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Abstract
Subsurface remediation often involves reconstruction of contaminant release history from sparse observations of solute

concentration. Markov Chain Monte Carlo (MCMC), the most accurate and general method for this task, is rarely used in

practice because of its high computational cost associated with multiple solves of contaminant transport equations. We

propose an adaptive MCMC method, in which a transport model is replaced with a fast and accurate surrogate model in the

form of a deep convolutional neural network (CNN). The CNN-based surrogate is trained on a small number of the

transport model runs based on the prior knowledge of the unknown release history. Thus reduced computational cost allows

one to diminish the sampling error associated with construction of the approximate likelihood function. As all MCMC

strategies for source identification, our method has an added advantage of quantifying predictive uncertainty and

accounting for measurement errors. Our numerical experiments demonstrate the accuracy comparable to that of MCMC

with the forward transport model, which is obtained at a fraction of the computational cost of the latter.
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1 Introduction

Identification of contaminant release history in groundwa-

ter plays an important role in regulatory efforts and design

of remedial actions. Such efforts rely on measurements of

solute concentrations collected at a few locations (pumping

or observation wells) in an aquifer. Data collection can take

place at discrete times and is often plagued by measure-

ment errors. A release history is estimated by matching

these data to predictions of a solute transport model, an

inverse modeling procedure that is typically ill-posed.

Alternative strategies for solving this inverse problem

(Amirabdollahian and Datta 2013; Zhou et al. 2014; Rajabi

et al. 2018; Barajas-Solano et al. 2019) fall into two cate-

gories: deterministic and probabilistic. Deterministic

methods include least squares regression (White 2015) and

hybrid optimization with a genetic algorithm (Ayvaz 2016;

Leichombam and Bhattacharjya 2018). They provide a

‘‘best’’ estimate of the contaminant release history, without

quantifying the uncertainty inevitable in such predictions.

Probabilistic methods, e.g., data assimilation via exten-

ded and ensemble Kalman filters (Xu and Gómez-Her-

nández 2016, 2018) and Bayesian inference based on

Markov chain Monte Carlo or MCMC (Gamerman and

Lopes 2006), overcome this shortcoming. Kalman filters

are relatively fast but do not generalize to strongly non-

linear problems, sometimes exhibiting inconsistency

between updated parameters and observed states (Chaud-

huri et al. 2018). Particle filters and MCMC are exact even

for nonlinear systems but are computationally expensive,

and often prohibitively so. Increased efficiency of MCMC

with a Gibbs sampler (Michalak and Kitanidis 2003) comes

at the cost of generality by requiring the random fields of

interest to be Gaussian. MCMC with the delayed rejection

adaptive Metropolis (DRAM) sampling (Haario et al.

2006) is slightly more efficient and does not require the

Gaussianity assumption; it has been used in experimental

design for source identification (Zhang et al. 2015), and is

deployed as part of our algorithm. Gradient-based MCMC

methods, such as hybrid Monte Carlo (HMC) sampling

(Barajas-Solano et al. 2019), increase the slow
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convergence of these and other MCMC variants. However,

the repeated computation of gradients of a Hamiltonian can

be prohibitively expensive for high-dimensional transport

problems.

With an exception of the method of distribution (Boso

and Tartakovsky 2020a, b), the computational cost of

Bayesian methods for data assimilation and statistical

inference is dominated by multiple runs of a forward

transport model. The computational burden can be signif-

icantly reduced by deploying a surrogate model, which

provides a low-cost approximation of its expensive phy-

sics-based counterpart. Examples of such surrogates

include polynomial chaos expansions (Zhang et al. 2015;

Ciriello et al. 2019) and Gaussian processes (Elsheikh

et al. 2014; Zhang et al. 2016). A possible surrogate-in-

troduced bias can be reduced or eliminated altogether by

the use of a two-stage MCMC (Zhang et al. 2016). Both

polynomial chaos expansions and Gaussian processes suf-

fer from the so-called curse of dimensionality, which refers

to the degradation of their performance as the number of

random inputs becomes large.

Artificial neural networks in general, and deep neural

networks in particular, constitute surrogates that remain

robust for large numbers of inputs and outputs (Mo et al.

2019a, b). Their implementations in open-source software

offer an added benefit of being portable to advanced

computer architectures, such as graphics processing units

and tensor processing units, without significant input from

the user. Our algorithm employs a convolutional neural

network (CNN) as a surrogate, the role that is related to but

distinct from other uses of neural networks in scientific

computing, e.g., their use as a numerical method for

solving differential equations (Lee and Kang 1990; Lagaris

et al. 1998).

