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1. Introduction

Transient one-dimensional solutions for heat conduction in
composite media have been developed by several authors. Ozisik
[10] provides an extensive review of various solutions obtained
via Laplace transformations and Green’s functions to handle
transient problems, and the generalized orthogonal expansion
technique to solve homogeneous or steady state problems. Carslaw
and Jaeger [3] present solutions derived by means of the Laplace
transformation. Sun [11] and de Monte [9] derive solutions utiliz-
ing the eigenfunction expansion method. Huang [6] uses Green’s
functions to derive solutions for periodic boundary conditions. Dias
[5] presents a recursive method based on Green’s functions to
develop a solution. Beck et al. [2] develop a Galerkin-based
Green’s function method to analyze multidimensional problems.
Aviles-Ramos et al. [1] develop a two-layer composite heat
conduction solution with periodic boundary conditions using a
spectral method with an orthotropic layer to estimate thermo-
physical properties.

This work employs Laplace transforms to improve previous
solutions by solving problems with first-order reaction and source
terms in composite media with any number of layers, subject to
transient boundary conditions. The first-order reaction term in
mass transfer problems is equivalent to the heat generation term
in heat conduction problems. Transient boundary conditions of
the periodic form are of particular relevance to many problems
such as seasonal or diurnal temperature changes outside of a
structure. Another application is diffusion through fractured rock
[8]. The model developed here can be incorporated as a multi-
layered rock medium in the fracture matrix.

More recent work by Sun et al. [11] and de Monte [9] uses
eigenfunction expansions to derive nominally analytical solutions,
even though the eigenvalues must be calculated numerically and
the accuracy of the solution is improved by including more terms
in the eigenvalue calculation. The number of required terms in
the eigenfunction expansion method increases for small times
[11]. The eigenfunction method is advantageous for large-time
solutions, as Laplace transform solutions suffer numerical round
off for large time values. We overcome this disadvantage by
implementing the final value theorem, which produces an exact
steady-state solution in real space with no numerical calculation and
no need for eigenvalue calculation or increased term inclusion
for accuracy. Thus the solution presented here is both valid and
accurate for all times. The only exception to this is some intermediate-
time regimes characterized by large Damköhler numbers.

A unique advantage of the Laplace transform methods, as it is
applied to the current problem, is that the boundary conditions
can be isolated as a multiple of the rest of the solution rather than
as a component tied inside of an integral. This unique feature
allows for various types of boundary conditions to be easily incor-
porated into the problem. Isolation of the boundary conditions is
also useful for linking multiple solutions together in order to create
a composite solution. The difficulty often presented by the Laplace
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transform method is the transformation back to real space. Though
this inverse transformation can be done for each and every
potential boundary condition, this can be a tedious task in systems
with a large number of layers. Li et al. [7] presented an analytical
solution for a first-order reaction–diffusion problem in a two layer
slab, which does not consider arbitrary time-dependent boundary
conditions. Extension of this solution to an m-layered solution
(where m is any number of layers) is cumbersome. Our method
relies on the numerical inverse Laplace transform algorithm
developed by De Hoog [4] to handle the m-layered solution.
Though this presents a numerical finale to the solution, it yields
a very quick and accurate solution for a wide range of problems.

2. Methodology

2.1. The Model

The physical system models used in this paper are layered
pieces of material. For cylindrical and spherical coordinate prob-
lems the layers are concentric hollow circles or spheres. Fig. 1
depicts the problem in cylindrical coordinates. Each layer is num-
bered and has its own geometric and physical properties. The solu-
tion is robust enough to handle different layer thicknesses, as well
as varying diffusion and reaction coefficients and source terms.

A first-order reaction–diffusion equation is based on Fick’s law
with a first-order reaction term,

@C
@t

¼ Dr2C þ ðR þUÞC ð1Þ

where D is the diffusion coefficient,R is the first-order reaction rate
coefficient, and U is an unknown source term that is constant with
respect to time and space.

