
J. Fluid Mech. (2020), vol. 901, A24. © The Author(s), 2020.
Published by Cambridge University Press

901 A24-1

doi:10.1017/jfm.2020.573

Solute dispersion in bifurcating networks

Robert A. Zimmerman1 and Daniel M. Tartakovsky2,†

1Los Alamos National Laboratory, Los Alamos, NM 87545, USA
2Department of Energy Resources Engineering, Stanford University, 367 Panama Street, Stanford,

CA 94305, USA

(Received 6 March 2020; revised 26 May 2020; accepted 6 July 2020)

Advective–diffusive transport of passive scalars in confined environments (e.g. vessels
and channels) within a network is of fundamental importance in a plethora of biological
and geophysical phenomena. We conduct a leading-order analysis, consistent with the
theory of hydrodynamic dispersion, which averages out the radial variability within a
vessel. One-dimensional solutions for individual vessels (edges of a network), obtained
for arbitrary (undefined) transient Dirichlet boundary conditions, serve as a building block
for a network model. A network transport solution is developed by iteratively linking
single-vessel solutions to each other in a bifurcating fractal tree model, i.e. at nodes of
the network. We find transport behaviour to be strongly affected by the network geometry
and daughter vessels to significantly impact the rate of transport in the upstream parent
vessels.
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1. Introduction

Advective–diffusive transport in networks is ubiquitous in natural and engineered
systems. These include geophysical phenomena such as heat transfer (Gisladottir, Roubinet
& Tartakovsky 2016) and solute transport (Roubinet, de Dreuzy & Tartakovsky 2013) in
fractured rocks, and transport of metabolically critical substances through networks of
tubes or channels contained in most multicellular organisms. Examples of the latter are
transport in xylem and phloem networks (Minamino & Tateno 2014), floral networks
(Young, Evert & Eschrich 1973; McCulloh, Sperry & Adler 2003; Sack & Holbrook
2006) and fungal networks (Jennings 1987; Cairney 1992); oxygen transport through
the cardiovascular system (Goldman & Popel 2000; Beard & Bassingthwaighte 2001;
Goldman 2008); and drug delivery (Shipley & Chapman 2010).

The cardiovascular system is an intricate and complex network of blood vessels
with a wide range of geometries and rheological flow properties. For example, whole
blood, which is a composition of plasma and suspended particles (e.g. erythrocytes
and leukocytes), is a non-Newtonian fluid that behaves as a Newtonian fluid in large
(relative to erythrocyte diameter) blood vessels (Hellums et al. 1995; Sriram, Intaglietta
& Tartakovsky 2014a). High-fidelity three-dimensional analyses of such a network
are extraordinarily complex and computationally expensive (Olufsen 1999). However,
subsections of the cardiovascular network approximately propagate in fractal patterns
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(Olufsen 1999), which facilitates modelling efforts. Furthermore, higher-dimensional
solutions for a single blood vessel seldom provide significantly more information to
network transport problems than one-dimensional models.

For a one-dimensional solution to the advection–dispersion equation in a finite-length
vessel to serve as a building block in a network model, it must handle arbitrary transient
Dirichlet boundary conditions at the vessel’s inlet and outlet. Previous models have used
semi-infinite solutions to describe transport in vessels embedded in networks (Gentile,
Ferrari & Decuzzi 2008). The semi-infinite assumption for transport in embedded
vessels does not account for the impedance incurred in the vessel’s outlet due to
diminishing diameters in downstream vessels. Instead, our analysis relies on a closed-form
Laplace-transformed analytical solution to the advection–dispersion equation in a bounded
domain, and on its numerical inversion. This solution, written for each vessel in a network,
is coupled at the network’s edges by enforcing the continuity of mass and momentum, i.e.
the continuity of solute concentration and mass flux between the adjacent vessels.

This strategy is applicable to two popular network types. The first is a lattice network,
which is widely used in studies of natural porous media (Roubinet et al. 2013; Gisladottir
et al. 2016). Lattice-like structures allow flow to conjoin and bifurcate throughout the
entire network (Bruderer & Bernabé 2001); these models might be appropriate for
transport through organic tissue similar to the cardiovascular capillary bed (Beard &
Bassingthwaighte 2000, 2001). The second type is a bifurcating fractal network, such as
the arterial tree in the cardiovascular system (Olufsen 1999; Olufsen et al. 2000; Cousins
& Gremaud 2012; Cousins, Gremaud & Tartakovsky 2013). An analytical treatment
of the flow in such networks, which accounts for outflow boundary effects due to a
downstream bifurcating network, was developed by Cousins & Gremaud (2012) and
Cousins et al. (2013). In the context of transport in fungal structures, Heaton et al.
(2012a,b) provided a nodal solution in Laplace space. The latter model assumes a linear
concentration distribution between the nodes and thus does not give a rigorous description
of concentration distribution along network edges. We develop an edge-wise solution,
which overcomes this simplification by treating the nodal concentrations as the outlet and
inlet boundary conditions for the finite-length vessel solutions.

