coefficients
because (Rau et al., 2014, p. 45) ‘‘thermal dispersion can be of signifi-
cance and its role should be investigated further to give a better basis
for heat transport calculations in applications relating to sediment
heat tracing’’ (see, also, [Bons et al., 2013, p. 6176]).

2.2. Field and Principal Coordinate Systems
Registration of locations of heaters and sensors is naturally performed
in a field-based Cartesian coordinates system, whose z axis points

upward. Since the Darcy flux vector is, in general, not aligned with the vertical direction, this results in the
thermal conductivity being a full tensor. General properties of tensors suggest the existence of a principal
coordinate system ð~x ; ~y ;~zÞ in which all the off-diagonal components of the thermal dispersivity tensor D
are zero. This coordinate system is obtained by aligning the ~z coordinate with the flow direction, so that
q5ð0; 0; qÞ>. In this coordinate system, the thermal dispersivity tensor D takes the form

D5

DT 0 0

0 DT 0

0 0 DL

0
BB@

1
CCA; DT �

jT

qc
5D01aTV ; DL �

jL

qc
5D01aLV ; V5

qwcw

qc
q; (5)

and the general form of heat transfer equation (1) simplifies to

@T
@t

5DT
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@~x 2 1
@2T

@~y 2

� �
1DL

@2T

@~z 2 2V
@T
@~z

1f : (6)

This equation is easier to solve analytically than its counterpart (1) (e.g., Cardiff et al., 2010; Zlotnik et al.,
2017). To find the temperature distribution in the field system, one needs to establish a relationship
between these two systems. A transformation of the field coordinates system (x, y, z) into the principal coor-
dinates system ð~x ; ~y ;~zÞ is accomplished by rotation (Appendix A)

~x

~y

~z

0
BB@

1
CCA5

cos hðxcos /1ysin /Þ2zsin h

2xsin /1ycos /

sin hðxcos /1ysin /Þ1zcos h

0
BB@

1
CCA: (7)

Angles / and h characterize the direction of Darcy flux q in the field coordinate system (x, y, z), as shown in
Figure 2. Unfortunately, they are not known a priori and have to be inferred from field data together with
values of q, aL, and aT. We assume that values of the remaining parameters, n, qi, ci, and ji (with i5w and s),
are known (see Table 2), and that (2) and (4) or similar constitutive relationships provide adequate estimates
of qc and j0.

3. Analytical Solutions for Different Heat Sources

We use Green’s functions to develop analytical solutions for point and line sources that are either constant
in time or emit periodic signals. Since heat-pulse methods affect a relatively small volume near the heat
source (Figure 1), we treat the subsurface environment as infinite. For a 3D infinite domain, the Green’s
function Gð~x2n1; ~y2n2;~z2n3; t2sÞ represents the temperature response at point ð~x ; ~y ;~zÞ and time t to an
instantaneous point source of infinite strength located at space-time point ðn1; n2; n3; sÞ. It satisfies (6) with
f � dð~x2n1Þdð~y2n2Þdð~z2n3Þdðt2sÞ, where dð�Þ is the Dirac delta function, and is subject to the zero initial
condition and zero boundary condition at infinity. Its explicit form is given by (e.g., Hunt, 1978; Park & Zhan,
2001)

Table 2
Values of Hydrodynamic and Transport Parameters Used in Our Simulations

Parameter Units Value

Darcy flux, q m/s 1026 or 1025

polar angle, / rad 0 � / < 2p
azimuthal angle, h rad 0 � h < p
porosity, n – 0.3
longitudinal thermal dispersivity, aL m 0.2a

transverse thermal dispersivity, aT m 0.05
heat-pulse energy, E J 2000

aThe value of Darcy flux q is consistent with those reported by (Ong &
Zlotnik, 2011, Table 2) and (Angermann et al., 2013, Figure 7), and the value
of longitudinal dispersivity aL with those from (Angermann et al., 2013,
Figure 8).
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G5 1

8p3=2
ffiffiffiffiffiffiffiffiffiffiffi
DLD2

T

p
ðt2sÞ3=2

exp 2
ð~x2n1Þ21ð~y2n2Þ2

4DTðt2sÞ 2
ð~z2n32Vðt2sÞÞ2

4DLðt2sÞ

" #
: (8)

For any source function with finite support, f ð~x ; ~y ;~z ; tÞ, the solution of (6) is

Tð~x ; ~y ;~z ; tÞ5
ðt

0

ð1
21

ð1
21

ð1
21

f ðn1; n2; n3; sÞGð~x2n1; ~y2n2;~z2n3; t2sÞdn1dn2dn3ds; (9)

where T describes the temperature increase (in 8C) over the initial spatially uniform temperature.