2.2. Non-dimensional form

The governing equation is transformed into its non-dimensional
form by defining the non-dimensional terms as

C ¼ C
Cc

; D ¼ D
Dc

; R ¼ R
Rc

; w ¼ U
Rc

n ¼ x
Lc

; q ¼ r
Lc

; s ¼ tDc

L2c

ð2Þ

where the subscript c denotes the characteristic value of the
relevant quantity. This transforms (1) into

@C
@s

¼ Dr2C þ DaðRþ wÞC ð3Þ
Fig. 1. A radial layered model.
where Da is the Damköhler number defined as

Da ¼ RcL
2
c

Dc
ð4Þ

andRc and Dc are the largest coefficients in the composite medium,
such that

0 6 D 6 1; 0 6 R 6 1; 0 6 w 6 1: ð5Þ
2.3. Laplace transform

The Laplace transform is defined as

f̂ ðsÞ ¼ Lðf ðsÞÞ ¼
Z 1

0
f ðsÞe�ssds: ð6Þ

It is used in this work for two primary reasons. First, it allows
the boundary condition to be a multiplying factor of the equation
describing the problem in Laplace space rather than being a
component of an integral in the governing equation. Second, it
significantly simplifies the derivation of the solution by reducing
the dimensionality of a PDE. Since

f̂ ðsÞ ¼ L @f ðsÞ
@s

� �
¼ sf̂ ðsÞ � f ð0Þ; ð7Þ

taking the Laplace transform of (3) yields

sĈ � C0 ¼ L Dr2C þ DaðRþ wÞC
� �

ð8Þ

where C0 ¼ C0=Cc is the initial condition.
The general Laplace space solutions in each coordinate system

(Cartesian, cylindrical, and spherical, respectively) are

Ĉ ¼ Aebn þ Be�bn þ C0=S ð9Þ
Ĉ ¼ AI0ðbqÞ þ BK0ðbqÞ þ C0=S ð10Þ

Ĉ ¼ A
e�bq

q
þ B

ebq

bq
þ C0

S ð11Þ

where S ¼ s� DaðRþ wÞ, b ¼ ffiffiffiffiffiffiffiffiffiS=Dp
and A and B are constants of

integration.
2.4. Special cases

There are three particular cases that are considered in this
model. The first is referred to as the finite Neumann case; it has
a flux (Neumann) boundary condition at one boundary and a
Dirichlet boundary condition at the other. The second is the finite
Dirichlet case, with a Dirichlet boundary condition at each bound-
ary. The third is the semi-infinite Dirichlet case, which produces
the same results regardless of whether a Neumann or Dirichlet
boundary condition is used at infinity. The cases are described in
more detail below. Let a and b be the boundaries of each layer
and /̂ denote the time-dependent boundary condition in the
Laplace space. Then,

1. Finite Neumann, the solution in the range a 6 n 6 b with
boundary conditions
@Ĉða; sÞ
@n

¼ /̂aðsÞ; Ĉðb; sÞ ¼ /̂bðsÞ: ð12Þ

2. Finite Dirichlet, the solution in the range a 6 n 6 b with bound-
ary conditions
Ĉða; sÞ ¼ /̂aðsÞ; Ĉðb; sÞ ¼ /̂bðsÞ: ð13Þ
3. Semi-infinite Dirichlet, the solution in the range a 6 n 6 1with

the boundary conditions
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Ĉða; sÞ ¼ /̂aðsÞ;

Ĉð1; sÞ ¼ C0

S or
@Ĉð1; sÞ

@n
¼ 0:

ð14Þ

In cylindrical and spherical coordinates the solid layer at the
origin uses the finite Neumann case with /̂aðsÞ ¼ 0. Typically it is
assumed that a < b but this can be ignored in order to accomplish
a wider breadth of possible combinations. For each coordinate
system and each boundary condition case the integration constant
AðsÞ and BðsÞ in (9)–(11) are given by

