
1. Introduction

Characterization of fractured rock is a critical challenge in a wide variety of research fields and applications, 

such as extraction, management, and protection of water resources. In fractured-rock aquifers, fractures can act 

as preferential flow paths that increase the risk of rapid contaminant migration over large distances. While the re-

source is generally stored in the surrounding matrix, fractures often determine the spatial extent of the extraction 

area (the cone of depression or well capture zone). Similar considerations play an important role in (oil/gas and 

geothermal) reservoir engineering, carbon sequestration, etc.

Various characterization techniques provide complementary information about fractured rocks. These typical-

ly rely on direct observation data, surface and borehole data acquired with geophysical techniques, and bore-

hole data collected during hydraulic and tracer experiments (Bonnet etal., ; Demirel et al., ; Dorn 2001 2018

etal., ,2012 2013; Roubinet etal.,2018). We focus on the latter because they provide information that is directly 

related to the hydrogeological structures that drive flow and transport processes. For example, measurements 

of vertical flow velocities in a borehole under ambient and forced hydraulic conditions are used to estimate the 

properties of individual fractures that intersect the borehole (Klepikova etal.,2013; Paillet etal.,2012; Roubinet 

etal.,2015), and piezometric data collected in observation boreholes allow one to provide models of fracture 

network organization (Fischer etal., ; Le Goc etal., ; Lods etal., ). Chemical tracer experiments, 2018 2010 2020

typically comprising the interpretation of breakthrough curves, yield information on the short and long paths in 

the fractured rock; these characterize the discrete fracture network (DFN) and matrix block properties, respective-

ly (Haddad etal., ; Roubinet etal., ).2014 2013

The deployment of heat tracers in the natural environment engendered new characterization methods for several 

applications. For instance, heat tracers were used to monitor groundwater in large-scale systems (Anderson,2005; 

Saar,2011), quantify hydraulic exchanges between surface and subsurface (Conant, ; Constantz, ), and 2004 2008

evaluate groundwater discharge (Lowry et al., ). Heat has also been utilized to identify the presence of 2007

fractures intersecting boreholes (Pehme etal., ; Read etal., ), to estimate their hydraulic properties 2013 2013

(Klepikova etal., ), and to study flow channeling and fracture–matrix exchange at the fracture scale (de La 2014

Bernardie etal., ; Klepikova etal., ). Most of these thermal experiments employ advanced equipment, 2018 2016

which deploys the active line source to uniformly modify water temperature in a borehole (Pehme etal.,2007) 

and the distributed temperature sensing to simultaneously monitor the resulting temperature changes in observa-

tion boreholes (Read etal.,2013). Thermal tracer experiments offer several advantages over their chemical coun-

terparts. They rely on neither localized multilevel sampling techniques nor localized tracer injection in boreholes. 
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Such experiments might interrogate bigger areas because heat conduction covers larger area than solute diffusion, 

although heat loss to the matrix undermines thermal tracer’s ability to travel over large distances. Regardless, heat 

tracers are not restricted by environmental constraints, whereas chemical tracers may remain in the environment 

for a long time (Akoachere & Van Tonder, ; Ptak etal., ).2011 2004

Without exception, the interpretation of hydraulic and tracer experiments involves inverse modeling. The choice 

of a strategy for the latter depends on the properties of interest, the data considered, the models available to re-

produce the data, and the prior information about the studied environment. For canonical fracture configurations 

between two boreholes, (semi)analytical and numerical models can be used in the cross-borehole flow-meter 

experiments mentioned above to evaluate the transmissivity and storativity of the fractures that intersect the bore-

holes at known depths (Klepikova etal.,2013; Paillet etal.,2012; Roubinet etal.,2015); the inversion consists of 

the gradient-based minimization of a discrepancy between the model’s predictions and the collected data. Large-

scale systems with complex fracture configurations require the use of sophisticated inversion strategies designed 

for high volumes of data. Most of such studies generate data via hydraulic and/or tracer tomography experiments, 

and use the inversion to identify the geometric and hydraulic properties of a fracture network (Fischer etal.,2018; 

Le Goc etal., ; Ringel etal., ; Somogyvári etal., ).2010 2019 2017

These studies limit the number of fractures in a network in order to work with a tractable number of parameters 

to invert. On the other side, forward models relating the fracture network properties to chemical or thermal 

breakthrough curves show that the shape of these curves is impacted by two factors. The first is the degree of 

heterogeneity of the fracture network and the matrix block size distribution (Roubinet etal., ); the second 2013

is the fracture density and fractal dimension, with the latter impacting the breakthrough curves when a fracture 

network is dense and flow is slow (Gisladottir etal., ). These findings suggest that breakthrough curves 2016

might provide valuable information about the statistical properties of a fracture network; with the exception of a 

few studies (Jang etal., ; Jang etal., ), this hypothesis has received very little attention. In contrast to 2008 2013

strategies inferring geometric and hydraulic properties, the number of statistical parameters is sufficiently low to 

be identified via inverse modeling.