Section 2 contains a formulation of the fractal tree model, and collates our modelling
assumptions. In § 3 we present solutions to the one-dimensional advection–dispersion
transport equations in finite and semi-infinite vessels. These solutions are assembled
together in § 4 to describe hydrodynamic dispersion of passive solutes in fractal bifurcating
networks. Section 5 presents the results of the network model for sinusoidal and
constant inlet network boundary conditions. Major conclusion drawn from our study are
summarized in § 6.

2. A network model

We consider dispersion of a passive scalar by an incompressible Newtonian fluid flowing
through a bifurcating network. Our network choice is motivated by the cardiovascular
system comprising a wide variety of vessels (table 1), whose diameter ranges from 8 μm
to 10 mm (Zamir 1988; Adam 2011). Because blood consists of particles (in particular,
erythrocytes and leukocytes) suspended in plasma, its rheological behaviour changes as
it transits through the cardiovascular network from larger to smaller vessels due to the
Fahraeus–Lindqvist effect (Pries et al. 1990; Sriram et al. 2014a). This phenomenon
significantly affects radial transport through vessel walls and the flow profile. However,
our analysis treats vessel walls as impermeable. Changes in viscosity, affecting the flow
velocity profile, do not significantly change the average density of blood in vessels with
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Level Vessel description No. of vessels L (cm) 2a (mm) λ α

1 aorta 1 40 10 0.0125 —
2 large arteries 40 20 3 0.075 0.3
3 main branches 600 10 1 0.005 0.33
4 secondary branches 1.8 × 103 4 0.6 0.0075 0.6
5 tertiary branches 7.6 × 104 1.4 0.14 0.005 0.233
6 terminal arteries 106 0.1 0.05 0.025 0.357
7 terminal branches 1.3 × 107 0.15 0.03 0.01 0.600
8 arterioles 4 × 107 0.2 0.02 0.005 0.666
9 capillaries 1.2 × 109 0.1 0.008 0.004 0.4

TABLE 1. Dimensions of the cardiovascular vessels (Zamir 1988; Adam 2011). Here, λ = a/L is
the ratio between the radius (a) and length (L) of a vessel; and α = ad/ap is the ratio between
the radii of the daughter (ad) and parent (ap) vessels.

diameter larger than 15 μm (Hellums et al. 1995; Sriram et al. 2014a, and the references
therein) and, with some reservations, as small as 8 μm (Goldman 2008). We restrict our
analysis to vessels with diameter greater than 13.8 μm.

In large vessels of the cardiovascular network, flow is as periodic as the beating of the
heart. In large arteries, flow is variable along the length of an artery as the vessel diameter
tapers. Transport in such arteries must be modelled individually (Olufsen 1999), as the
geometry of the vessel and elasticity of the vessel wall have significant impacts on the
pattern of fluid flow. However, further downstream, in the arteriolar tree, flow becomes
steady (Green 1944; Sarpkaya 1966). These vessels, tertiary branches to arterioles, are a
part of the arteriolar network that may be modelled as a fractal tree (Olufsen 1999; Olufsen
et al. 2000; Cousins & Gremaud 2012; Cousins et al. 2013). Based on the preceding
discussion, we make the following assumptions about flow in the arteriolar tree:

(i) blood flow in arterioles behaves as a Newtonian fluid (Lee & Fung 1971;
Zimmerman et al. 2019);

(ii) the vessels are modelled as straight cylinders with rigid walls;
(iii) flow in arterioles is characterized by low Reynold’s numbers and, as such, exhibits

a laminar Poiseuille profile (Green 1944; Sarpkaya 1966); and
(iv) the arteriolar vessels are far downstream from the heart and the flow is well mixed

(i.e. axial variations are negligible) and steady (Womersley 1955; Lee & Fung 1971).

2.1. Fractal model of the arteriolar network
Following Olufsen (1999) and others, we adopt a fractal model of the arteriolar network
in which each parent vessel of radius a bifurcates into two smaller daughter vessels.
Each vessel generation bifurcates until a minimum radius amin is reached at the terminal
daughter vessels. Murray’s law states that the fractal arteriolar tree satisfies the principle
of minimum work (Uylings 1977). It gives rise to a relationship between the radii of the
parent (ap) and daughter (ad1 and ad2 ) vessels,

aζp = aζd1
+ aζd2

. (2.1)

The exponent ζ is estimated to be ζ = 2.76 in the human cardiovascular system (Olufsen
1999).
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Let α1 and α2 denote the ratios between the radii of the daughter vessels and the radius
of the parent vessel,

ad1 = α1ap, ad2 = α2ap. (2.2a,b)

It follows from (2.1) and (2.2a,b) that

α1 = (1 + ψζ )−1/ζ , α2 = ψα1, ψ = ad2/ad1 . (2.3a–c)

To simplify the presentation, we consider symmetric bifurcations, i.e. set the asymmetry
ratio to ψ = 1, so that α1 = α2 ≡ α = 2−1/ζ . The fractal behaviour means that the
parent–daughter scaling (2.2a,b) holds across all the generations,

ak+1

ak
= α = 2−1/ζ , (2.4)

where k denotes the vessel generation.