I. Cartesian
1. Finite Neumann
A ¼
/̂b � C0

S

� �
Eð2aþ bÞ þ /̂a

b Eðaþ 2bÞ
Eð2bÞ þ Eð2aÞ

B ¼
/̂b � C0

S

� �
EðbÞ � /̂a

b EðaÞ
Eð2bÞ þ Eð2aÞ ð15Þ
where EðxÞ � expð�bxÞ.
2. Finite Dirichlet
A ¼ /̂a � /̂bEða� bÞ þ C0
S Eða� bÞ � 1½ �

Eð�aÞ � Eða� 2bÞ

B ¼ /̂b � /̂aEða� bÞ þ C0
S Eða� bÞ � 1½ �

EðbÞ � Eð2a� bÞ ð16Þ
3. Semi-infinite Dirichlet
A ¼ 0; B ¼ /̂a � C0

S
� �

Eð�aÞ: ð17Þ
II. Cylindrical
1. Finite Neumann
A ¼ /̂b � C0

S
� �

K1ðbaÞ
BN

þ /̂a

b
K0ðbbÞ
BN

B ¼ /̂b � C0

S
� �

I1ðbaÞ
BN

� /̂a

b
I0ðbbÞ
BN

ð18Þ
where BN � K1ðbaÞI0ðbbÞ þ K0ðbbÞI1ðbaÞ.
2. Finite Dirichlet
A ¼ /̂b � C0

S
� �

K0ðbaÞ
BD

� /̂a � C0

S
� �

K0ðbbÞ
BD

B ¼ /̂a � C0

S
� �

I0ðbbÞ
BD

� /̂b � C0

S
� �

I0ðbaÞ
BD

ð19Þ
where BD � K0ðbaÞI0ðbbÞ � K0ðbbÞI0ðbaÞ.
3. Semi-infinite Dirichlet
A ¼ 0; B ¼ ð/̂a � C0=SÞ
K0ðbaÞ : ð20Þ
III. Spherical
1. Finite Neumann
A ¼
b /̂b � C0

S

� �
ðba� 1ÞEðb� aÞ � /̂aa2

ðbaþ 1ÞEðaÞ þ ðba� 1ÞEð2b� aÞ

B ¼ b
b /̂b � C0

S

� �
ðbaþ 1Þ þ /̂aa2Eðb� aÞ

ðbaþ 1ÞEð�bÞ þ ðba� 1ÞEðb� 2aÞ : ð21Þ
2. Finite Dirichlet
A ¼
a /̂a � C0

S

� �
� b /̂b � C0

S

� �
Eðb� aÞ

EðaÞ � Eð2b� aÞ

B ¼ b
b /̂b � C0

S

� �
EðbÞ � a /̂a � C0

S

� �
Eð2b� aÞ

1� Eð2b� 2aÞ :

ð22Þ
3. Semi-infinite Dirichlet
A ¼ a /̂a � C0

S
� �

Eð�aÞ; B ¼ 0: ð23Þ
2.5. Final value theorem

When the analytical inversion of our Laplace-transformed solu-
tions becomes unfeasible, we employ the numerical inversion with
the De Hoog algorithm [4]. This algorithm can introduce significant
numerical round-off errors for small values of the Laplace variable
s or, equivalently, large values of time s. For s! 1, we use the
final-value theorem,

lim
s!1

f ðsÞ ¼ lim
s!0

sf̂ ðsÞ; ð24Þ

to obtain a steady-state solution without computing the inverse
Laplace transform.