In Sect. 2 we formulate the problem of contaminant

source identification from sparse and noisy measurements

of solute concentrations. Section 3 contains a description

of our algorithm, which combines MCMC with DRAM

sampling (Sect. 3.1) and a CNN-based surrogate of the

forward transport model (Sect. 3.2). Results of our

numerical experiments are reported in Sect. 4; they

demonstrate that our method is about 20 times faster than

MCMC with a physics-based transport model. Main con-

clusions drawn from this study are summarized in Sect. 5.

2 Problem formulation

Vertically averaged hydraulic head distribution hðxÞ in an

aquifer X with hydraulic conductivity KðxÞ and porosity

hðxÞ is described by a two-dimensional steady-state

groundwater flow equation,

r � ðKrhÞ ¼ 0; x 2 X; ð1Þ

subject to appropriate boundary conditions on the simula-

tion domain boundary oX. Once (1) is solved, average

macroscopic flow velocity uðxÞ ¼ ðu1; u2Þ> is evaluated as

u ¼ �K

h
rh: ð2Þ

Starting at some unknown time t0 a contaminant with

volumetric concentration cs enters the aquifer through

point-wise or spatially distributed sources Xs � X. The

contaminant continues to be released for unknown duration

T with unknown intensity qsðx; tÞ (volumetric flow rate per

unit source volume), such that qsðx; tÞ 6¼ 0 for

t0 � t� t0 þ T . The contaminant, whose volumetric con-

centration is denoted by cðx; tÞ, migrates through the

aquifer and undergoes (bio)geochemical transformations

with a rate law R(c). Without loss of generality, we assume

that the spatiotemporal evolution of cðx; tÞ is adequately

described by an advection-dispersion-reaction equation,

ohc
ot

¼ r � ðhDrcÞ � r � ðhucÞ � RðcÞ þ qscs;

x ¼ ðx1; x2Þ> 2 X; t[ t0;

ð3Þ

although other, e.g., non-Fickian, transport models (Neu-

man and Tartakovsky 2009; Srinivasan et al. 2010; Sev-

erino et al. 2012) can be considered instead. If the

coordinate system is aligned with the mean flow direction,

such that u ¼ ðu � juj; 0Þ>, then the dispersion coefficient

tensor D in (3) has components

D11 ¼ hDm þ aLu; D22 ¼ hDm þ aTu;

D12 ¼ D21 ¼ hDm;
ð4Þ

where Dm is the contaminant’s molecular diffusion coef-

ficient in water; and aL and aT are the longitudinal and

transverse dispersivities, respectively.

Our goal is to estimate the location and strength of the

source of contamination, rðx; tÞ ¼ qsðx; tÞcsðx; tÞ, by using

the transport model (1)–(4) and concentration measure-

ments �cm;i ¼ �cðxm; tiÞ collected at locations fxmgMm¼1 at

times ftigIi¼1. The concentration data are corrupted by

random measurement errors, such that

�cm;i ¼ cðxm; tiÞ þ �mi; m ¼ 1; . . .;M; i ¼ 1; . . .; I;

ð5Þ

where cðxm; tiÞ are the model predictions, and the errors �mi
are zero-mean Gaussian random variables with covariance

E½�mi�nj� ¼ dijRmn. Here, E½�� denotes the ensemble mean;

dij is the Kronecker delta function; and Rmn, with

m; n 2 ½1;M�, are components of the M �M spatial

covariance matrix R of measurements errors, taken to be

the identity matrix multiplied by the standard deviation of
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the measurement errors. This model assumes both the

model (1)–(4) to be error-free and the measurements errors

to be uncorrelated in time but not in space.

3 Methods

Our algorithm comprises MCMC with DRAM sampling

and a CNN-based surrogate of the transport model (1)–(4).

These two components are described below.

3.1 MCMC with DRAM sampling

Upon a spatiotemporal discretization of the simulation

domain, we arrange the uncertain (random) input parame-

ters in (1)–(4) into a vector m of length Nm; these inputs

may include the spatiotemporally discretized source term

rðx; tÞ, initial concentration cinðxÞ, hydraulic conductivity

KðxÞ, etc. Likewise, we arrange the random measurements

�cm;i into a vector d of length Nd, and the random mea-

surement noise �mi into a vector e of the same length. Then,

the error model (5) takes the vector form

d ¼ gðmÞ þ e; ð6Þ

where gð�Þ is the vector, of length Nd, of the correspond-

ingly arranged stochastic model predictions cðxm; tiÞ pred-
icated on the model inputs m.