Yet, such statistics are necessary to quantify uncertainty in predictions of hydraulic and transport processes in 

fractured rocks. Their identification rests on ensemble-based computation, which involves repeated solves of a 

forward model. Two complementary strategies for making the inversion feasible for large, complex problems 

are (a) to reduce the number of forward solves that are necessary for the inversion algorithm to converge and (b) 

to reduce the computational cost of an individual forward solve. The former strategy includes the development 

of accelerated Markov chain samplers, Hamiltonian Monte Carlo sampling, iterative local updating ensemble 

smoother, ensemble Kalman filters, and learning on statistical manifolds (Barajas-Solano etal., ; Boso & 2019

Tartakovsky, ,2020a 2020b; Kang etal., ; Zhou & Tartakovsky, ). The latter strategy aims to replace an 2021 2021

expensive forward model with its cheap surrogate/emulator/reduced-order model (Ciriello etal.,2019; Lu & Tar-

takovsky, ,2020a 2020b). Among these techniques, various flavors of deep neural networks (DNNs) have attract-

ed attention, in part, because they remain robust for large numbers of inputs and outputs (Kang etal., ; Mo 2021

etal.,2020; Zhou & Tartakovsky, ). Another benefit of DNNs is that their implementation in open-source 2021

software is portable to advanced computer architectures, such as graphics processing units and tensor processing 

units, without significant coding effort from the user. A Python package PyTorch (Paszke etal., ), which was 2019

used in this study, is a common choice for deep learning tasks.

We combine these two strategies for ensemble-based computation to develop an inversion method, which makes 

it possible to infer the statistical properties of a fracture network from cross-borehole thermal experiments 

(CBTEs). To alleviate the high cost of a forward model of hydro-thermal experiments, we use a meshless, par-

ticle-based method to solve the two-dimensional governing equations for fluid flow and heat transfer in DFNs 

(Section2). These solutions, obtained for several realizations of the DFN parameters, are used in Section3 to 

train a DNN-based surrogate. The latter’s cost is so low as to enable us to deploy a fully Bayesian inversion 

(Section4) that, unlike ensemble Kalman filter, does not require our quantity of interest to be (approximately) 

Gaussian. Our numerical experiments, reported in Section , show that our approach is four orders of magnitude 5

faster than the equivalent inversion based on the physics-based model. These synthetic experiments also reveal 

that the CBTE data allow one to obtain accurate estimates of fracture density, while the inference of a DFN’s 

fractal dimension is less robust. Main conclusions of this study are summarized in Section , together with a 6

discussion of alternative strategies to improve the estimation of fractal dimension.
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2. Models of Fracture Networks and Transport Phenomena

A forward model of CBTEs consists of a two-dimensional fracture network model and those of fluid flow and 

heat transfer. These models are described in Sections , , and , respectively.2.1 2.2 2.3

2.1.  Model of Fracture Networks

To be specific, we conceptualize a DFN via the fractal model of Watanabe and Takahashi( ), henceforth 1995

referred to as the WT model,

(1)

that po er law relat the number of fractures, N
r
, and their relative length  (norr -

malized  fracture leng ain of characteristic length . The parameters  and  denote L C D

fracture de  fractal dimens , s ely. If a network’s smallest fracture has length r
0
, then the number

of classes i T model is and the relative length of fractures in the th class is i r
i
 = (C i/ )1/D

(i=1, …, his formulation is equivalent to the model (Davy etal., ) that expresses fracture density 1990

in terms of fracture length  and domain size , if one sets l L  CD N= /
f
,  , and a D= +1. 

The latter model reproduces self-similar structures observed in numerous studies (Sahimi, , Chapter 6.6.8), 2011

allowing one to represent realistic fracture networks with the minimal number of parameters.

To generate a synthetic data set, we consider fractures arranged at two preferred angles 
1
=25° and 

2
=145° in 

a 100×100m2 domain. Fracture centers are randomly distributed over the whole domain, and their aperture is 

set to 5×10−4 m, as in Gisladottir etal.( ). The resulting DFN is simplified by removing the fractures that 2016

are not, directly or indirectly through other fractures, connected to the domain’s perimeter. Fluid flow and heat 

transfer are modeled on this fracture network backbone.

2.2.  Model of Fluid Flow in Fracture Networks

We deploy a standard model of single-phase steady-state laminar flow in a DFN, which assumes the rock ma-

trix to be impervious to fluid. The flow of an incompressible fluid is driven by a hydraulic head gradient, J, 

due to constant hydraulic heads imposed on the left and right boundaries, the top and bottom boundaries are 

impermeable.

The fracture extremities and intersections of the DFN, whose constr above, form the network 

nodes and a fracture connecting two adjacent nodes is referred to as a ow velocity in each edge 

is computed as the cross-sectional average of the Poiseuille velocity p r tween two parallel plates 

(Figure1). Thus, the velocity, u
ij
, of flow from node  to node  is i j    , where  is the fluid’s 

Figure 1.  A representative two-dimensional fracture network generated with the WT model for ( , ) = (4.5, 1.2) and the C D

other discrete fracture network parameters defined in Section . The fracture connecting node  and node  is shown on 2.1 i j

the right. A series of fracture networks corresponding to other combinations of ( , ) are shown in Figure 1 of Gisladottir C D

etal.( ).2016
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kinematic viscosity (m2/s), g is the gravitational acceleration const /s2), b
ij

perture (m) of the fracture 

connecting the nodes  and , and i j J
ij
 = (h

j
−h

i
)/l

ij
 is the hydraulic  gradien een these nodes separated 

by the distance l
ij
 (m). The hydraulic heads at the DFN nodes, h

i
 (  1, 2, …), omputed as the solution of i

a linear system built by enforcing mass conservation at each node:    , where  is the set of the 

neighboring nodes of node ; see, for example, Gisladottir etal.( ) and Zimmerman and Tartakovsky(i 2016 2020) 

for details.