2.2. Flow in fractal arteriolar networks
A relation for the flow velocities in the parent and daughter vessels is derived from the
continuity equation. The mass flow rate, ṁk, in a vessel of kth generation is given by

ṁk = π

4
ρa2

kvk, (2.5)

where ρ is the fluid density and v is the average flow speed (Darcy flux). For symmetrically
bifurcating trees, mass continuity yields

ṁk = 2ṁk+1. (2.6)

We treat the fluid density ρ as constant throughout the entire arteriolar tree under
consideration, because variations in density due to the Fahraeus–Lindqvist effect are
minimal (Pries et al. 1990; Sriram et al. 2014a). Combining (2.4)–(2.6), we obtain the
relationship for flow speed in two adjacent generations,

vk+1 = vk

2α2
. (2.7)

3. Solute transport in individual vessels

Analytical solutions presented in this section express the concentration distribution
within an individual vessel in terms of the (unknown, time-varying) nodal concentrations.
The vessel’s length and radius are L and a, respectively.

3.1. Problem formulation
Following Fung & Tang (1975) and Berg et al. (2020) among many others, we assume that
solute concentration in a single vessel, C(x, r, t), satisfies an advection–diffusion equation,

∂C
∂t

= Dm

[
1
r
∂

∂r

(
r
∂C
∂r

)
+ ∂2C
∂x2

]
− u(r)

∂C
∂x
, (3.1)

where x ∈ (0, L) and r ∈ (0, a) are the axial and radial coordinates, respectively; t > 0 is
time; u(r) is the flow velocity given by the Poiseuille law; and Dm is the coefficient of
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molecular diffusion. This equation is subject to initial and boundary conditions

C(x, r, 0) = cin, C(0, r, t) = c0(t), C(L, r, t) = cL(t),

C(x, 0, t) < ∞,
∂C
∂r
(x, a, t) = 0.

⎫⎬
⎭ (3.2a–e)

The last condition implies that vessel walls are impermeable to the solute. With the
important caveats described in the Introduction, this assumption renders the results
presented below relevant to such applications as targeted drug delivery (Shaw & Murthy
2010); transport of some contrast agents used for in vivo molecular neuroimaging
(Koffie et al. 2011); and dispersion of large molecules such as PEG-haemoglobin and
PEG-albumin proposed for use as blood substitutes (Cabrales et al. 2005) or high
molecular weight hydroxyethyl starches used as plasma expanders (Dailey et al. 2005).
In these and other similar applications, the initial condition in (3.2a–e) represents a
step concentration increase at the onset of an intervention. Finally, the imposition of the
Dirichlet boundary conditions at the vessel’s inlet and outlet facilitates the use of the
solution to (3.1)–(3.2a–e) as a building block for the network solution developed in § 4.

For solutes that permeate vessel walls, the analytical solution of Zimmerman, Severino
& Tartakovsky (2018) can replace the solution to (3.1)–(3.2a–e) in the construction of the
network solution.

3.2. Advection–dispersion equation
For physiologically relevant conditions, a � L and the radial dependence of solute
concentration plays an insignificant role in the solute migration through the network.
Therefore, we are interested in the dynamics of cross-sectionally averaged concentration

Cav(x, t) = 2
a2

∫ a

0
C(x, r, t)r dr. (3.3)

The latter satisfies an advection–dispersion equation (Aris 1956)

∂Cav

∂t
= D

∂2Cav

∂x2
− v

∂Cav

∂x
, v ≡ 2

a2

∫ a

0
u(r)r dr, D = Dm + v2a2

192Dm
. (3.4a–c)

This equation is subject to the initial and boundary conditions

Cav(x, 0) = cin, Cav(0, t) = c0(t), Cav(L, t) = cL(t). (3.5a–c)

Let Lc, vc, Dc and cc denote the maximum values of the vessel length, Darcy velocity,
dispersion coefficient and solute concentration in the network, respectively. We define
dimensionless independent and dependent quantities,

t̄ = tD
L2

c

, x̄ = x

Lc
, L̄ = L

Lc
, v̄ = v

vc
, D̄ = D

Dc
, Pe = vcLc

Dc
,

C̄av = Cav

cc
, c̄in(x̄) = cin(x̄)

cc
, c̄L(t̄) = cL(t̄)

cc
, c̄0(t̄) = c0(t̄)

cc
.

⎫⎪⎪⎬
⎪⎪⎭

(3.6a–j)

A dimensionless form of (3.4a–c) and (3.5a–c) takes the form

∂C̄av

∂ t̄
= D̄

∂2C̄av

∂ x̄2
− Pe v̄

∂C̄av

∂ x̄
, x̄ ∈ (0, L̄), t̄ > 0, (3.7)
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with

C̄av(x̄, 0) = c̄in, C̄av(0, t̄) = c̄0(t̄), C̄av(L̄, t̄) = c̄L(t̄). (3.8a–c)

In the remainder of this study we utilize the dimensionless quantities but drop the bar ¯ to
simplify the notation.