In Bayesian inference, the parameters m are estimated

probabilistically from both model predictions and (noisy)

measurements by means of the Bayes theorem,

fmjdð ~m; ~dÞ ¼
fmð ~mÞfdjmð ~m; ~dÞ

fdð~dÞ
;

fdð~dÞ ¼
Z

fmð ~mÞfdjmð ~m; ~dÞ d ~m:

ð7Þ

Here, ~d is the deterministic coordinate in the phase space of

the random variable d; fm is a prior probability density

function (PDF) of the inputs m, which encapsulates the

information about the model parameters and contaminant

source before any measurements are assimilated; fmjd is the

posterior PDF of m that represents refined knowledge

about m gained from the data d; fdjm is the likelihood

function, i.e., the joint PDF of concentration measurements

conditioned on the corresponding model predictions that is

treated as a function of m rather than d; and fd, called

‘‘evidence’’, serves as a normalizing constant that ensures

that fmjdðm; �Þ integrates to 1. Since e in (5) or (6) is

multivariate Gaussian, the likelihood function has the form

fdjmð ~m; ~dÞ ¼ 1

ð2pÞd=2jRj1=2
exp � 1

2
v>R�1v

� �
;

v ¼ ~d� gðmÞ:
ð8Þ

In high-dimensional nonlinear problems (i.e., problems

with large Nm), such as (1)–(4), the posterior PDF fdjm
cannot be obtained analytically and computation of the

integral in the evidence fd is prohibitively expensive.

Instead, one can use MCMC to draw samples from

fmð ~mÞfdjmð ~m; ~dÞ, without computing the normalizing con-

stant fd. A commonly used MCMC variant relies on the

Metropolis–Hastings sampling (Gamerman and Lopes

2006); this approach uses a zero-mean Gaussian PDF with

tunable variance r2 to generate proposals near a previous

sample, which are accepted with the acceptance rate given

by the relative posterior value. The performance of the

Metropolis-Hastings sampling depends on the choice of

hyperparameters, such as r2, and on how well the proposal

PDF matches the target PDF. The choice of an inappro-

priate proposal PDF might cause an extremely slow

convergence.

We deploy the DRAM sampling—specifically its

numerical implementation in Miles (2019)—to accelerate

the convergence of MCMC. It differs from the Metropolis–

Hasting sampling in two aspects. First, the delayed rejec-

tion (Green and Mira 2001) refers to the strategy in which a

proposal’s rejection in the first attempt is tied to the sub-

sequent proposal that can be accepted with a combined

probability for the two proposals; this rejection delay is

iterated multiple times in the sampling process. Second,

adaptive Metropolis (Haario et al. 2001) uses past sample

chains to tune the proposal distribution in order to accel-

erate the convergence of MCMC. The DRAM sampling is

more efficient than other sampling strategies for many

problems, including that of source identification (Zhang

et al. 2015).

3.2 Deep convolutional neural networks

Any MCMC implementation requires many solves of the

transport model (1)–(4) for different realizations of the

input parameters m. We use a CNN surrogate model to

alleviate the cost of each solve. Several alternative input-

output frameworks to construct a surrogate model are

shown in Table 1. Among these, autoregressive models

predict a concentration map only for the next time step.

When measurements are collected at multiple times, an

autoregressive model has to be repeatedly evaluated, for

each realization of the inputs m. If the release time, con-

ductivity field, and porosity are known, then m represents

the initial concentration field cinðxÞ. Otherwise, m is the

stack of the maps of cinðxÞ, conductivity field KðxÞ,
porosity field hðxÞ, etc.

We choose an image-to-image regression model, rather

than the autoregressive surrogate used in Mo et al.

(2019a, b) to solve a similar source identification problem,

Stochastic Environmental Research and Risk Assessment (2021) 35:639–651 641

123



for the following reasons. First, it is better at generalization

than image-to-sensors models. Second, although autore-

gressive surrogates excel at regression tasks (Mo et al.

2019a, b), they might become computationally expensive

when the measurement frequency is high.

Our image-to-image regression model replaces the PDE-

based transport model (1)–(4) or gðmÞ with a CNN NðmÞ
depicted in Fig. 1, i.e.,

g : m �!PDEs

f
cðxm; tiÞgM;I

m;i¼1 is replaced with N

: m �!CNN

f
cðx; tiÞgIi¼1:

ð9Þ

We start by attempting to demystify neural networks,

which are spreading virally throughout the hydrologic

community. A simplest way to relate the model output d to

the model input m without having to run the model g is to

replace the latter with a linear input-output relation

d̂ ¼ Wm, whereW is an Nd � Nm matrix of weights whose

numerical values are obtained by minimizing the discrep-

ancy between the d̂ and d values that are either measured or

computed with the model g or both. The performance of

this linear regression, in which the bias parameters are

omitted to simplify the presentation, is likely to be sub-

optimal, since a relationship between the inputs and outputs

is likely to be highly nonlinear. Thus, one replaces d̂ ¼
Wm with a nonlinear model d̂ ¼ rðWmÞ, in which a

prescribed function rð�Þ operates on each element of the

vector Wm. Examples of this so-called activation function

include a sigmoidal function (e.g., tanh) and a rectified

linear unit (ReLU). The latter is defined as

rðsÞ ¼ maxð0; sÞ, it is used here because of its current

popularity in the field. The nonlinear regression model d̂ ¼
rðWmÞ � ðr 	WÞðmÞ constitutes a single ‘‘layer’’ in a

network.