2.6. Composite solution

A composite solution is developed by linking together the
individual solutions (9)–(11). In order to connect the solution for
each layer to the next the appropriate case is selected that best
describes the boundary conditions for the layer(s) under consider-
ation. Each layer’s solution is then joined by enforcing the continu-
ity of both concentration and mass flux across interfaces between
layers. The continuity conditions for the ith interface are

Ĉiðbi; sÞ ¼ Ĉiþ1ðaiþ1; sÞ ð25Þ

Di
@Ĉiðbi; sÞ

@n
¼ Diþ1

@Ĉiþ1ðaiþ1; sÞ
@n

: ð26Þ

The problem is solved by developing a series of equations that
describe the transport between two layers. This procedure com-

prises the following steps. First, a general solution Ĉðn; sÞ for the
appropriate coordinate system is chosen from (9)–(11) for the

layers i and ðiþ 1Þ; Ĉiðn; sÞ and Ĉiþ1ðn; sÞ; the interfaces i ¼ 2; . . . ;g
are treated as Dirichlet boundaries, with (yet unknown) boundary
functions /̂iðsÞ prescribed at the ith interface. Second, boundary
conditions (25) and (26) at the interface n ¼ bi ¼ aiþ1 between

the layers i and ðiþ 1Þ are applied to Ĉiðn; sÞ and Ĉiþ1ðn; sÞ. This
yields an algebraic equation,

Ai/̂i þ Bi/̂iþ1 þ Fiþ1/̂iþ2 ¼ Ei; ð27Þ
which relates the interfacial concentration /̂iþ1 (at n ¼ bi ¼ aiþ1) to
its neighbors /̂i (at n ¼ ai) and /̂iþ2 (at n ¼ biþ1). The coefficients
Ai; Bi, and Fiþ1, as well as the free term Ei, are all functions of the
Laplace variable s and the spatial coordinate n. For g layers, i.e.,
for i ¼ 2; . . . ;g, (27) gives rise to a linear system of g� 1 equations,

H/̂ ¼ e; ð28Þ

for g� 1 unknowns /̂ ¼ ð/̂2; /̂3; . . . ; /̂gÞ>. Here H is a tridiagonal
matrix



Fig. 3. Dimensionless three-layer composite medium in the cylindrical coordinates
with the Solid (Neumann)-hollow-semi infinite case geometry. The layer interfaces
are at q ¼ 1:0 and q ¼ 2:0 with all layers confined to 0 6 n 6 1. The initial
concentration for the first layer in the region 0 6 n 6 1 is C0 ¼ 1:0. The Damköhler
number and dimensionless diffusion coefficient for each layer are Da ¼ 0 and
D ¼ ½1:0;0:2;0:4�.
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H ¼

B1 F2 0 0 0 � � � 0
A2 B2 F3 0 0 � � � 0
0 A3 B3 F4 0 � � � 0
0 0 A4 B4 F5 � � � 0

..

. ..
. . .

. . .
. . .

. ..
.

0 0 0 � � � Ag�2 Bg�2 Fg�1

0 0 0 � � � 0 Ag�1 Bg�1

2
6666666666664

3
7777777777775
;

and the vector e has components

e ¼ ðE1 � A1/̂1; E2; E3; . . . ; Eg�1 � Fg/̂gþ1Þ>;

with /̂1 and /̂gþ1 known from the system’s boundary conditions.
This system is solved with a Thomas algorithm to compute the
concentration /̂i at the i-th interface (i ¼ 2; . . . ;g).

Once the concentrations /̂ at each interface have been com-
puted in Laplace space, they are used as the boundary conditions
for the single layer equations. This generates the solution for the
concentration anywhere in the system. The solution is then
numerically inverted using the de Hoog algorithm [4] (unless the
final-value theorem is applied).

Herein lies the main advantage of the Laplace transform
method. It allows the interface concentrations to be isolated as a
multiple of a term in (26) rather than as a part of an integral inside
of a term in (26). The isolation of the interface concentration allows
each solution to be linked to the next as a series of linear equations.
Thus making the solution easily solvable by use of an iterative
solver.