3.3. Concentration distributions within a single vessel
We show in appendix A that the Laplace-transformed solution of (3.7) and (3.8a–c) is

Ĉav(x, s) = eγ x sinh[(L − x)Γ ]ĉ0(s)+ e−γL sinh(xΓ )ĉL(s)
sinh(LΓ )

+ 2Dcin

L
eγ x

∞∑
n=0

ωn
(−1)ne−γ x − 1
βn(s − βn)

sin(ωnx), (3.9a)

where, for any function g(t), ĝ(s) = ∫ ∞
0 g(t) exp(−st) dt denotes its Laplace transform;

and

βn = −D(ω2
n + γ 2), γ = Pe v

2D
, ωn = nπ

L
, Γ =

√
s
D

+ γ 2. (3.9b)

A benefit of working with the Laplace-transformed solution is its locality with respect
to the Laplace-transformed inlet (ĉ0) and outlet (ĉL) boundary concentrations. That is
in contrast to the non-local solution in the time domain, which c0(t) and cL(t) enter as
convolutions. This feature becomes useful in building a network solution.

3.3.1. Steady-state solution
If the boundary concentrations c0(t) and cL(t) have finite values at t → ∞, then the

steady-state solute concentration, Css
av(x) is obtained from (3.9) by using the final value

theorem, Css
av(x) = lims→0 s Ĉav(x, s),

Css
av(x) = eγ x sinh[(L − x)γ ]c0(∞)+ e−γL sinh(γ x)cL(∞)

sinh(γL)
. (3.10)

3.3.2. Solution for a semi-infinite vessel
Cousins et al. (2013) assumed that the impedance at the network exit (i.e. at the end of

the terminal arteriolar vessels) is negligible and that the network empties into an infinite
reservoir, which represents the capillary microcirculation. One can model such an infinite
reservoir as a semi-infinite vessel of the same diameter as the parent vessel, which would
impose no resistance to the mass flow. The Laplace-transformed concentration profile in
the semi-infinite vessel is (appendix A.3),

Ĉ∞
av(x, s) =

(
ĉ0(s)− cin

s

)
exp

((
γ −

√
γ 2 + s/D

)
x
)

+ cin

s
. (3.11)
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4. Solute transport in bifurcating networks

The finite-length solution (3.9) describes transport along a kth generation vessel
of a network, where the daughter-vessel inlet concentration c0,k+1(t) is imposed by
the parent-vessel outlet concentration cL,k(t). Additionally, the daughter-vessel outlet
condition is affected by the downstream impedance incurred from subsequent daughter
vessels. The outlet condition in the terminal arterioles of the network may be unknown,
but can be modelled by unimpeded flow into a large medium (Cousins & Gremaud 2012;
Cousins et al. 2013). We describe this situation with the semi-infinite solution (3.11) for a
vessel of the same diameter as the terminal vessels.

A nodal solution for transport throughout the tree, evaluated at bifurcation junctions,
is developed by combining the tree model and the Laplace-transformed single-vessel
solutions. Continuity of mass (concentration) and momentum (mass flux) is enforced at
the junctions between a parent-vessel outlet and the respective daughter-vessel inlets.

4.1. Continuity conditions at network nodes
At each bifurcation point (node) in the kth generation of the network, continuity of mass
and momentum imposes conditions

Ĉav,k(Lk, s) = Ĉav,k+1(0, s), (4.1)

AkĴk(Lk, s) =
2∑

m=1

Ak+1,mĴk+1,m(0, s), (4.2)

respectively. Here Ak = πa2
k is the cross-sectional area of the kth generation vessel,

m identifies the daughter vessel branching from the parent vessel, and Jk is the
advective–dispersive mass flux across the kth interface,

Jk(x, t) = PekvkCav,k(x, t)− Dk∇Cav,k(x, t). (4.3)

For fractal networks, (4.2) simplifies to

Ĵk(Lk, s) =
2∑

m=1

α2
mĴk+1,m(0, s), αm = ak+1,m

ak
. (4.4)

4.2. Transport in symmetrically bifurcating networks
For symmetrically bifurcating networks, the continuity conditions (4.1) and (4.2) become

ĉL,k(s) = ĉ0,k+1,m(s) and Ĵk(Lk, s) = 2α2Ĵk+1(0, s), (4.5a)

where

Ĵk(Lk, s) = PekvkĉL,k(s)− Dk
∂Ĉav,k(L, s)

∂x
,

Ĵk+1(0, s) = Pek+1vk+1ĉ0,k(s)− Dk+1
∂Ĉav,k+1(0, s)

∂x
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.5b)

Let φ denote the nodal concentrations, such that φk is the parent-vessel inlet concentration,
φk+1 is the concentration at the parent-vessel to daughter-vessel interface, and φk+2 is the
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daughter-vessel outlet concentration