A (deep) fully connected neural network Nf comprising

Nl ‘‘layers’’ is constructed by a repeated application of the

activation function to the input,

d ¼ Nfðm;HÞ � ðrNl
	WNl�1Þ 	 . . . 	 ðr2 	W1ÞðmÞ:

ð10aÞ

In general, different activation functions might be used in

one network. The parameter set H ¼ fW1; . . .;WNl�1g
consists of the weights Wn connecting the nth and

ðnþ 1Þst layers. In this recursive relation,

s1 ¼ ðr2 	W1ÞðmÞ � r2ðW1mÞ;
s2 ¼ ðr3 	W2Þðs1Þ � r3ðW2s1Þ;
..
.

d ¼ ðrNl
	WNl�1ÞðsNl�2Þ � rNl

ðWNl�1sNl�2Þ;

8>>>><
>>>>:

ð10bÞ

the weights W1 form a d1 � Nm matrix, W2 is a d2 � d1
matrix, W3 is a d3 � d2 matrix,. . ., and WNl�1 is a Nd �
dNl�2 matrix. The integers d1; . . .; dNl�2 represent the

Table 1 Alternative input-

output frameworks for

construction of surrogate

models. The data are collected

at M locations xm
(m ¼ 1; . . .;M) at I times ti
(i ¼ 1; . . .; I)

Model Input Output Modeling frequency

PDE model m fcðx; tiÞg 1

Image-to-image m fcðx; tiÞg 1

Image-to-sensors m fcðxm; tiÞg 1

Autoregressive image-to-image cðx; tÞ cðx; t þ DtÞ I

Fig. 1 A surrogate model constructed with a convolution neural network (CNN). The surrogate takes as input a set of uncertain parameters m,

e.g., an initial contaminant concentration field cinðxÞ and returns as output temporal snapshots of the solute concentrations cðx; tiÞ in an aquifer
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number of neurons in the corresponding inner layers of the

network. The fitting parameters H are obtained, or the

‘‘network is trained’’, by minimizing the discrepancy

between the prediction and the output in the dataset.

The size of the parameter set H grows rapidly with the

number of layers Nl and the number of neurons dn in each

inner layer. When the output layer contains hundreds or

thousands of variables (aka ‘‘features’’, such as concen-

trations at observation wells collected at multiple times),

this size can be unreasonably large. By utilizing a convo-

lution-like operator to preserve the spatial correlations in

the input, CNNs reduce the size of H and scale much better

with the number of parameters than their fully connected

counterparts. CNNs are widely used to perform image-to-

image regression. Details about a convolutional layer are

not main concern of this study; we refer the interested

reader to Goodfellow et al. (2016) for an in-depth

description of CNNs. In this study, a CNN is trained to

predict the concentration map at times when the mea-

surements were obtained.

Specifically, we use a convolutional encoder-decoder

network to perform the regression with a coarse-refine

process. In the latter, the encoder extracts the high-level

coarse features of the input maps, and the decoder refines

the coarse features to the full maps again (Mo et al.

2019a, b, fig. 2). The L1-norm loss function, L2-norm

weight regularization, and stochastic gradient descent

(Bottou 2010) are used in the parameter estimation process.

It is worthwhile emphasizing that unlike some surrogate

models, e.g., polynomial chaos which can predict a solu-

tion at any time, the CNN used in this study predicts only

concentration maps for a short period. The reason is that

for the inverse problem under consideration, only obser-

vations at measurement times are of interests and a model’s

ability to predict concentrations at later times is immaterial.

4 Numerical experiments

We use the CNN-based MCMC with DRAM sampling to

identify a contamination source from sparse concentration

measurements. A PDE-based transport model used to

generate synthetic data is formulated in Sect. 4.1. Its CNN-

based surrogate is developed and analyzed in Sect. 4.2. The

performance of our approach in terms of the accuracy and

efficiency vis-à-vis the PDE-based MCMC with DRAM

sampling is discussed in Sect. 4.3.