2.3.  Model of Heat Transfer in Fractured Rock

The DFN backbone constructed in Section2.1 is further pruned by removing the edges representing the fractures 

with negligible flow velocities, for example, u
ij
  10−10m/s used in the subsequent numerical experiments. This 

standard procedure in DFN modeling eliminates the network’s dead-ends, that is, fracture segments that are con-

nected to the network through only one node and for which the flow velocity is theoretically equal to zero. It also 

ensures that solute/heat particles are not lost in these stagnant areas during transport simulations. The presence of 

these segments is implicitly taken into account in the equivalent diffusion properties of the surrounding matrix. 

Convection in the resulting fracture network and conduction in the host matrix rock are modeled via the parti-

cle-based approach (Gisladottir etal., ). The latter combines one-dimensional advective transport in each 2016

fracture (obtained by averaging heat-transfer equations over the fracture aperture and assuming that longitudinal 

diffusion is negligible in comparison with convection) and one-dimensional heat conduction in the matrix (in the 

direction perpendicular to the fracture). Complete mixing is assumed at the fracture intersections, implying that 

the probability for a particle to enter a fracture depends only on the flow rate at the considered node. Ruiz Martin-

ez etal.( ) provide a complete analysis of the validity and accuracy of these assumptions. The computational 2014

cost of this method is significantly lower than that of its mesh-based alternatives because it discretizes only the 

fracture segments, while the matrix is not meshed. The particle displacement is associated with convection and 

conduction times in the fracture and the matrix, respectively. The latter time is defined from analytical solutions 

to the transport equations for a fracture–matrix system and truncated according to the probability p
lim

 for the 

particle to reach a neighboring fracture by conduction through the matrix.

CBTEs are simulated by uniformly injecting N
part

 particles on the left side of the domain and recording their

arrival times on the right side. The cumulative distribution functions (CDFs) of these arrival times describe the 

changes in the relative temperature * observed at distance  from the heat source, assuming complete mixing T L

in the vertical direction at the observation position. The relative temperature is defined as * = (T T
obs

− T
in

)/

(T
inj

−T
in
), where T

in
 is the initial (at =0) fluid temperature in the system, and t T

inj
 and T

obs
 are the temperatures 

at the injection and observation positions, respectively (Gisladottir etal., ).2016

3. Neural Network Model Formulation

While computationally efficient, the particle-based model described in Section  is too expensive to be used 2

in ensemble-based simulations required for numerical inversion. Instead, we replace it with a DNN surrogate 

defined by a map,

(2)

where ( ) are the fracture network parameters, and ) is the CDF of a particle’s arrival time , that is, the C D, F x( X

probability that  does not exceed a certain value . Since the nonzero probability space of ) varies for differX x F x( -

ent simulations (Gisladottir etal., ; Ruiz Martinez etal., , and Section2016 2014 5), we find it convenient to work 

with the inverse CDF (iCDF) F−1 . Because any CDF is a continuous monotonically increasing function, the iCDF 

(or quantile CDF) is defined as

(3)

If ( ) is discretized into a set of Q p N
k
 quantiles 1 1   , then

1 1  (4)

Among various DNN architectures, we consider a fully connected neural network (FCNN)
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(5)

that describes the forward surrogate model . The vector , of length 2 4– m N
m
, contains the parameters to be esti-

mated (in our problems, these parameters are  and , so that C D N
m
=2); the vector , of length N

d
, contains the 

discretized values of the iCDF computed with the model . This model is built by defining an NN N
d
 × N

m
 matrix of

weights W, whose values are obtained by minimizing the discrepancy between the vector  and the vector  comd -

prising the output of the physics-based model from Section2. Since the relationship between  and  is likely to m d

be highly nonlinear, we relate  and m  via a nonlinear model , in which the prescribed “activation” 

function ( ) operates on each element of the vector Wm. Commonly used activation functions include sigmoid 

functions (e.g., tanh) and the rectified linear unit (ReLU). The latter, ), is used in this study due  s s( )=max(0, 

to its proven performance in similar applications (Agarap, ; Mo etal., ; Zhou & Tartakovsky, ).2018 2019 2021

The nonlinear regression model  constitutes a single layer in a NN. A (deep) FCNN 

model with N
l
 layers is constructed by a repeated application of the activation function to the input,

(6a)

The parameter set 1 −1  consists of the weights W
n
 connecting the th and ( +1)st layers with n n

the recursive relationships

1 = (2  1)( ) 2(1),

 = (+1  )(−1)  +1 ( −1),  = 2,… , −

 = (
 −1

)( −2
)  

(−1
−2

).

(6b)

Here, s
i
 is the vector of data estimated in the th layer; i W

1
, W

i
 ( =2, …, i N

l
−2), and  are the matrices of 

size d
1
 × N

m
, d

i
 × d

i−1
, and , respectively; and the integers d

i
 ( =1, …, i N

l
−2) represent the number

of neurons in the corresponding inner layers of the NN. The fitting parameters  are obtained by minimizing the 

discrepancy (or “loss function”)  between  and ,d

= argmin



( ,  ),  = (  ; (7)

where N
data

 is the number of forward runs of the physics-based model. We use the stochastic gradient-descent 

optimizer (Ruder, ) to carry out this step, which is commonly referred to as “network training.”2016

A choice of the functional form of the loss function  affects a NN’s performance. Studies on measuring quantile 

divergence, especially for discrete inverse distribution, are scarce. Measures of the distance between probability 

distributions, such as the Kullback–Leibler (KL) divergence (Kullback,1997)  and the Hellinger distance 

(Le Cam,2012) , might or might not be appropriate for inverse distributions. Thus, while the KL diver-

gence is a popular metric in Bayesian inference (Boso & Tartakovsky, ) and generative NNs (Goodfellow 2020b

etal.,2014; Kingma & Welling, ), it is not a 2013 distance, that is,  for any two distinct 

points P and P, and, hence, cannot be used as such  Equation . Consequently, we quantify the distance be7 -

tween two discrete distributions  and  in terms of the Hellinger distance,

H ( ,
) =  −  2 =

2


=1

−  



2

(8)

that is, solve the minimization problem (Equation ) with 7  .