3.1. Instantaneous Point Source
An instantaneous (at time t 5 0) point source that is located at the coordinates origin is represented by f 5E
=ðqcÞdð~xÞdð~yÞdð~zÞdðtÞ where E is heat-pulse energy. Substituting this expression into (9) yields a tempera-
ture distribution induced by an instantaneous point source,

T5
E=ðqcÞ

8p3=2
ffiffiffiffiffi
DL
p

DTt3=2
exp 2

~x 21~y 2

4DTt
2
ð~z2VtÞ2

4DLt

" #
: (10)

A similar solution for solute transport can be found in Hunt (1978) and (Ingebritsen et al., 2006, equation
(3.23)), among others. The corresponding temperature distribution in the field coordinate system (x, y, z) is
obtained by combining this solution with (7). Figure 3 illustrates properties of a thermal signal in the vicinity
of an instantaneous point-source heat-pulse heater in the presence of the upward Darcy flux qz (/5h50).
The isotherms of the snapshot of Tðx; y50; z; t51000 sÞ (Figure 3, Left) exhibit cross-sections (in the plane
y 5 0) of rotational ellipsoids whose centers are slightly shifted in the velocity direction from the heat source
located at x50. The temperature dynamics at two sensor locations x? are shown in Figure 3 (Right) for
Darcy velocities qz51026 m/s and 1025 m/s. These curves reveal the maximal temperature to be on the
order of 18C, which is acceptable for data collection and interpretation. If needed, longer pulses or a greater
pulse energy can be used.

3.2. Finite-Duration Pulse From Point Source
Heat-pulse instruments may generate a heat pulse, E, over a finite time period tp. For uniform heat produc-
tion rate E=tp over this time period, f 5E=ðqctpÞdð~xÞdð~yÞdð~zÞgðtÞ with g � 1 for 0 < t � tp and g � 0 other-
wise. For this source term, (9) yields a temperature distribution induced by a point source of finite duration,

Figure 2. Left: Field (solid lines) and principal (dashed lines) orthogonal coordinate systems (x, y, z) and ð~x ; ~y ;~zÞ, respec-
tively. The ~z coordinate of the transformed (principal) coordinate system is aligned with the direction of Darcy flux q (blue
vector). The transformation ðx; y; zÞ7!ð~x ; ~y ;~zÞ is accomplished via two rotations. Counterclockwise rotation 1, around the
z axis by angle /, transforms (x, y, z) into an intermediate coordinate system ðx0; y0; zÞ. Counterclockwise rotation 2,
around the y0 axis by angle h, aligns the new z0 axis with vector q. Note that axes ~x ; ~z , and z are located in one plane. A
point heat-source is located in the origin of the coordinate system (red dot). Right: A vertical line heat-source (solid red
line) of length l, distributed along the z axis of the field coordinates system (x, y, z) between z52l=2 and z5l=2. In the
principal coordinate system ð~x ; ~y ;~zÞ, this source is represented by a line connecting points ð2l=2sin h; 0; l=2cos hÞ and
ðl=2sin h; 0;2l=2cos hÞ.
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Tð~x ; ~y ;~z ; tÞ5
Tpð~x ; ~y ;~z ; tÞ 0 � t � tp

Tpð~x ; ~y ;~z ; tÞ2Tpð~x ; ~y ;~z ; t2tpÞ t � tp

(
(11a)

where

Tpð~x ; ~y ;~z ; tÞ5 E=ðqcÞ
8pDTtpR
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2
ffiffiffiffiffiffiffi
DLt
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R1Vt

2
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DLt
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(11b)

with

R5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DL

DT
ð~x 21~y 2Þ1~z 2

r
; �z5

~zV
2DL

; �R5
RV
2DL

(11c)

In the context of solute transport and for source of infinite duration (tp !1, i.e., T5Tp) a solution similar to
(11b) was developed by Hunt (1978).