φ̂k = ĉ0,k, φ̂k+1 = ĉL,k = ĉ0,k+1, φ̂k+2 = ĉL,k+1. (4.6a–c)

If the network consists of Ngen generations of vessels, then the finite vessel length solution
(3.9) and the flux continuity in (4.5) give rise to a linear system of Ngen − 1 equations for
the nodal concentrations,

Akφ̂k + Bkφ̂k+1 + Fk+1φ̂k+2 = Ek, k = 1, . . . ,Ngen, (4.7a)

where

Ak = DkΓkeγkLk

sinh(ΓkLk)
,

Bk = Dk
[
γk − Γk coth(ΓkLk)

] − 2α2Dk+1
[
γk+1 + Γk+1 coth(Γk+1Lk+1)

]
,

Ek =
∞∑

n=0

k+1∑
j=k

2ω2
j
(2α2)j−kcin,j

Ljβj,n(s − βj,n)

[
1 − (−1)n exp

(
(−1)j−kγjLj

)]
,

Fk = 2α2 exp (−γkLk)DkΓk

sinh(ΓkLk)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.7b)

Since φ1 and φNgen+1 are known boundary functions, this system has Ngen − 1 unknowns
φ̂2, . . . , φ̂Ngen . It is arranged in the form of a tridiagonal matrix for each value of s,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1 F2 0 0 0 · · · 0
A2 B2 F3 0 0 · · · 0
0 A3 B3 F4 0 · · · 0
0 0 A4 B4 F5 · · · 0
...

...
. . .

. . .
. . .

...

0 0 0 · · · ANgen−2 BNgen−2 FNgen−1

0 0 0 · · · 0 ANgen−1 BNgen−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ̂2

φ̂3

φ̂4

φ̂5

φ̂6

...

φ̂Ngen

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1 − A1φ̂1

E2

E3

E4

E5

...

ENgen−1 − FNgen φ̂Ngen+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.8)
and solved using the Thomas algorithm (Datta 2010).

If a network of finite-length vessels ends with a set of semi-infinite vessels at its last
generation to incorporate the outflow condition, then

ANgen−1 = DNgen−1ΓNgen−1

sinh(ΓNgen−1LNgen−1)
exp

(
γNgen−1LNgen−1

)
,

BNgen−1 = DNgen−1[γNgen−1 − ΓNgen−1 coth(ΓNgen−1LNgen−1)] − 2α2(UNgen − DNgen�),

ENgen−1 = −α
2cin,Ngen

s
� − 2ω2

Ngen−1LNgen−1cin,Ngen−1

∞∑
n=0

1 − (−1)n exp
(
γNgen−1LNgen−1

)
βNgen−1,n(s − βNgen−1,n)

,

FNgen = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.9)
where � = γNgen −

√
γ 2

Ngen
+ s/DNgen .
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5. Simulation results

5.1. Solute transport in a single vessel
Distinct regimes of dispersive transport in a vessel are characterized by the Péclet number
Pe = vcLc/Dc, the ratio of the advective and dispersive time scales. Figure 1 exhibits
temporal snapshots of concentration profiles Cav/c0 for Pe = 0.01, 0.1, 1.0 and 10. Recall
that here and below all the quantities are dimensionless, as defined in (3.6a–j). The profiles
for Pe < 1 are similar because dispersion (spreading of the front) dominates advection
(translation of the front). The dispersive forces, therefore, drive the vessel saturation rate
and small changes in the advective forces are not visible. As the Péclet number exceeds 1,
the transport front becomes steeper, reflecting the increase in advective strength.

The numerical error in our solution can stem only from numerical inversion of the
Laplace transforms, which we have carried out with the DeHoog algorithm implemented
by Hollenbeck (1998). Any numerical inversion algorithm loses accuracy near asymptotes,
at early (large s) and late (small s) times. The errors emerge as a result of numerical
roundoff while performing operations with very large or small numbers (small s
correspond to large t, and vice versa). Additionally, they can vary with Pe (Zimmerman,
Jankowski & Tartakovsky 2016). These errors can be controlled either numerically by
using systems/software that can handle larger floating point operations or analytically
by evaluating the inverse Laplace transforms for small and large s, as is done in (3.10).
Figure 1 demonstrates the agreement between the analytical solution for Cav(x, t) and its
counterpart obtained by numerical inversion of the Laplace transform Ĉav(x, s), for all
values of Pe considered.