To reduce the training cost and improve the NN’s performance, we specify additional features to refine the 

initial guess of input parameters. The relationships between the fractal DFN parameters in Section  suggest 2.1

the choice of C1/D, C−D, and  (which are equal to CD r
i
i1/D, 0  , and N

f
, respectively) and 1/  as extra inputD

features. Given the pair of initial parameters ( , ), the resulting full set of parameters for the NN isC D



Water Resources Research

ZHOU ET AL.

10.1029/2021WR030608

6 of 17

  (9)

4. Inversion Via Bayesian Update

According to the Bayes rule, the posterior probability density function (PDF) f
m d|

 of the parameter vector  is m

computed as

( ; ) =
 

,  (
) = ( )( ; )d (10)

where  and  are the deterministic outcomes of random variables  and , respectively; d m f
m
 is the prior PDF of

m; f
d m|

 is the likelihood function (i.e., the joint PDF of the measurements conditioned on the model predictions, 

which is treated as a function of ); and the normalizing factor m f
d
 ensures that f

m d|
 integrates to 1.

We take the likelihood function f
d m|

 to be Gaussian,

 ( ; ) = exp −
2

( ( ))


(11)

This PDF has the standard deviation 
d
 (in the simulations reported below, we set 

d
=0.4) and is centered on the 

square root of the Hellinger distance between the data  predicted by the likelihood and the data  provided 

by the forward model . Addition of prior knowledge of  to the likelihood function is done within the standard g m

Bayesian framework by assuming that the prior PDF is as important as the data. We explore how the posterior 

PDF can be improved by adjusting the impact of the prior. To do so, we treat the latter as a regularization term 

with a tunable hyperparameter  that corresponds to the weight associated with the prior, enabling us to reduce 

the impact of the prior when its knowledge does not seem to be persuasive. The resulting posterior PDF is for-

mulated as

(12)

where  and  are the negative log likelihood and log-prior distri-

butions, respectively. This yields

(13)

This posterior PDF is computed via the following algorithm.

1. Latin hypercube sampling (Stein, ) wit1987 N
C
 and N

D
 nodes is used to explore the domains  and  , over 

which the parameters  and  are allowed to ary. The result is a set of C D N
C

 × N
D
 points for the parameter pair

( , ) with coordinate vectors C D  ( =1, …, i N
C
, =1, …, j N

D
).

2. The iCDFs (Equation ) are computed with the forward model  for all pairs 4 g m
ij
.

3. The negative log likelihood  is computed via (Equation ), with the data 11 g m( ) 

provided by model  in Step 2.g

4. The posterior PDF f
m d|

 is computed via Equation13 by adjusting the weight  assigned to the prior knowledge. 

(The case =0 corresponds to a uniform prior for , where the unnormalized posterior PDF is equivalent to m

the likelihood.)

This brute-force implementation of Bayesian inference is only made possible by the availability of the FCNN sur-

rogate, whose forward runs carry virtually zero computational cost. In its absence, or if the number of unknown 

parameters were large, one would have to deploy more advanced Bayesian update schemes such as Markov 

chain Monte Carlo (Barajas-Solano etal., ; Zhou & Tartakovsky, ) or ensemble updating methods (Mo 2019 2021

etal., , ).2019 2020
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5. Numerical Experiments

The synthetic generation of DFNs and breakthrough times, t
break

, for a heat tracer is described Section . Gen5.1 -

eration of the data for CNN training is described in Section , with the construction of a CNN surrogate for the 5.2

PDE-based model (Section ) reported in Section . In Sections2 5.3 5.4 5.5 and , we use this surrogate to accelerate 

the solution of the inverse problem of identifying the DFN properties from the breakthrough-time data.

5.1.  Synthetic Heat-Tracer Experiment

Our synthetic heat-tracer experiment consists of injected hot water with temperature T
inj

 at the inlet (x
1
=0) and 

observing temperature changes at the outlet (x
1
=L). The goal is to infer the statistical properties of a DFN, frac-

ture density  and fractal dimension , from the resulting breakthrough curve. A fracture network with known C D

values of  and  serves as ground truth, with possible measurement errors neglected. Consistent with GisladoC D -

ttir etal.( ), we set the externally imposed hydraulic gradient across the simulation domain to =0.01 and 2016 J

the thermal diffusion coefficient in the matrix to D
therm

=9.16×10−7m2/s. The considered configurations are 

inspired by the experiments in natural geothermal reservoirs (Watanabe & Takahashi, ) and were used in a 1995

related analytical study of heat conduction in fractured rock (Ruiz Martinez etal., ).2014

5.2.  Generation and Analysis of Synthetic Data

To generate data for the CNN training and testing, we considered the WT fracture networks (Equation ) with 1

C D[2.5, 6.5] and [1.0, 1.3]. These parameter ranges are both observed experimentally (Main etal.,1990; 

Scholz etal.,1993) and used in previous numerical studies (Gisladottir etal.,2016; Watanabe & Takahashi,1995). 