3.3. Instantaneous Line Source
Consider, next, the total instantaneous heat pulse E=ðqcÞ that is uniformly distributed over length l in the verti-
cal direction (Figure 2), rather than being concentrated at a point. In the field coordinate system (x, y, z), this
setting is represented by the source term f ðx; y; z; tÞ5E=ðqclÞgðzÞdðxÞdðyÞdðtÞ with g � 1 for jzj � l and g
� 0 otherwise. In the principal coordinate system ð~x ; ~y ;~zÞ this translates into (e.g., Zhan & Zlotnik, 2002) f ð~x ; ~y ;
~z ; tÞ5E=ðqclÞgð~xÞdð~x cos h1~zsin hÞdð~yÞdðtÞ with g � 1 for j~x j � ðl=2Þsin h and g � 0 otherwise. Substituting
this expression into (9) yields a temperature distribution induced by an instantaneous line source (Appendix B),

T5
E=ðlqcÞ
8pcDTt

exp 2
~x 21~y 2

4DTt
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ð~z2VtÞ2

4DLt
1
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" #
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ffiffiffi
a
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4DTt
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4DLt
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4DTt
2
ð~z2VtÞcot h

4DLt
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDL=DTÞsin 2h1cos 2h

p
: (12b)

Note that lim h!0 b=
ffiffiffi
a
p

5ð~z2VtÞ=
ffiffiffiffiffiffiffiffiffiffi
4DLt
p

.

3.4. Periodic Point Source
Effects of periodic fluctuations of a heater’s output diminish rapidly with distance from sensors to a heater;
this effect is also accompanied by a sensor’s phase shift (Stallman, 1965; Suzuki, 1960). Consequently, such
an experimental setup can be used to characterize a finite volume in the immediate vicinity of a heater by

Figure 3. Temperature T in the vicinity of an instantaneous point-source heat-pulse heater in the presence of the upward
Darcy flux qz (/5h50). Left: a snapshot, at t 5 1000 s, of the temperature T in the y 5 0 cross-section. Right: Temperature
dynamics at two sensor locations x?5ð0:03 m; 0:0 m; 0:0 mÞ and x?5ð0:03 m; 0:0 m; 0:06 m), shown for Darcy veloci-
ties qz51026 m/s and 10– 5 m/s.
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adding a periodic component to the constant rate of heat production, as was done by Cardiff et al. (2013)
to analyze pressure fluctuations. A temperature field generated by the constant-rate heat production is
described by (11b). A periodic point-source of heat is represented by f 5Ex=ðqcÞsin ðxtÞdð~xÞdð~yÞdð~zÞ, where
x [1/s] and Ex [W] are the angular frequency and amplitude of heat production fluctuations, respectively.
Substituting this expression into (9) yields a correction to the temperature distribution from constant-rate
heating superposed with a periodic point-source (Appendix B),

T5
Ex=ðqcÞ

8p3=2
ffiffiffiffiffi
DL
p

DT
I1ð~x ; ~y ;~z ; tÞsin ðxtÞ2I2ð~x ; ~y ;~z ; tÞcos ðxtÞ½ 	; (13a)

where

I15

ðt

0

cos ðxsÞ
s3=2

exp 2
~x 21~y 2

4DTs
2
ð~z2VsÞ2

4DLs

" #
ds;

I25

ðt

0

sin ðxsÞ
s3=2

exp 2
~x 21~y 2

4DTs
2
ð~z2VsÞ2

4DLs

" #
ds: (13b)

For large t, this solution gives rise to an asymptotic expression

T5
Ex=ðqcÞ

8p3=2
ffiffiffiffiffi
DL
p

DT

ffiffiffiffiffiffiffiffiffiffiffi
I2
11I2

2

q
sin xt2arctan ðI1=I2Þ½ 	; (14)

where Iið~x ; ~y ;~zÞ5I ið~x ; ~y ;~z ;1Þ with i 5 1, 2. Therefore, temperature oscillations of the source and an observa-
tion point are generally out of phase. The temperature phase shift in observation point depends on location and
transport parameters. The amplitude and phase shifts are defined by integrals I1 and I2: the amplitude,

ffiffiffiffiffiffiffiffiffiffiffi
I2
11I2

2

p
,

decreases with distance from the source, while the phase shift characteristic, I1=I2 varies from 0 to p. Phase and
attenuation analyses can be used for simplified evaluation of the heat transport properties. This approach gener-
alizes existing methods that require sensor placement on a vertical line (Lautz, 2010).