5.2. Model verification
The data indicate that the ratio between vessel radius and vessel length is similar for
both small and large vessels in the arteriolar network. We therefore assume that, in each
generation k, the length (Lk) and radius (ak) of each vessel differ by the same constant (λ),

Lk = ak

λ
, 0 < λ < 1. (5.1)

To verify our network solution (4.8), we consider a network that is functionally
equivalent to a single vessel. The network consists of Ngen = 100 generations and has the
same total length Lnet as the single vessel, Lnet = L = 1. Since the total network length is

Lnet =
Ngen∑
k=1

Lk =
Ngen∑
k=1

ak

λ
, (5.2)

it follows from (2.4) that all vessels in the network have the aspect ratio

λ = a1

Lnet

η∑
k=1

αk−1. (5.3)

The total cross-sectional area of each generation’s vessel in the symmetrically bifurcating
network is kept constant by choosing α = 1/

√
2. According to (2.7), this also ensures

that the average flow velocity remains the same across all generations, vk = vk+1.
The dispersion coefficient changes with velocity and vessel radius, in accordance with
(3.4a–c). To facilitate verification of the semi-analytical network solution against the
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FIGURE 1. Temporal snapshots of the normalized concentration profiles, Cav(x, t)/c0, along
the vessel, 0 ≤ x ≤ 1, for several values of the Péclet number, Pe. The profiles are computed,
alternatively, with the analytical solution provided in appendix A (solid lines) and its counterpart
obtained by numerical inversion of (3.9). The input concentrations are normalized with c0, such
that cL/c0 = 0.4 and cin/c0 = 0.1. The network parameters are set to Ngen = 100 and λ = 0.1.
(a) Pe = 0.01. (b) Pe = 0.1. (c) Pe = 1. (d) Pe = 10.

analytical single-vessel solution, we use the constant dispersion coefficient for all vessel
generations, Dk = Dk+1. Transport in the network thus constructed should behave as
though it were taking place in a single vessel of equivalent length and cross-sectional
area. It is worthwhile emphasizing that this network does not represent the arterial tree; it
merely serves to verify our network solution (4.8).

By construction, the concentration profiles are identical to those in figure 1. The relative
error between the network solution (4.8) and the single-vessel solution (3.9), ε(x, t) =
(Cnetwork − Csingle)/Csingle, is displayed in figure 2 for several values of the network Péclet
number Penet = vcLtot/Dc. For all the scenarios considered, the error does not exceed
0.12 %. It decreases with both time t and Pe.

5.3. Analysis of a representative arteriolar network
A rigorous model of the human cardiovascular system should account for uneven
bifurcation between parent and daughter vessels. The latter would require a solution for
the impedance and pressure profiles of the network (Cousins & Gremaud 2012), as well
as the changes in viscosity due to the Fahraeus–Lindqvist effect (Sriram et al. 2014a). We
present a methodology for deriving such a generalized model. Additionally, the dynamics
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FIGURE 2. Relative error of the network solution. The model parameters are set to Ngen = 100,
λ = 0.1, cL/c0 = 0.4 and cin/c0 = 0.1. (a) Pe = 0.01. (b) Pe = 0.1. (c) Pe = 1. (d) Pe = 10.

of an evenly bifurcating network may inform the choice of more complex models. To
demonstrate the transport behaviour in the evenly bifurcating arteriolar network, we
consider two cases: a constant inlet and single-pulse inlet flow. The first utilizes a constant
inlet boundary condition with no initial concentration to illustrate the development of a
steady-state flow. The second implements a step function at the inlet boundary with no
initial concentration to represent a single pulse of solute transiting through the network. In
both cases, the unimpeded outflow boundary condition is imposed at the network exit, i.e.
the vessel exit empties into a semi-infinite vessel of the same diameter.

Table 1 collates the vessel geometric characteristics found throughout the human arterial
vasculature. Our network model is built from the arteriolar parameters presented in
table 2. For the exponent ζ = 2.76, representative of the human cardiovascular system
(Olufsen 1999), (2.4) predicts the daughter-to-parent radius ratio α = 0.778. (This value is
slightly above the values reported in table 2, which can be attributed to our choice of the
symmetrical branching.) We set λ = 0.005, which is the median value of those reported
in table 2 and is in agreement with its counterpart for the arteriolar vessels in table 1.

The flow rate and vessel radius in the first arteriolar vessel generation (k = 1) is selected
from table 2 to be v1 = 10 mm s−1 and a1 = 40 μm, respectively. The corresponding
diffusion coefficient is chosen as Dm = 10−4 mm2 s−1. We select the minimum vessel
radius amin = 8 μm, below which our arteriolar network is terminated and the unimpeded
outflow condition is imposed. When used in conjunction with the fractal model of § 2,

https://doi.org/10.1017/jfm.2020.573
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


901 A24-12 R. A. Zimmerman and D. M. Tartakovsky

Level v (cm s−1) L (cm) a (cm) α λ

1 0.97 1.2 0.004 — 0.0033
2 0.62 0.6 0.0025 0.625 0.0042
3 0.39 0.2 0.0015 0.600 0.0075
4 0.22 0.1 0.00075 0.500 0.0075

TABLE 2. Dimensions of, and flow velocity in, vessels of the arteriolar network (Popel & Gross
1979). Here, λ = a/L is the ratio between the radius (a) and length (L) of a vessel; and α = ad/ap
is the ratio between the radii of the daughter (ad) and parent (ap) vessels.
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FIGURE 3. Temporal snapshots of the normalized concentration profiles, Cav(x, t)/c0, along
the length of the network with constant inlet concentration c0 and initial concentration cin = 0.
The parameter values are set to λ = 0.005, α = 0.778, a1 = 0.04 mm, u1 = 10 mm s−1 and
Dm = 10−4 mm2 s.

these vessel geometries and parameters result in a symmetrically bifurcating arteriolar
tree with Ngen = 8 generations and aNgen = 6.9 μm.