The parameter space [2.5, 6.5] × [1.0, 1.3] was discretized into N
sim

=104 nodes, that is, pairs of the parameters 

( , )C D
i
 with =1, …, i N

sim
, identified by the Latin hypercube sampling.

In addition to the number of injected particles, N
part

, the simulation time and accuracy of each forward model run 

are largely controlled by the number of elements used to discretize a fracture, which is defined by the parameter 

p
lim

 introduced in Section . The simulation time 2.3 t
sim

 refers to the time (in seconds) it takes to estimate the CDF

of breakthrough times for one random DFN realization and one of the N
sim

=104 pairs of the parameters (C D, ). 

We found the average t
sim

 not to exceed 1s if either N
part

=100 or the fracture is not discretized; the average is 

over 20 random realizations of the DFN obtained with different random seeds for each parameter pair ( , ).C D

Representative CDFs of breakthrough times of N
part

 particles, in each of these 20 DFN realizations, are displayed 

in Figure  for three pairs of the DFN parameters ( ). The across-realization variability of the CDFs is more 2 C D, 

pronounced for N
part

=102 than 103 particles, and visually indistinguishable when going from N
part

=103 to 104

particles (not shown here). Likewise, no appreciable differences between the CDFs computed with p
lim

=0.5 

and 0.2 were observed. Finally, when the random-seed effects are averaged out, the resulting breakthrough-time 

CDFs for N
part

=102 and 103 are practically identical (Figure ). Based on these findings, in the subsequent sim-3

ulations, we set N
part

=100 and p
lim

=0.5 in order to obtain an optimal balance between the computational time 

and accuracy.

For some parameter-pairs ( ), not every DFN realization (defined by the random seed) hydraulically connects C D, 

the injection and observation boundaries. Such hydraulically disconnected networks are not suitable for our flow 

model (see Section ). However, in our numerical experiments, there were at least 10—and, in the majority of 2.2

cases, 19—connected fracture networks for each ( , ) pair.C D

The final step in our data generation procedure consists of converting the estimated CDFs  into corresponding F

iCDFs F −1 (Figure4). The latter form the data set , different parts of which are used to train a CNN and to verify d

its performance.

5.3.  FCNN Training and Testing

The data generated above are arranged in a set  with N
sim

=104 and m
NN

 defined in Equation9. 

We randomly select 8 × 103 of these pairs to train the FCNN  in Equation , leaving the remaining 2 × 10NN 5 3

for testing. The output data  come in the form of iCDFs, that is, nondecreasing series of numbers. Since the d
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construction of a DNN surrogate does not guarantee this property, we use the hyperparameter tuning method 

of Liaw etal.( ) to find a set of hyperparameters that produce a nondecreasing approximation of the iCDF. 2018

Table  identifies the region of the hyperparameter space used in this search.1

Figure 2.  Representative cumulative distribution functions (CDFs) of the logarithm of breakthrough times (in seconds) of N
part

 particles, (ln F t
break

), for 20 realizations

of the discrete fracture network (DFN) characterized by a given combination of the DFN parameters ( , ). Each colored curve corresponds to a different random C D

realization; in all simulations, we set plim=0.5.

Figure 3.  Mean cumulative distribution functions (CDFs) of the logarithm of breakthrough times (in seconds) of N
part particles, (ln F tbreak ), averaged over the 

corresponding discrete fracture network (DFN) realizations in Figure .2
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The rp ter search involved 2,500 trials  ea ial, the subset of data   were randomly 

split  a t ng set consisting of 6,400 pairs  and a validation set comprising the remaining 1,600 

pairs . For each epoch, the 6,400 training pairs were used to optimize the NN parameters, and the NN 

accuracy is evaluated on the validation set. Each trial used one of the optimizers in Table  for at most 101 3 ep-

ochs; the trial was stopped if the validation loss did not decrease for 10 2 epochs. After completion of all the trials 

with these rules, the trial with the smallest validation loss was saved. The optimal FCNN, described in Table2, 

has six layers between the input and output layers and is obtained using the Adam optimizer with the Adam 

optimizer coefficients  = (0.9, 0.999) to perform gradient descent. This trial is associated with a learning rate 

l
r
=0.00403 and the averaged Hellinger loss of 0.0827 on the validation set. This FCNN was further trained with 

a learning rate that reduces on plateau of the validation performance to further fine-tune the model parameters 

for another 103 epochs; the ending testing Hellinger loss is 0.0652 and the 

total training time is 37,340s. Figure  depicts the FCNN predictions of the 5

iCDFs of the particle breakthrough times in DFNs characterized by different 

parameter-pairs ( ) not used for training. These predictions are visually C D, 

indistinguishable from those obtained with the physics-based model g m( ) 

described in Section .2.1

5.4.  Bayesian Inversion Without Prior Information

We start with the Bayesian data assimilation and parameter estimation from 

Section4. Taking the uniform prior, =0 in Equation , and assimilating  13

the N
sim

=104 candidates provided by the physics-based model , this prog -

cedure yields the posterior PDFs of  and  shown in Figure . While this C D 6

noninformative prior indicates that all values of the parameters ( ) are C D, 

equally likely, the sharpened posterior correctly assigns higher probability to 

the region containing the reference ( ) values. The relatively small numC D, -

ber (N
sim

=104 ) of the forward solves of the physics-based model  manifests g

itself in granularity of the posterior PDF maps.