4.1 Contaminant transport model

Our solute transport model consists of (1)–(4) with

RðcÞ ¼ 0. A spatially varying hydraulic conductivity field

KðxÞ is shown in Fig. 2 for a 1000 m by 2000 m

rectangular simulation domain discretized into 41� 81

cells. We use the fast Fourier transform (see Algorithm 3 in

Lang and Potthoff (2011)) to generate KðxÞ as a rescaled

realization of the zero-mean multivariate Gaussian random

field with the two-point covariance function

Cðx; yÞ ¼
Z
R2

e�2pihp;x�yijpj�7=4
d p1 d p2;

where h�; �i represents the Euclidean inner product on R2,

and p ¼ ðp1; p2Þ>.
Porosity h and dispersivities kL and kT are constant. The

values of these and other flow and transport parameters,

which are representative of a sandy alluvial aquifer in

Southern California (Liggett et al. 2015, 2014), are sum-

marized in Table 2. Equation (4) is used to obtain the

dispersion coefficients.

We consider an instantaneous, spatially distributed

contaminant release taking place at time t0 ¼ 0. This

replaces the source term rðx; tÞ ¼ qsðx; tÞcsðx; tÞ in (3)

with the Dirac-delta source rðx; tÞ ¼ rðxÞdðtÞ or, equiva-

lently, with an unknown initial contaminant distribution

cinðxÞ. Our goal is to reconstruct the latter from the noisy

concentration data �cm;i collected at M ¼ 20 locations

fxmgMm¼1 at ftigIi¼1 ¼ f3; 4; . . .; 18Þ years after the con-

taminant release (I ¼ 16).

We used Flopy (Bakker et al. 2016), a Python

implementation of MODFLOW Harbaugh (2005) and

MT3DMS Bedekar et al. (2016), to solve the flow (1) and

x1 [m]

x
2
[m

]

lnK

0
0

500 1000 1500 2000

400

800

1

2

3

4

Fig. 2 Hydraulic conductivity KðxÞ [m/d], in logarithm scale

Table 2 Values of hydraulic and transport parameters, which are

representative of sandy alluvial aquifers in Southern California

(Liggett et al. 2015, 2014)

Parameter Value Units

Porosity, h 0.3 -

Molecular diffusion, Dm 10�9 m2/d

Longitudinal dispersivity, aL 10 m

Dispersivity ratio, aL=aT 10 -
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transport (3) equations, respectively. With constant

hydraulic head values on the left and right boundaries, the

head distribution hðxÞ is shown in Fig. 3, together with the

locations of 20 observational wells.

The initial contaminant distribution consists of Np co-

mingling Gaussian plumes,

cinðx1; x2Þ ¼
XNp

i¼1

Si exp �ðx1 � x1;iÞ2 þ ðx2 � x2;iÞ2

2r2i

" #
;

ð11Þ

each of which has the strength Si and the width ri, and is

centered at the point ðx1;i; x2;iÞ. The true, yet unknown,

values of these parameters are collated in Table 3 for

Np ¼ 2; they are used to generate the measurements �cm;i by

adding the zero-mean Gaussian noise with standard devi-

ation r� ¼ 0:001. These data form the 20 breakthrough

curves shown in Fig. 4.

The lack of knowledge about the initial contaminant

distribution cinðxÞ is modeled by treating these parameters,

m ¼ ðx1;i; x2;i;ri; SiÞ with i ¼ 1 and 2, as random variables

distributed uniformly on the intervals specified in Table 3.

These uninformative priors are refined as the measure-

ments are assimilated into the model predictions.

4.2 Construction and accuracy of CNN surrogate

As discussed in Sect. 3, although only model predictions at

20 wells are strictly necessary for the inversion, the use of

full concentration distributions cðx; tiÞ as output of the

CNN-based surrogate has better generalization properties.

We used N ¼ 1600 solutions (Monte Carlo realizations) of

the PDE-based transport model (3) for different realiza-

tions of the initial condition cinðxÞ to train the CNN;

another Ntest ¼ 400 realizations were retained for testing.

These 2000 realizations of the initial concentration cinðxÞ
in (11) were generated with Latin hyper-cube sampling of

the uniformly distributed input parametersm from Table 3.

The CNN contains three dense blocks with Nl ¼ 6; 12; 6

internal layers, uses a growth rate Rg ¼ 40, and has Nin ¼
64 initial features; it was trained for 300 epochs. The

CNN’s output is 16 stacked maps of the solute concen-

tration cðx; tiÞ at ti ¼ ð3; 4; . . .; 18Þ years after the con-

taminant release.