Figure 3 shows the propagation of the concentration front in the described arteriolar tree
with zero initial concentration, cin = 0, a fixed inlet concentration, c0, and the unimpeded
outflow condition (4.9). The Péclet numbers observed in the arteriolar network are large,
leading to the sharp concentration front at all times. At early times, the front develops its
shape and widens. As the concentration front transits to the downstream vessels, the Péclet
number of the daughter generations decreases, because α > 1/

√
2, and so the collective

cross-sectional area of each generation is greater than that of the parent generation. In a
single vessel with constant cross-sectional area, a decrease in the Péclet number results
in the dispersion phenomenon having a greater effect on the transport front of the solute.
This can be inferred from the flow regime comparisons in figure 1. A lower Péclet number
results in a more gradual concentration front when comparing vessels of similar geometry.
Counterintuitively, the network presented in figure 3 has a concentration front that steepens
as it transits toward the network exit. This phenomenon is due to reduced velocity of flow
in each successive generation, which causes the concentration front to ‘bunch up’ similar
to a traffic jam. As will be seen shortly, this effect is more pronounced with the single
pulse inlet boundary condition.
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FIGURE 4. Temporal snapshots of the normalized concentration profiles, Cav(x, t)/A, along
the length of the network with initial concentration cin = 0 and the pulse inlet concentration
(5.4). The parameter values are set to λ = 0.005, α = 0.778, a1 = 0.04 mm, u1 = 10 mm s−1

and Dm = 10−4 mm2 s−1.

The second case is defined by a single pulse inlet boundary condition, zero initial
concentration and the unimpeded flow boundary condition at the vessel exit. The pulse
inlet boundary condition is a step function given by the relation

c0(t) = A[H(t − t1)− H(t − t2)]. (5.4)

Here, t1 and t2 are the times at which the pulse starts and ends, A is the concentration of
the pulse and H(·) is the Heaviside step function. The Laplace transform of (5.4) is

ĉ0(s) = A
s

[
e−t1s − e−t2s

]
. (5.5)

Figure 4 shows a one-second pulse introduced at the network’s entrance. The network
used in this case is geometrically and physiologically consistent with the constant inlet
boundary condition case described in figure 3. The regime that resulted in the steepening
of the transport front in figure 3 is also observable in figure 4. However, now, the
trailing edge of the pulse ‘catches up’ with its leading edge, illustrating the traffic jam
behaviour. At first glance, the solute appears to be lost because the area under the curve
decreases as the pulse transits down the network. This phenomenon is due to the increase
in cross-sectional area of each successive vessel generation as the pulse moves towards
the network exit. Conversely, networks with α < 1/

√
2 induce transport fronts to grow

wider as the Péclet number increases and the total cross-sectional area decreases with
each successive generation.

6. Conclusions

We developed an analytical model for advection–dispersion transport in a fractal
bifurcating network. The solution was evaluated for the values of geometric and
topological parameters relevant to the human arteriolar vasculature. The accuracy of our
solution, i.e. the errors associated with numerical inversion of Laplace transforms, was
investigated over the physiologically relevant range of the parameter values.

Our analysis revealed that solute transport through an evenly bifurcating network
is controlled, to a large extent, by the ratio (α) between the radii of the daughter

https://doi.org/10.1017/jfm.2020.573
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


901 A24-14 R. A. Zimmerman and D. M. Tartakovsky

and parent vessels. Specifically, α = 1/
√

2 identifies an inflection point at which the
transport behaviour changes. A network with α > 1/

√
2 gives rise to a transport front that

bunches up from a linear perspective of the vascular network. A network with α = 1/
√

2
corresponds to Da Vinci’s law, according to which the cross-sectional area of a parent tree
branch (or tree trunk) is equal to the total cross-sectional area of the daughter branches;
this regime is applicable to transport in xylem (Minamino & Tateno 2014). Networks with
α < 1/

√
2 induce transport fronts to widen as the Péclet number increases and the total

cross-sectional area decreases with each successive generation.
To focus on the effects of network topology on transport characteristics, we neglected

many key features of transport in microcirculation such as a lattice-like structure of the
capillary bed, radial transport through vessel walls, and non-Newtonian behaviour of
blood in small vessels. In this sense, the relevance of our model to microcirculation
comes with important caveats. It should be used as an abstracted representation of
solute transport in the arteriolar network just upstream of the capillary bed, where the
network exhibits fractal bifurcation patterns. Our single-vessel solutions can be replaced
with the solutions of Zimmerman et al. (2018) to account for diffusive losses through
the vessel wall. They can be generalized further by replacing the Hagen–Poiseuille
profile characteristic of Newtonian fluids with its counterparts resulting from the
two-phase Newtonian (Sriram et al. 2012) or non-Newtonian (Sriram, Intaglietta &
Tartakovsky 2014b) models of blood in microcirculation. Finally, one can follow Cousins
& Gremaud (2012) to accommodate asymmetric bifurcations at each vessel junction, and
Sriram et al. (2014a) to account for viscosity changes due to the Fahraeus–Lindqvist
effect.