Figure 4.  Cumulative distribution functions (CDFs) (left) and corresponding inverse CDFs (iCDFs) (right) of the thermal 

breakthrough times for a single realization of the six discrete fracture network (DFNs) characterized by six pairs of the 

parameters ( , ).C D

Parameter name Search region

Number of layers

Number of neurons

Optimizer name rms sgd ada adam

Learning rate, l
r

Note. These parameters are uniformly sa from either a discrete set 

of values, , or an interval, . The RMSprop optimizer 

(Graves, 2013; Hinton et al., 2012), rms; the stochastic gradient-descent 

optimizer (Sutskever et al., ), sgd; the Adagrad optimizer (Duchi 2013

et al., 2011) ada; and the Adam optimizer (Kingma & Ba, 2014), adam, 

slightly differ from each other when performing the parameter gradient 

descent during the NN training.

Table 1 

Hyperparameter Search Space Defined by the Number of Layers, the 

Number of Neurons in Each Layer, the Optimizer Names, and (Logarithm 

of) the Learning Rate
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Significantly more forward model runs are needed to further sharpen these 

posterior PDFs around the true values of ( ) and to reduce the image C D, 

pixelation. Generating the significant amounts of such data with the phys-

ics-based model is computationally prohibitive. Instead, we use 107 addi-

tional candidates, corresponding to a 104×103 mesh of the parameter space, 

provided by the FCNN surrogate. Figure  demonstrates that assimilation of 6

these data (forward runs of the cheap FCNN surrogate) further reduces the 

band containing the unknown model parameters (C, D) with high probability. 

Generation of such large data sets with the physics-based model is 4 orders of 

magnitude more expensive than that with the FCNN (Table ).3

The posterior PDFs displayed in Figure  show that the fracture density  is 6 C

well constrained and amenable to our Bayesian inversion, whereas the infer-

ence of the fractal dimension  is more elusive. Examples of the DFNs in this D

study are provided in Figure 2 of Gisladottir etal.( ). They suggest that, 2016

for the parameter ranges considered,  impacts the spatial extent of a fracture C

network, while  affects the fracture-length distribution. Consequently, D C

has a more significant impact on the overall structures.

5.5.  Bayesian Inversion With Data-Informed Priors

To refine the inference of parameters  and  from the breakthrough-time CDFs, we add some prior information. C D

First, we observe that the field data reported in Appendix  suggest that  and  are correlated. These data are A C D

fitted with a shallow feed-forward NN resulting in the prior PDF of  and  shown in Figure . These data vary C D 7

over larger ranges than those used for  and  in the previous section; at the same time, most values correspond to C D

C<2. That is because the field data come from a large number of different sites and from direct outcrop observa-

tions. Figure 9 in Watanabe and Takahashi( ) shows that a network with <2 would have low connectivity. 1995 C

On the other hand, a DFN with a large  is very dense, requiring large computational times to simulate and, posD -

sibly, being amenable to a (stochastic) continuum representation. Driven by these practical considerations, and 

to ascertain the value of this additional information, we restrict the prior PDF from Figure  to the same range of 7

parameters as that used in the previous section.

The relative importance given to the prior information about the DFN properties  and  (FigureC D 7) is controlled 

by the parameter  in Equation . Large values of  correspond to higher confidence in the quality and relevance  12 

of the data reported in Appendix . Figure  exhibits posterior PDFs of  and  computed via our Bayesian A 8 C D

assimilation procedure with =0.5 and 1. Visual comparison of Figures  and  reveals that the incorporation  6 8

of the prior information about generic (not site-specific) correlations between  and  sharpens our estimation C D

Layer Weights Layer output

Input – 6

FC
1

W
1
: 256 × 6 s

1 : 256

FC
2

W
2
: 64 × 256 s

2
: 64

FC
3

W
3
: 512 × 64 s

3
: 512

FC
4

W
4
: 256 × 512 s

4 : 256

FC
5

W
5
: 32 × 256 s

5
: 32

FC
6

W
6
: 128 × 32 s

6
: 128

Output W
7: 50 × 128 50

Note. Bias parameters are added to each layer, but not shown in this table.

Table 2 

The Best-Trial NN Architecture Consists of Six Hidden Layers, FC
i

(i=1, …, 6), With the Corresponding Weight Matrix W
i
 and Layer Output 

s
i
 (i=1, …, 6) in Equation6

Figure 5.  Physics-based and fully connected neural network (FCNN) predictions of the iCDFs of the particle breakthrough times in DFNs characterized by different 

parameter-pairs ( , ) not used for training.C D
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of these parameters, that is, decreases the area in the parameter space where they are predicted to lie with high 

probability. Putting more trust in the prior, that is, using a higher value of , amplifies this trend. However, the 

increase in certainty might be misplaced, as witnessed by several examples in which the reference parameter 

values fall outside the high-probability regions.