Figure 5 exhibits temporal snapshots of the solute con-

centrations alternatively predicted with the transport

model, cðx; tiÞ, and the CNN surrogate, ĉðx; tiÞ, for a given
realization of the initial concentration cinðxÞ at eight dif-

ferent times ti. The root mean square error of the CNN

surrogate, kcðx; tiÞ � ĉðx; tiÞk2, falls to 0.023 at the end of

the training process. It is worthwhile emphasizing here that

the N ¼ 1600 Monte Carlo realizations used to train our

CNN surrogate are but a small fraction of the number of

forward solves needed by MCMC.

4.3 MCMC Reconstruction of contaminant source

We start by analyzing the performance of MCMC with

DRAM sampler of m when the PDE-based transport

model (3) is used to generate realizations of cðx; tiÞ. Since
the model is treated as exact, this step allows us to establish

the best plume reconstruction provided by our implemen-

tation of MCMC. The latter relied on 100000 samples of

m, the first half of which was used in the ‘‘burn-in’’ stage

and, hence, are not included into the estimation sample set.

Figure 6 exhibits sample chains for each of the six

parameters m characterizing the initial plume configuration

cinðxÞ. Visual inspection of these plots reveals that MCMC

does a good job identifying the centers of mass of the two

co-mingling plumes, ðx1;i; x2;iÞ with i ¼ 1 and 2; identifi-

cation of the spatial extent, ri, and strength, Si, of these

plumes is less accurate.

Table 4 provides a more quantitative assessment of the

performance of the PDE-based MCMC. The standard

deviations of the MCMC estimates of the plumes’ centers

of mass, ðx1;i; x2;iÞ, is no more than 1% of their respective

means, indicating high confidence in the estimation of

these key parameters. The standard deviations of the other

parameter estimates, relative to their respective means, are

appreciably higher. Also shown in Table 4 are Sokal’s

adaptive truncated periodogram estimator of the integrated

autocorrelation time s (Sokal 1997), and the Geweke

convergence diagnostic p (Geweke 1991). These quantities

are routinely used to diagnose the convergence of Markov

chains. The former provides an average number of

dependent samples in a chain that contain the same infor-

mation as one independent sample; the latter quantifies the

similarity between the first 10% samples and the last 50%

samples.

x1 [m]

x
2
[m

]

0
0

500 1000 1500 2000

400

800

0

4

8

h(x) [m]

Fig. 3 Hydraulic head distribution hðxÞ [m] and locations of 20

observational wells. The flow is driven by constant heads hL ¼ 10 m

and hR ¼ 0 maintained at the left and right boundaries, respectively;

no-flow boundary conditions are assigned to the upper and lower

boundaries
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Although somewhat less accurate, the estimates of the

spatial extent, ri, and strength, Si, of the co-mingling

plumes is more than adequate for field applications. Their

estimation errors cannot be eliminated with more compu-

tations, as suggested by a very large number of samples

used in our MCMC. Instead, they reflect the relative dearth

of information provided by a few sampling locations.

Next, we repeat the MCMC procedure but using the

CNN surrogate to generate samples. Figure 7 exhibits the

resulting MCMC chains of the parameters m, i.e., the

parameter values plotted as function of the number of

samples N (excluding the first 50000 samples used in the

burn-in stage). Because of the prediction error of the CNN

surrogate, the chains differ significantly from their PDE-

based counterparts in Fig. 6. They are visibly better mixed,

an observation that is further confirmed by the fact that the

integrated autocorrelation times s in Table 5 are much

smaller than those reported in Table 4. However, the

standard deviations (Std) for the parameter estimators are

slightly larger than those obtained with the PDE-based

MCMC; this implies that the CNN prediction error

undermines the ability of MCMC to narrow down the

posterior distributions. The posterior PDFs for the centers

of mass of the two commingling plumes, ðx1;i; x2;iÞ, are
shown in Figs. 8 and 9. The discrepancy between the

actual and reconstructed (as the means of these PDFs)

locations is within 7 m; it is of negligible practical

significance.

Comparison of Tables 4 and 5 reveals that, similar to

the PDE-based sampler, the CNN-based sampler provides

more accurate estimates of the source location ðx1;i; x2;iÞ
than of its spread (ri) and strength (Si). However, in

practice, one is more interested in the total mass of the

released contaminant (M) rather than its spatial

Table 3 Prior uniform distributions for the meta-parameters m characterizing the initial contaminant plume (11), and the true, yet unknown,

values of these parameters

x1;1 x2;1 x1;2 x2;2 S1 r1 S2 r2

Interval [0,700] [50,900] [0,700] [50,900] [0,100] [13,20] [0,100] [13,20]