Our results are also applicable to transport in a variety of other environments such
as nutrient transport in floral structures (Mäkelä 2002), fungal networks (Heaton et al.
2012b) and drug delivery (Shipley & Chapman 2010). Our model can be extended
to networks with more than two daughter vessels branching per junction. Small
modifications to the branching parameters, can describe a wide variety of other fractal
networks.
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Appendix A. Derivation of single-vessel solutions

We use the Green’s function method to derive an analytical solution to (3.7) and
(3.8a–c), and the Laplace transformation to obtain its counterpart for a semi-infinite vessel.

A.1. Greens’ function for advection–dispersion equation
The Green’s function in (3.7) and (3.8a–c), G(x, ξ, t − τ), satisfies an adjoint equation

∂G
∂τ

= D
∂2G
∂ξ 2

− Pe v
∂G
∂ξ

+ δ(x − ξ)δ(t − τ), x, ξ ∈ (0, L), t > τ > 0; (A 1)
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subject to homogeneous initial and boundary conditions

G(x, t; ξ, 0) = 0, G(x, t; 0, τ ) = 0, G(x, t; L, τ ) = 0, (A 2a–c)

where δ(·) is the Dirac delta function. The solution of this boundary-value problem is

G(x, ξ, t − τ) = 2H(t − τ)

∞∑
n=0

exp (βn(t − τ)− γ (ξ − x)) sin(ωnx) sin(ωnξ), (A 3)

where H(·) is the Heaviside function; and the constants βn , γ and ωn are defined in (3.9b).

A.2. Solution to advection–dispersion equation
The solution to (3.7) and (3.8a–c) is written in terms of the Green’s function G(x, ξ,
t − τ) in (A 3) as

Cav(x, t) =
∫ L

0
cinG(x, ξ, t) dξ+

∫ t

0

[
c0(τ )

∂G
∂ξ
(x, 0, t − τ)− cL(τ )

∂G
∂ξ
(x, L, t − τ)

]
dτ.

(A 4)

For the spatially uniform initial concentration cin , substituting (A 3) into (A 4) and taking
the Laplace transformation of the resulting expression, we obtain

Ĉav(x, s) = 2D
L

eγ x
∞∑

n=0

ωn sin(ωnx)

s − βn

[
cin
(−1)ne−γL − 1

βn
+ ĉ0(s)− (−1)ne−γLĉL(s)

]
.

(A 5)
Since (Hansen 1975, equations (14.3.8) and (14.3.9))

∞∑
n=0

n

n2a2 + b2
sin(nX) = π

2a2

sinh[(π − X)b/a]
sinh(πb/a)

(A 6)

and

−
∞∑

n=0

(−1)nn

n2a2 + b2
sin(nX) = π

2a2

sinh(bX/a)
sinh(πb/a)

, (A 7)

(A 5) gives rise to (3.9).
Single-vessel solutions may be developed without the use of the Green’s function

method, as was done in the case of the semi-infinite vessel solution in § 3. In some cases
these other methods may even present a more concise derivation. The Green’s functions
are utilized here for the purpose of presenting a base on which higher-dimensional
solutions may be developed in future work. Specifically, the Green’s function for a
multi-dimensional advection–diffusion equation (e.g. in cylindrical coordinates) is given
by the product of the corresponding one-dimensional Green’s functions such as (A 3).

A.3. Solution for a semi-infinite vessel
In the case of a semi-infinite vessel, the domain of definition of (3.7), (0, L), is replaced
with (0,∞), and the last boundary condition in (3.8a–c) with Cav(∞, t) = cin .
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The Laplace transform of (3.7) is

sĈav(x, s)− cin = d2Ĉav(x, s)
dx2

− Pe v
D

dĈav(x, s)
dx

. (A 8)

A solution to this equation is a linear combination of homogeneous and particular
solutions,

Ĉav(x, s) = Ĉh(x, s)+ Ĉp(x, s). (A 9)

The former satisfies

sĈh(x, s) = d2Ĉh(x, s)
dx2

− Pe v
D

dĈh(x, s)
dx

(A 10)

and is given by

Ĉh(x, s) = a1eθ−x + a2eθ+x , θ± = γ ±
√
γ 2 + s/D. (A 11a,b)

A particular solution to (A 8), obtained either by direct inspection of (A 8) or with the
method of variation of parameters, is

Ĉp(x, s) = cin

s
. (A 12)

Accounting for the boundary conditions to compute the constants of integration a1 and a2,
we obtain (3.11).
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