3. Results

Numerous previous investigations have focused on cases with
constant boundary conditions. Keeping in spirit with tradition,
constant boundary conditions are supplied for Cartesian and
spherical cases. A zero flux case is presented for the cylindrical
coordinates. Periodic boundary conditions and reaction cases are
presented to exemplify the versatility of this method. It should
again be noted that steady-state solutions can only be found for
boundary conditions that decay or grow to a constant value as time
goes to infinity.
Fig. 2. Dimensionless three-layer composite medium in the Cartesian coordinates
with the Solid (Dirichlet)-hollow-hollow case geometry. The layer interfaces are at
n ¼ 1:0 and n ¼ 2:0 with all layers confined to 0 6 n 6 3. The Damköhler number
and dimensionless diffusion coefficient for each layer are Da ¼ 0 and
Dc ¼ ½1:0;0:2;0:4�. The inlet and outlet dimensionless concentrations are Cin ¼ 1:0
and Cout ¼ 0:0.
3.1. Constant boundary conditions, no reactions

In this example, the boundary conditions at the system’s inlet
and outlet are set to 1 and 0, respectively. The coordinate systems
for each layer in the three cases considered are Cartesian, cylindri-
cal and spherical.

Fig. 2 shows the Cartesian case with three Dirichlet bounded
layers, each layer has equal thickness or length 1, and zero initial
concentration. The ratio of diffusion coefficients in the three layers
is 1.0:0.2:0.4.

Fig. 3 depicts the cylindrical case with a Neumann-Dirichlet
layer with a no flux boundary condition at the origin and an initial
concentration of 1.0 connected to a hollow layer bounded by a
semi-infinite layer. The first two layers have a thickness of 1.0,
and the ratio of diffusion coefficients is 1.0:0.2:0.4.
c

Fig. 4. Dimensionless three layer composite media in Spherical coordinates with
the Hollow (Dirichlet)-hollow-semi infinite case geometry. The layer interfaces are
at q ¼ 2 and q ¼ 3 with all layers confined to 1 6 n 6 1. The Damköhler number
and dimensionless diffusion coefficient for each layer are Da ¼ 0 and
Dc ¼ ½1:0;0:2;0:4�. The inlet dimensionless concentration is Cin ¼ 1:0.



Fig. 6. Dimensionless three-layer composite media in the Cartesian coordinates
with the Solid(Dirichlet)-hollow-hollow case geometry. The layer interfaces are at
n ¼ 1 and n ¼ 2 with all layers confined to 0 6 n 6 3. The Damköhler number,
dimensionless reaction coefficient, and dimensionless diffusion coefficient are
Da ¼ �0:1;Rc ¼ ½�0:1;�0:1;�0:1� and Dc ¼ ½1:0;0:2;0:4� respectively. The inlet and
outlet dimensionless concentrations are Cin ¼ 1:0 and Cout ¼ 0.
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Fig. 4 illustrates the spherical case away from the origin with
two Dirichlet bounded layers connected to a semi infinite layer.
Again the finite layer thicknesses are 1.0 and the ratio of diffusion
coefficients is 1.0:0.2:0.4 with zero initial concentration.

3.2. First-order reaction, constant boundaries

The following two figures are in the Cartesian coordinate
system and have the same properties and geometries as Fig. 2.
However, this time a constant reaction coefficient has been added
to each layer. The reaction coefficient is the same for each layer
thus the ratio of the diffusion coefficient to the reaction coefficient
is 10.0:2.0:4.0. Fig. 5 has a positive reaction coefficient and is thus
increasing concentration by reaction. The solution from Fig. 2
without reaction kinetics (Da ¼ 0) is shown in Figs. 5 and 6 as
the dashed lines for reference.

Fig. 6 has a negative reaction coefficient and is decreasing
concentration by reaction.