4. Inference of Flow Fields From Heat Tracer Experiments

All heat tracer-based methods start by establishing a field system of Cartesian coordinates in which the z
coordinate is commonly oriented vertically (Hatch et al., 2006; Lewandowski et al., 2011; Reeves & Hatch,
2016, etc). The next step is to register coordinates of an ith sensor, (x?i ; y?i ; z?i ) with i51; � � � ;N where N
denotes the number of sensors. In heat-pulse tests with a fixed configuration of a heater and probes, Lew-
andowski et al. (2011) and Angermann et al. (2013) deploy the heater at a depth less than 0.5 m, and
arrange the probes in 4 circles of 7 cm diameter (N 5 16 or 24). Yang et al. (2013) use a heater and sensors
arranged in a circle of diameter about 1.3 cm (N 5 4).

When an artificial heat source is used, its size (length) must be compared with the distance to the nearest sensor.
If the source size is small, one can use a point source model (10), otherwise the linear source model (12) should
be deployed. These solutions provide temperature distributions in a principal system of coordinates. Equation
(7) is used to transform these solutions to a field coordinate system for comparison with field data from each of
the N sensors. Figure 4 exhibits temperature response, Tðx?; tÞ, recorded by a sensor at point ðx?50:03 m; y?5
0:0 m; z?50:03 mÞ to the instantaneous point source at ðx50:0 m; y50:0 m; z50:0 mÞ, as predicted by (10)
for three values of h.

To ascertain the method’s sensitivity, the maximum temperatures reached at observation points (Tmax) are
needed. Figure 5 demonstrates how strongly Tmax can be affected by the direction of the 3D velocity V. For
each sensor, Tmax for the upward-oriented velocity (h 5 0) is different from that for the downward-oriented
velocity (h5p) due to the sensor position relative to the heater.

Heat pulses may have substantial duration compared to observation time. For example, Yang et al. (2013)
used a 9 s pulse and measurement time of 120 s, while Angermann et al. (2013) used a 60 s pulse and mea-
surement time of 800 s. Corresponding errors in the test methods can be assessed with (11).

All equations in the principal system of coordinates contain two unknown media characteristics (aL and aD)
and the magnitude of heat-transport velocity, V. The heat-transport velocity vector in the field system of
coordinates, V5ðVx ; Vy ; VzÞ> , also includes rotation angles / and h such that
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V5V

sin h cos /

sin h sin /

cos h

0
BB@

1
CCA: (15)

Finally, the Darcy flux in the field coordinates is obtained using relationship

q5
qc

qwcw
V: (16)

These five parameters (aL; aT, V, h, and /) can be inferred from data via inverse modeling. Equations (10),
(12), and (13a) contain other parameters: E, qc and j0 when heat dispersion is neglected (e.g., Ingebritsen
et al., 2006; Yang et al., 2013), or parameters E, qc, jL, and aT when it is considered (Angermann et al., 2013;
Reeves & Hatch, 2016).

Figure 4. Temperature response at point ðx?50:03 m; y?50:0 m; z?50:03 mÞ to the instantaneous point source at
ðx50:0 m; y50:0 m; z50:0 mÞ, as predicted by (10) for Darcy flux q51026 m/s and 1025 m/s with azimuthal angle h 5 0,
p=8 and p=4.