Fracture network’s connectivity is another potential source of information that can boost one’s ability to infer the 

parameters C D and  from CBTEs. Let  denote the number of connected fracture networks among 20 random 

realizations of a DFN characterized by (C D, )
i
. Figure  exhibits 9 for N

sim
=104 DFNs characterized by (C, 

D)
i

( =1, …, i N
sim

), with the results interpolated to 104 ×103 mesh of the ( ) space by means of a shallow C D, 

NN. We define a prior PDF for  and  asC D

(14)

which is properly normalized to ensure it integrates to one. This prior PDF, shown in Figure , assigns larger 9

probability to those ( , ) pairs that show higher connectivity in our data set.C D

The Bayesian inference procedure with this prior yields the posterior joint PDFs of  and  in Figure . These C D 10

distributions are sharper than those computed with either uninformative (Figure6) or correlation-based (Figure8) 

priors, indicating the further increased confidence in the method’s predictions 

of  and . As before, assigning more weight to the prior, that is, increasing C D

 C D, reduces the area of the high-probability regions in the ( , ) space. This 

increased confidence in predictions of  and  is more pronounced when the C D

connectivity-based prior, rather than the correlation-based prior, is used. The 

connectivity information also ensures that this confidence is not misplaced, 

that is, the reference parameter values lie within the high-probability regions.

6. Conclusions and Discussion

We developed and applied a computationally efficient parameter-estimation 

method, which makes it possible to infer the statistical properties of a fracture 

network from CBTEs. A key component of our method is the construction 

of a neural network surrogate of the physics-based model of fluid flow and 

Figure 6.  Examples of the normalized posterior probability density functions (PDFs) of the DFN parameters  and :C D , for three experiments 

defined by the reference parameter values (blue circles). These PDFs are computed via Bayesian assimilation of either 104 runs of the physics-based model (top row) or 

additional 107  runs of the FCNN surrogate (bottom row). The posterior PDFs in each figure here and in Figures  and  are normalized to integrate to 1.8 10

N
sim

T
train

T
run

T
grid

T
tot

g m( ) 2×108 0 1.312 × 108 5.47 1.312 × 108

NN m( ) 107 37 ,340 1.26 5.47 3.735 × 10 4

Note. Each inversion requires N
sim

 forward runs and takes time T
tot

. The latter 

comprises time to train the model (T
train

), time to execute the forward runs

(Trun), and time to define the posterior PDF on the discretized parameter grid 

(T
grid

). The running time for ) is a projection based on the simulation time g m(

of 6,560s that was necessary to run 10 4 simulations. The FCNN was trained 

and executed on GPUs provided by GoogleColab. All times are in seconds.

Table 3 

Computational Cost of the Bayesian Inversion Using the Physics-Based 

Model ( ) or the FCNN Surrogate g m NN(m)
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heat transfer in fractured rocks. The negligible computational cost of this surrogate allows for the deployment of 

a straightforward grid search in the parameter space spanned by fracture density  and fractal dimension . Our C D

numerical experiments lead to the following major conclusions.

1. The neural network surrogate provides accurate estimates of an average iCDF of breakthrough times, for the 

fracture network characterized by given parameters ( , ).C D

2. In the absence of any expert knowledge about  and , that is, when an uninformative prior is used, our C D

method—with the likelihood function defined in terms of the Hellinger distance between the predicted and 

observed iCDFs—significantly sharpens this prior, correctly identifying parameter regions wherein the true 

values of ( , ) lie.C D

3. Incorporation of the prior information about generic (not site-specific) correlations between  and  sharpens C D

our estimation of these parameters, that is, decreases the area in the parameter space where they are predicted 

to lie with high probability. Putting more trust in the prior, that is, using a higher value of , amplifies this 

Figure 7.  Prior joint PDF of  and  inferred from the field-scale data in Appendix  (left) and its rescaled counterpart over C D A

the parameter range used in our study (right).

Figure 8.  Examples of the normalized posterior PDFs of the DFN parameters  and :C D , in the presence of prior information, for three 

experiments defined by the reference parameter values (blue circles). These PDFs are computed via Bayesian assimilation with the informative prior (Figure ), whose 7

relative importance increases from =0.5 (top) to =1.0 (bottom). 
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trend. However, the increase in certainty might be misplaced, as witnessed by several examples in which the 

reference parameter values fall outside the high-probability regions.

4. Incorporation of the prior information about a fracture network’s connectivity yields the posterior joint PDFs 

of C and D that are sharper than those computed with either uninformative or correlation-based priors, indi-

cating the further increased confidence in the method’s predictions of  and .C D

5. The increased confidence in predictions of  and  is more pronounced when the connectivity-based prior, C D

rather than the correlation-based prior, is used. The connectivity information also ensures that this confidence 

is not misplaced, that is, the reference parameter values lie within the high-probability regions.

Figure 9.  Number of connected networks, N
con

, averaged over 20 random realizations of the DFN model with a given 

parameter pair  = ( , )m C D   (left); and corresponding prior PDF f
m
 in Equation  (right).14

Figure 10.  Examples of the normalized posterior PDFs of the DFN parameters  and :C D , in the presence of prior information, for three 

experiments defined by the reference parameter values (blue circles). These PDFs are computed via Bayesian assimilation with the informative prior (Equation ), 14

whose relative importance increases from =0.5 (top) to =1.0 (bottom). 
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While this study focused on two-dimensional networks whose statistical properties are characterized by two 

(unknown) DFN parameters, our methodology is equally applicable to three-dimensional problems with a larger

number of DFN characteristics. Such a generalization would not require a significant implementation effort and 

is not expected to appreciably increase its computational cost. Populating a FCNN’s input and output with extra 

characteristics does not increase the training cost as much as the forward run of a physics-based model. In fact, 

the advantage of a NN-based surrogate of the forward model is likely to become even more pronounced (Mo 

etal., ).2019

Our deployment of NN-based surrogates has several shortcomings. First, systematic analyses of their accuracy 

and robustness in the context of approximating iCDFs are scarce. Second, identification of “optimal” values of 

the large number of hyperparameters specifying a FCNN (the number of NN layers, the number of neurons in 

each layer, a gradient-descent method used in optimization, etc.) requires many trials and is time-consuming. 