3.3. Verification with analytical model

The semi-closed solution is compared to the exact solution for
the semi-infinite Cartesian single layer case. For simplicity, we
impose a constant boundary condition, zero initial condition and
no source term (/a ¼ Cin;C0 ¼ 0, and w ¼ 0). Then, the Laplace-

transformed concentration, Ĉðn; sÞ, is

Ĉ ¼ /̂a � C0

S
� �

Eð�nÞ þ C0

S ¼ Cin

s
Eð�nÞ: ð29Þ

Using the inverse Laplace transform

L�1 e�a
ffiffiffiffiffiffiffiffi
sþb2

p

s

 !
¼ e�ab

2
erfc

a
2
ffiffiffi
s

p � b
ffiffiffi
s

p� �
þ eab

2
erfc

a
2
ffiffiffi
s

p þ b
ffiffiffi
s

p� �

yields the exact solution, Cðn; sÞ,

C¼Cin

2
eða�nÞi

ffiffiffiffiffi
DaR
D

p
erfc aex� i

ffiffiffiffiffiffiffiffiffiffiffiffi
DaRs

p� �
þeðn�aÞi

ffiffiffiffiffi
DaR
D

p
erfc aexþ i

ffiffiffiffiffiffiffiffiffiffiffiffi
DaRs

p� �h i
:

ð30Þ

where aex ¼ ðn� aÞ=
ffiffiffiffiffiffiffiffiffi
4Ds

p
.

Fig. 5. Dimensionless three-layer composite media in Cartesian coordinates with
the Solid (Dirichlet)-hollow-hollow case geometry. The layer interfaces are at n ¼ 1
and n ¼ 2 with all layers confined to 0 6 n 6 3. The Damköhler number, dimen-
sionless reaction coefficient, and dimensionless diffusion coefficient are
Da ¼ 0:1;Rc ¼ ½0:1;0:1;0:1� and Dc ¼ ½1:0;0:2;0:4� respectively. The inlet and outlet
dimensionless concentrations are Cin ¼ 1:0 and Cout ¼ 0.

Fig. 7. Dimensionless three-layer composite medium in Cartesian coordinates with
the Hollow (Dirichlet)-hollow-semi infinite case geometry compared to a single
semi infinite layer. The layer interfaces are at n ¼ 2 and n ¼ 3 with all layers
confined to 1 6 n 6 1. The Damköhler number, dimensionless reaction coefficient,
and dimensionless diffusion coefficient are Da ¼ 0;Rc ¼ 0 and Dc ¼ 1:0, respec-
tively. The inlet dimensionless concentration is Cin ¼ 1:0.
Figs. 7 and 8 show the comparison of the model with the exact
solution for a hollow semi infinite piece. The reaction coefficient
here is neglected. The geometry of the composite case compared
to the semi infinite exact solution in Figs. 7 and 8 is 2 Dirichlet
bounded layers with the same material properties connected to a
semi infinite layer. The first layer is offset from the origin to show
that shifting the solution in space doesn’t cause any errors. A diffu-
sion reaction ratio of 100.0:1.0 is introduced in Fig. 8.

The relative error in the above comparison is less than 0.0001%
even for large times. However, it can be seen in the Fig. 8 that the
introduction of the reaction coefficient can cause significant errors
as time becomes large. This error is largely due to instabilities in
the numerical Laplace transform method from numerical round
off during calculation. As the time variable becomes large the



Fig. 8. Dimensionless three-layer composite medium in Cartesian coordinates with
the Hollow (Dirichlet)-hollow-semi infinite case geometry compared to a single
semi infinite layer. The layer interfaces are at n ¼ 2 and n ¼ 3 with all layers
confined to 1 6 n 6 1. The Damköhler number, dimensionless reaction coefficient,
and dimensionless diffusion coefficient are Da ¼ �0:01;Rc ¼ �0:01 and Dc ¼ 1:0
respectively. The inlet dimensionless concentration is Cin ¼ 1:0.

Fig. 9. Relative error for the dimensionless three-layer composite medium in
Cartesian coordinates with the Hollow (Dirichlet)-hollow-semi infinite case geom-
etry compared to a single semi infinite layer. The layer interfaces are at n ¼ 2 and
n ¼ 3 with all layers confined to 1 6 n 6 1. The Damköhler number, dimensionless
reaction coefficient, and dimensionless diffusion coefficient are Da ¼ 0;Rc ¼ 0 and
Dc ¼ 1:0 respectively. The inlet dimensionless concentration is Cin ¼ 1:0.