Truth 325 325 562.5 625 30 15 50 17

0.0025

00 0 0 0

0.55
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Fig. 4 Contaminant breakthrough curves cðxm; tÞ observed in the wells whose locations xm (m ¼ 1; . . .; 20) are shown in Fig. 3
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configuration (characterized by ri and Si). The mass of

each of the commingling plumes in (11), M1 and M2, is

Mi ¼ h
Z
Xi

cinðxÞ d x; Xi : ½x1;i 
 100� � ½x2;i 
 100�; i ¼ 1; 2:

ð12Þ

Both the PDE- and CNN-based MCMC strategies yield

accurate estimates of M1 and M2 (Tables 4 and 5).

c(
x
,t
)

c (
x
,t
)

ĉ(
x
,t
)

ĉ(
x
,t
)

c
−

−
ĉ

c
ĉ

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5 Temporal snapshots of the solute concentration alternatively

predicted with the transport model (c, top row) and the CNN surrogate

(ĉ, second row) for a given realization of the initial concentration

cinðxÞ. The bottom row exhibits the corresponding errors of the CNN

surrogate, ðc� ĉÞ. The times in the upper left corner correspond to the

number of years after contaminant release.
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Fig. 6 MCMC chains of the parameters m characterizing the initial

plume configuration cinðxÞ obtained by sampling from the transport

model (3). Each Markov chain represents a parameter value plotted as

function of the number of iterations (links in the chain). The black

horizontal lines are the true values of each parameter
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4.4 Computational efficiency of MCMC with CNN
surrogate

Our CNN-based MCMC is about 20 times faster than

MCMC with the PDE-based transport model (Table 6).

This computational speed-up can be attributed to either the

algorithmic improvement or the different hardware archi-

tecture or both. That is because while the off-the-shelf

PDE-based software utilizes central processing units

(CPU), NN training takes place on graphics processing

units (GPUs), e.g., within the GoogleColab environment

used in our study, without much effort on the user’s part.

To disentangle these sources of computational efficiency,

we also run the CNN-based MCMC on the same CPU

architecture used for the PDE-based MCMC. Table 6

demonstrates that the CNN-based MCM ran on CPU is

about twice faster than the PDE sampler. This indicates

that the computational speed-up of the CNN-based sampler

is in large part due to the use of GPUs for CNN-related

computations. One could rewrite PDE-based transport

models to run on GPUs, but it is not practical. At the same

time, no modifications or special expertise are needed to

run the Pytorch implementation (Paszke et al. 2019) of

neural networks on GPUs.

5 Conclusions and discussion

We proposed an MCMC approach that uses DRAM sam-

pling and draws samples from a CNN surrogate of a PDE-

based model. The approach was used to reconstruct con-

taminant release history from sparse and noisy measure-

ments of solute concentration. In our numerical

experiments, water flow and solute transport take place in a

Table 4 MCMC chain statistics—mean, standard deviation, inte-

grated autocorrelation time s, and Geweke convergence diagnostic

p—of the parameters m characterizing the initial plume configuration

cinðxÞ obtained by sampling from the PDE model. Also shown is the

total contaminant mass of the two co-mingling plumes, M1 and M2

Parameter True value Mean Std s p

x1;1 325 327.5836 3.3924 1046.3394 0.9991

x2;1 325 325.7773 1.6108 1289.5577 0.9929

x1;2 562.5 564.3320 1.9967 2218.9018 0.9881

x2;2 625 624.7743 0.3203 402.0658 0.9998

S1 30 18.6853 0.5007 1713.8339 0.9699

r1 15 19.1371 0.2365 2172.9087 0.9837

S2 50 44.3071 2.8493 4441.9589 0.7632

r2 17 18.0939 0.5932 4409.0626 0.8832

M1 20.4244 20.6709 - - -

M1 43.5802 43.74 - - -

Fig. 7 MCMC chains of the parameters m characterizing the initial

plume configuration cinðxÞ obtained by sampling from the CNN

surrogate (10). Each Markov chain represents a parameter value

plotted as function of the number of iterations (links in the chain). The

black horizontal lines are the true values of each parameter

Table 5 MCMC chain statistics—mean, standard deviation, inte-

grated autocorrelation time s, and Geweke convergence diagnostic

p—of the parameters m characterizing the initial plume configuration

cinðxÞ obtained by sampling from the CNN surrogate. Also shown is

the total contaminant mass of the two co-mingling plumes,M1 andM2

Parameter True value Mean Std s p

x1;1 325 322.3274 9.8827 189.8946 0.9944

x2;1 325 328.8859 3.9956 231.9033 0.9992

x1;2 562.5 555.4074 4.3167 35.8577 0.9983

x2;2 625 623.8933 0.8944 43.2115 0.9999

S1 30 28.4441 6.4531 514.4594 0.8100

r1 15 15.9822 1.9291 537.7868 0.9094

S2 50 64.6830 12.1613 540.6132 0.9962

r2 17 15.1550 1.6076 543.3779 0.9964

M1 20.4244 21.9306 - - -

M1 43.5802 44.8789 - - -
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heterogeneous two-dimensional aquifer; the goal is to

identify the spatial extent and total mass of two commin-

gling plumes at the moment of their release into the

aquifer. Our analysis leads to the following major

conclusions.