Third, the “as is” deployment of our NN architecture to analyze other thermal experiments is problematic if an 

experimental setup is materially different from that considered in our study; a possible use of transfer learning 

(Song & Tartakovsky, ) for this purpose is left for a follow-up study.2021

Appendix A:  Field-Scale Characterization of Fracture Networks

For the sake of completeness, we report in Table  the field-scale observations of fracture networks from A1

Bonnet etal.( ). These are accompanied by our calculation of the corresponding values of parameters  and 2001 C

D in the WT model of fracture networks.

N
f

a S (m2) l
min

 (m)  D C

107 1.74 24 0.1 0.60035 0.74 86.80731

121 2.11 25 0.1 0.41703 1.11 45.46014

3,499 1.88 2.70 × 1011 103 4.97809 × 10−6 0.88 0.01979

120 0.9 8.25 × 10 7 40 −1.00582 × 10−7 −0.1 0.00012

101 1 2.62 × 10 7 57 0 0 NaN

300 1.76 NP 7.00 × 103 NaN NaN0.76

380 1.9 3.43 × 10 3 3 0.26777 0.9 113.05832

350 2.1 1.26 × 10 8 220 0.00115 1.1 0.36680

1,000 3.2 1.60 × 10 9 380 0.65137 2.2 296.07649

1,000 2.1 1.65 × 1010 2.00 × 103 0.00028 1.1 0.25921

800 2.2 2.50 × 10 1 6.00 × 10 −2 1.31254 1.2 875.02702

380 2.1 NP 2.50 × 103 NaN NaN1.1

1,700 2.02 1.00 × 1010 1.00 × 103 0.0002 1.02 0.33182

260 1.3 8.75 × 10 3 1.00 0.00891 0.3 7.72571

100 1.8 2.10 × 10 3 1.00 0.03809 0.8 4.76190

873 2.64 3.40 × 10 1 5.00 × 10 −3 0.00709 1.64 3.7745

320 2.61 2.07 × 10 7 4.00 × 10 0.00945 1.61 1.87779

50 1.67 2.90 × 10 7 7.00 × 10 1.99004 × 10−5 0.67 0.00148

180 1.97 2.80 × 10 8 3.00 × 102 0.00016 0.97 0.02925

400 2.21 1.20 × 10 8 4.00 × 10 0.00035 1.21 0.11573

250 2.11 2.50 × 1011 4.50 × 103 1.26005 × 10−5 1.11 0.00284

400 2.84 2.90 × 1011 5.50 × 103 0.01935 1.84 4.20716

70 2.67 3.60 × 10 9 1.60 × 103 0.00728 1.67 0.30533

150 2.66 5.10 × 10 9 1.25 × 103 0.00675 1.66 0.61021

Table A1 

Fracture Number (N
f
), Power Law Exponent (a), Surface Area (S), Minimum Fracture Length (l

min
), and Density Parameter 

 for Various Fracture Networks Reported in Table 2 in Bonnet etal.( )2001
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Data Availability Statement

There are no data sharing issues since all of the numerical information is provided in the figures produced by 

solving the equations in the paper and is available for download at https://github.com/DDMS-ERE-Stanford/

DFN_inverse or at https://doi.org/10.528 1/zenodo.5643615.
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Table A1

Continued

N
f

a S (m2) l
min

 (m)  D C

200 3.07 6.20 × 10 9 1.00 × 103 0.10829 2.07 10.46329

1,034 2.51 8.70 × 10 7 1.00 × 10 0.00058 1.51 0.39767

40 1.6 2.00 × 10 4 6.00 × 10 −2 0.00022 0.6 0.01479

318 2.42 1.69 × 10 8 7.00 × 10 0.00111 1.42 0.24946

291 2.69 1.69 × 10 8 7.00 × 10 0.00382 1.69 0.65783

78 2.1 1.69 × 10 8 1.00 × 102 8.04638 × 10−5 1.1 0.00570

218 2.02 1.00 2.00 × 10 −2 4.11251 1.02 878.94881

111 3.04 8.40 × 10 7 2.00 × 102 0.13328 2.04 7.25217

470 1.8 1.17 × 10 4 6.00 × 10 −2 0.00338 0.8 1.98852

417 2.18 6.00 × 10 7 4.00 × 10 0.00064 1.18 0.22519

201 2.4 3.00E−01 1.50E−04 0.00416 1.4 0.59676

100 2.4 6.00 × 10 8 7.00 × 102 0.00224 1.4 0.16032

1,034 2.36 8.70 × 10 7 1.00 × 10 0.00037 1.36 0.28153

450 2.18 2.20 × 10 8 7.00 × 10 0.00036 1.18 0.13843

350 2.75 1.50 × 10 9 1.80 × 102 0.00361 1.75 0.72239

300 2.37 NP 1.00 × 102 NaN NaN1.37

Note. The corresponding values of fracture density ( ) and fractal dimension ( ) in the WT network model (Equation ) are C D 1

determined from the parameter relationships in Section .2.1
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