Fig. 10. Dimensionless three-layer composite medium in Cartesian coordinates
with the Solid (Dirichlet)-hollow-hollow case geometry with a sinusoidal boundary
condition defined by a sin msð Þ. The layer interfaces are at n ¼ 1 and n ¼ 2 with all
layers confined to 0 6 n 6 3. The Damköhler number, dimensionless reaction
coefficient, and dimensionless diffusion coefficient are Da ¼ �0:01;Rc ¼ �0:01 and
Dc ¼ 1:0 respectively. The inlet and outlet dimensionless concentrations are
Cin ¼ sin 3sð Þ and Cout ¼ 0 respectively.

Fig. 11. Dimensionless three-layer composite medium in Cartesian coordinates
with the Solid (Dirichlet)-hollow-hollow case geometry with an exponentially
growing boundary condition defined by asm . The layer interfaces are at n ¼ 1 and
n ¼ 2 with all layers confined to 0 6 n 6 3. The Damköhler number, dimensionless
reaction coefficient, and dimensionless diffusion coefficient are
Da ¼ �0:01;Rc ¼ ½�0:01;�0:01;�0:01� and Dc ¼ ½1:0;0:2;0:4� respectively. The inlet
and outlet dimensionless concentrations are Cin ¼ s1=8 and Cout ¼ 0.
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corresponding Laplace variable becomes very small. For small time
values the ratio of the Laplace variable to the reaction coefficient is
large and errors are minimal. However as time becomes large the
ratio becomes very small, eventually the reaction coefficient can
mask the Laplace variable in some terms which causes the increas-
ing error.

Fig. 9 illustrates how the error in the model increases as time
progresses. Again this is due to numerical round off. At s ¼ 5:0
the analytical model displays an error of 1.8%. This error increases
as s and Da increase. This error can be overcome by extending the
floating point operations during numerical inversion.
3.4. Transient boundary conditions

As has been previously mentioned this method is capable of
handling time dependent boundary conditions. Fig. 10 demon-
strates a case with the sinusoidal inlet concentration defined as
/1 ¼ a sin msð Þ þ c where a ¼ 1 and c ¼ 0 and m ¼ 3. In this case
all layers are of the same thickness (1) and material properties.

Though the sinusoidal boundary condition is applicable in many
scenarios it is subject to the same errors that emerge with the
reaction solutions. When b is large in comparison to the Laplace
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variable the boundary condition will tend toward a constant value.
Thus it is recommended to only use periodic functions when the
value of b is small. For non periodic transient boundary conditions,
however, this error may not emerge. Fig. 11 depicts an example
with the transient boundary condition /1 ¼ s1=8 with the same
geometry as Fig. 6.

The key in avoiding numerical round off error in the inverse
Laplace transform algorithm is to avoid terms that add or subtract
the Laplace variable by a constant (e.g., s� R) but instead to have
boundary conditions that are a multiple of the Laplace transform
(e.g., sb).
4. Conclusions

A comprehensive method for a semi-closed analytical solution
for composite media subject to diffusion and reaction kinetics
has been presented. The method is robust enough to handle tran-
sient boundary conditions and to be computed with minimal time
costs. An evaluation of the error in the solutions has been given.
The error that emerges is subject to the number of digits of
precision available for calculations. The presented plots were
creating using the Matlab language which uses IEEE 754 double
precision numbers. This has been found to be very accurate for
diffusion only cases with non-transient boundary conditions.
However, for periodic transient boundary conditions and large
reaction coefficients it has been shown that a higher precision
would yield far better results. The general framework for the
solutions presented here have the advantages of being applicable
for both large and small times, as well as being able to handle a
wide variety of transient boundary conditions. Future work will
seek to expand these solutions to 2 and 3-dimensional cases, as
well as handle higher order reaction terms. Other issues that will
hopefully be overcome in the future is reaction dominated
solutions with a large Damköhler number.
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