Figure 5. Maximum temperature Tmax5max t Tðx; tÞ at points ðx?50:03 m; y?50:0 m; z?50:03 mÞ and ðx?50:03 m; y?5
0:0 m; z?50:06 mÞ generated by the instantaneous point source at ðx50:0 m; y50:0 m; z50:0 mÞ, as predicted by (10)
for Darcy flux q51025 m/s and (left) azimuthal angle 0 � h � p and polar angle /50:0 or (right) azimuthal angle h5p=8
and polar angle 0 � / � p.
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In some cases, especially for simplified treatment of 1D or 2D velocity, a smaller number of parameters than
5 can be searched: only 3 parameters (aL; aD, Vz) in the case of (Angermann et al., 2013, p. 3), and only two
parameters (Vx and Vy) in the case of (Yang et al., 2013, p. 5883). Therefore, other parameters could be
included into the list of searched ones (e.g., E in case of Angermann et al. [2013]), or j0 and qc (e.g., Yang
et al., 2013). In the general case, independent parameters E, n, qs; cs and js, which are unrelated to disper-
sive heat transport, should be estimated a priori from laboratory measurements, site-specific data from
other tests, or constitutive relationships such as (2) and (4) for estimating qc and j0; water characteristics
qw; cw, and jw are known constants.

Our solutions provide the most complete description of heat dispersion and transport dimensionality to-
date. Previous treatments of thermal conductivity are inconsistent between approaches. For example, Yang
et al. (2013) ignore dispersion entirely, and their 2D method requires rearrangement of field settings if 3D
Darcy velocity has to be found. While omission of heat dispersion is common (e.g., Ingebritsen et al., 2006),
validation of such an approach requires further analyses (Anderson, 2005; Bons et al., 2013; de Marsily,
1986; Rau et al., 2014). The method of Angermann et al. (2013) accounts for heat dispersion but ignores
heat conduction, and uses ad hoc coordinate conversions of the 3D temperature field. As a result, such
interpretation leads to unphysical estimates of the dispersivity that should decrease with velocity magni-
tude (Lewandowski et al., 2011, Figure 8). Yet, the novel instrumentation used in these studies offers new
opportunities to study heat dispersion in the field.

5. Conclusions

Previous interpretations of heat-pulse methods constrained the search for the Darcy flux vector to one or
two components. The proposed analytical approach to analysis of temperature distributions from heat-
pulse tracer tests enables one to use the recently developed instrumentation (Angermann et al., 2013; Lew-
andowski et al., 2011; Yang et al., 2013, and references therein) to interpret already available data and
extract maximum information from new tests in 3D.

Less dense placement of the heat probe and sensors can be used, thereby providing more options for data
collection (larger spacing, irregular grid of sensors, greater and easier insertion depths by individual sensors,
and changing velocity measurement scale). Limiting repeated sensor insertions into the subsurface amelio-
rates media disturbance and noise from data interpretation.

On the other hand, by relating the support volume of a heat probe to both its operation regime and ther-
mal and hydraulic properties of the surrounding sediments, our solutions can be used to determine the
maximal spacing between the probe and sensors.

In previous studies, heat sources were usually highly idealized: they were assumed to be instantaneous and
focused in a point. Our solution allows for a real-size heater (a linear segment) of a length that is compara-
ble to distances between the heater and surrounding sensors.

Digitally operated heaters allow for control of the heat production rate, imposing, e.g., periodic, fixed-rate
and pulsed-amplitude, and other regimes. By facilitating accurate and rapid measurements, our theory may
provide new opportunities to study heat transport in homogeneous and heterogeneous media, when
numerous local-scale measurements are needed.

Appendix A: Coordinate Transformation

The transformation of coordinates is performed in two rotations using Euler’s angles. Following (Boas, 2006,
p. 129), we first rotate the (x, y, z) coordinate system around the z axis by an angle /, and then around the ~y
axis by an angle h (Figure 2). The first rotation transforms the (x, y, z) coordinate system into an intermediate
system of coordinates ðx0; y0; zÞ, such that

x0

y0

z

0
BB@

1
CCA5

cos / sin / 0

2sin / cos / 0

0 0 1

0
BB@

1
CCA

x

y

z

0
BB@

1
CCA5

x cos /1y sin /

2x sin /1y cos /

z

0
BB@

1
CCA: (A.1)

After this rotation, the y0 component of vector q becomes 0, but its x0-component remains, in general, non-zero.
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The second rotation, around the y0 axis by angle h, is related to the new left system of coordinates (Boas,
2006, p. 129). It aligns the new ~z axis with the direction of q, so that in this new coordinate system
q5ð0; 0; qÞ>. This rotation transforms the ðx0; y0; zÞ coordinate system into the ð~x ; ~y ;~zÞ coordinate system
according to

~x

~y

~z

0
BB@

1
CCA5

cos h 0 2sin h

0 1 0

sin h 0 cos h

0
BB@

1
CCA

x0

y0

z

0
BB@

1
CCA: (A.2)

Combining (A.1) and (A.2) yields (7).