1. The CNN-based MCMC is able to identify the

locations of contaminant release, as quantified by the

centers of mass of commingling spills forming the

initial contaminant plume.

2. Although somewhat less accurate, the estimates of the

spread and strength of these spills is adequate for field

applications. Their integral characteristics, the total

mass of each spill, are correctly identified.

3. The estimation errors cannot be eliminated with more

computations. Instead, they reflect both the ill-posed-

ness of the problem of source identification and the

relative dearth of information provided by sparse

concentration data.

4. Replacement of a PDE-based transport model with its

CNN-based surrogate increases uncertainty in, i.e.,

widens the confidence intervals of, the source

identification.

5. The CNN-based MCMC is about 20 times faster than

MCMC with the high-fidelity transport model. This

computational speed-up is in large part due to the use

of GPUs for CNN-related computations, while the PDE

solver utilizes CPUs.

While we relied on a CNN to construct a surrogate of the

PDE-based model of solute transport, other flavors of NNs

could have be used for this purpose. We are not aware of

published comparisons of alternative NNs in the context of

image-to-image prediction, which is required by our

MLMC method. In the somewhat related context of spec-

trum sensing (Ye et al. 2019), the comparison of a fully

connected neural network (FNN), a recurrent neural net-

work (RNN), and a CNN revealed the FNN to have small

utility for ordered and correlated samples like images; the

CNN and RNN to exhibit a comparable performance in

terms of accuracy, and the RNN to be more efficient in

terms of memory requirements.

In general, the direct comparison of the performance of

a FNN and a CNN on the same task is not helpful and can

be misleading because of the freedom of the architecture of

each network and the presence of multiple tuning param-

eters in both. However, the results reported in Sect. 3.2

suggest that a FNN would contain significantly more

parameters given the size of the input and output images.

This applies even to a relatively shallow FNN. Some
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Fig. 8 Probability density

functions (solid lines) and

histograms (gray bars) of the

centers of mass of the two

commingling spills, ðx1;1; x2;1Þ
and ðx1;2; x2;2Þ, computed with

MCMC drawing samples from

the PDE-based transport model.

Vertical dashed lines represent

the true locations
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studies in image classification, e.g., (Chen and Jahanshahi

2017), claim that, relative to FNNs, CNNs require more

training data to achieve convergence and avoid overfitting.

Even if this conclusion generalizes to our application it is

of little practical significance, because we found the com-

bined cost of the training-data generation and NN training

to be significantly lower than the cost of MCMC sampling.

Properly trained autoregressive models and RNNs can

be a strong competitor to CNNs, because they perform like

a fixed time-step predictor and, consequently, might gen-

eralize better. RNNs are likely to be more expensive

because of higher prediction frequency, but require less

memory for each prediction. Our implementation of CNNs

utilized a parallel GPU architecture to carry out convolu-

tional operations. However, since GPUs become more

affordable, this drawback can be ignored.

Our computational examples deal with an instantaneous

contaminant release. Since a CNN has been shown to

provide an accurate surrogate of the PDE-based transport

model with temporally distributed sources (Mo et al.

2019a, b) and since MCMC is known to accurately

reconstruct prolonged contaminant release history (Bara-

jas-Solano et al. 2019), our CNN-based MCMC is expec-

ted to provide comparable computational gains when used

to identify prolonged contaminant releases.
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Table 6 Total run time (in s) of the MCMC samplers, Trun, based on

the PDE-based transport model and its CNN surrogate. The PDE

sampler uses CPUs; the CNN sampler is trained and simulated on

GPUs provided by GoogleColab; for the sake of comparison, also

reported is the run time of the CNN sampler on the CPU architecture

used for the PDE-based sampler. In all three cases, MCMC consists of

Nsam ¼ 105 samples. The average run-time per sample, Tave, is

defined as Tave ¼ ðTrun þ TtrainÞ=Nsum, where Ttrain is the CNN

training time

Trun Ttrain Tave

PDE 101849.0 0 1.01849

CNN on GPU 1101.7 4007.4 0.05109

CNN on CPU 37450.0 4007.4 0.41457
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