Appendix B: Derivation of Analytical Solutions

B1. Instantaneous Line Source
Combining (8) and (9) with f ð~x ; ~y ;~z ; tÞ5E=ðqclÞgð~xÞdð~x cos h1~zsin hÞdð~yÞdðtÞ yields

T5
E

qcl

ð1
21

ððl=2Þsin h

2ðl=2Þsin h
dðn1cos h1n3sin hÞGð~x2n1; ~y ;~z2n3; tÞdn1dn3

5 A
ð1

21

ððl=2Þsin h

2ðl=2Þsin h
dðn1cos h1n3sin hÞexp 2

ð~x2n1Þ21~y 2

4DTt
2
ð~z2n32VtÞ2

4DLt

" #
dn1dn3

(B.1a)

where

A5
E

qcl
1

8p3=2
ffiffiffiffiffi
DL
p

DTt3=2
: (B.1b)

Using basic properties of the delta function, we obtain

T5
A

sin h

ððl=2Þsin h

2ðl=2Þsin h
exp 2

ð~x2n1Þ21~y 2

4DTt
2
ð~z1n1cot h2VtÞ2

4DLt

" #
dn1; (B.2)

which, after some algebraic manipulations, gives rise to

T5A1

ððl=2Þsin h

2ðl=2Þsin h
exp 2

1
4DTt

1
cot 2h
4DLt

� �
n2

112
~x

4DTt
2
ð~z2VtÞcot h

4DLt

� �
n1

� �
dn1; (B.3a)

where

A15
E

qclsin h
1

8p3=2
ffiffiffiffiffi
DL
p

DTt3=2
exp 2

~x 21~y 2

4DTt
2
ð~z2VtÞ2

4DLt

" #
: (B.3b)

After completing the square,

T5A1eb2=a
ððl=2Þsin h

2ðl=2Þsin h
exp 2aðn12b=aÞ2

h i
dn1; (B.4a)

where

a5
1

4DTt
1

cot 2h
4DLt

; b5
~x

4DTt
2
ð~z2VtÞcot h

4DLt
: (B.4b)

Change of the variable of integration, g25aðn12b=aÞ2, yields

T5A1eb2=a 1ffiffiffi
a
p
ðg1

g2

e2g2
dg5A1eb2=a 1ffiffiffi

a
p 2

ðg2

0
e2g2

dg1

ðg1

0
e2g2

dg

� �
; (B.5)

where g652b=
ffiffiffi
a
p

6
ffiffiffi
a
p

l=2ð Þsin h. Rewriting this result in terms of the error function erfðxÞ5 2=
ffiffiffi
p
p

ð Þ
ðx

0
exp

ð2s2Þds leads to (12).
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B2. Periodic Point Source
Substituting this expression into (9) yields

T5
E=ðqcÞ

8p3=2
ffiffiffiffiffi
DL
p

DT

ðt

0
sin ðxsÞ 1

ðt2sÞ3=2
exp 2

~x 21~y 2

4DTðt2sÞ2
ð~z2Vðt2sÞÞ2

4DLðt2sÞ

" #
ds: (B.6)

A change of the variable of integration, s05t2s, gives (after relabeling s0 7!s)

T5
E=ðqcÞ

8p3=2
ffiffiffiffiffi
DL
p

DT

ðt

0
sin ½xðt2sÞ	 1

s3=2
exp 2

~x 21~y 2

4DTs
2
ð~z2VsÞ2

4DLs

" #
ds: (B.7)

Recalling that sin ða2bÞ5sin acos b2sin bcos a leads to (13).
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