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Unique macroscopic properties of nanoporous metamaterials stem from their microscopic
structure. Optimal design of such materials is facilitated by mapping a material’s pore-network
topology onto its macroscopic characteristics. This is in contrast to both trial-and-error experi-
mental design and design based on empirical relations between macroscopic properties, such as
the often-used Bruggeman formula that relates a material’s effective diffusion coefficient to its
porosity. We use homogenization to construct such a map in the context of materials design that
maximizes energy/power density performance in electrochemical devices. For example, effec-
tive diffusion coefficients and specific surface area, key macroscopic characteristics of ion trans-
port in a hierarchical nanoporous material, are expressed in terms of the material’s pore
structure and, equally important, ion concentrations in the electrolyte and externally applied
electric potential. Using these microscopic characteristics as decision variables, we optimize
the macroscopic properties for two two-dimensional material-assembly templates and several
operating conditions. The latter affect the material’s performance through formation of an elec-
trical double layer at the fluid-solid interfaces, which restricts the pore space available for ion
transport. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4979466]

Advances in materials science offer a plethora of alter-
native strategies for generation of nanoporous metamaterials
with prescribed pore structures.1,2 This opens the possibility
of bottom-up design of application-specific materials that
optimize a desired macroscopic property, e.g., permittivity1

or electric capacitance.2 When not done by trial-and-error,
metamaterial assembly is often guided by phenomenological
relations between macroscopic properties. For example,
the effective diffusion coefficient, Deff, for a material with
porosity x and tortuosity s is estimated from the correspond-
ing molecular diffusion in free solvent, Dm, by using an
empirical model Deff¼xDm/s; if supplemented with another
assumption, s ¼ 1=

ffiffiffiffi
x
p

, this gives Bruggeman’s relation
Deff¼x3=2Dm.

Reliance on such macroscopic relations has a number of
limitations. They provide insufficient information about the
pore structure and, hence, are of limited use in its design.
Moreover, their veracity is questionable, especially when (in
the case of diffusion) pores are small and concentration gra-
dients are large. While Bruggeman’s relation is widely used
to model ion diffusion in charged porous media (e.g., Ref. 3
and references therein), it neglects the diffusion coefficient’s
reduction due to formation of an electrical double layer
(EDL) on the electrolyte-solid interfaces. Effects of the latter
phenomenon are magnified in nanoporous materials, wherein
adjacent EDLs can overlap, appreciably restricting the pore
space available for ion transport. Such materials are mooted
as a breakthrough technology for energy storage.4,5

Dynamic maps expressing macroscopic parameters in
terms of microscopic properties of porous media are derived
by means of upscaling techniques. Crucially, such parameters

depend not only on the pore structure but also on pore-scale
processes that, in the case of electrochemical systems, affect
the EDL formation. Examples of upscaling analyses of pore-
scale electrochemical phenomena described by Poisson-
Nernst-Planck’s equations can be found in Refs. 6–11. Our
goal is to use the results of one such analysis11 to inform the
design of hierarchical nanoporous materials, which optimizes
a material’s macroscopic properties (diffusion coefficient and
electric capacitance) by using the pore structure and operation
conditions (electrolyte concentration and externally imposed
electric potential) as decision variables.

Macroscopic representations of a charged nanoporous
material X treat it as a continuum, without separating it into
the pore space P and the solid skeleton S. Macroscopic state
variables, ion concentration in an electrolyte C(x, t), and the
corresponding electric potential U(x, t) are defined at every
point x 2 X for time t" 0. For binary electrolytes, their spatial
variability induces the macroscopic Nernst-Planck fluxes of
anions (–) and cations (þ), J6

NP ¼ $!6D6ðrCþ z6CrÛÞ.
Here, !6 and z6 are the ions’ dissociation coefficients and
charges (valencies), respectively; F is the Faraday constant; R
is the gas constant; T is temperature; Û ¼ FU=ðRTÞ; and D6

are the effective diffusion coefficients. Accounting for charge
neutrality (zþ!þ þ z$!$ ¼ 0) and considering symmetric
binary electrolytes (!þ ¼ !$ ' ! and zþ ¼ $z$ ' z) to sim-
plify the presentation, the latter are second-order semi-posi-
tive-definite tensors given by11

D6 ¼ D
6
mx

G6

ð

PU
e7zûEDL Iþryv

>
6

# $
dy; (1)

where x is the material’s porosity; D6
m are molecular diffu-
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G6 ¼
ð

PU
e7ûEDL dy; ûEDL ¼

FuEDL

RT
; (2)

I is the identity matrix and uEDLðyÞ is the electrical potential
distribution inside the EDL, which satisfies a Poisson-
Boltzmann equation (PBE),

k2
Dr

2ûEDL ¼ sinhð$zûEDLÞ; y 2 PU ; (3)

subject to the boundary condition uEDL ¼ uC on the fluid-
solid interface CU . The U-periodic vector functions v6ðyÞ,
which serve as a bridge between the pore scale and contin-
uum scale by representing the pore-scale fluctuations of the
EDL in the effective model of ion diffusion, are computed as
solutions of boundary-value problems

ry e7zûEDLðIþryv
>
6Þ

h i
¼ 0; y 2 PU (4a)

subject to

nðIþryv
>
6Þ ¼ 0; y 2 CU ;

ð

PU
v6dy ¼ 0: (4b)

These are defined inside the pore space PU of the unit cell U
that serves as a building (periodically repeating) block of
the nanoporous material X (e.g., those in Fig. 1). In (3),
k2

D ¼ ðRTEÞ=ð2F2z!CinÞ is the square of the Debye length,
with E and Cin denoting the dielectric constant of the electro-
lyte and the initial ion concentration, respectively.

Tensorial nature of the effective diffusion coefficients
stems from the material’s pore structure, PU ; the latter
directly affects the magnitude of v6 and, hence, D6. It fol-
lows from (1)–(4) that the off-diagonal components of the
diffusion tensors D6 are zero, D6

ij ¼ 0 for i 6¼ j. The diagonal
terms are presented in the form of normalized binary diffu-
sion coefficients,3

Di '
2Dþii D$ii

Dþii þ D$ii
; i ¼ 1; 2; (5)

which are normalized with Dm for Dþm ¼ D$m ' Dm.
Equations (1)–(4) map the pore structure on the macro-

scopic material’s property D6. The material’s operational
conditions affect these diffusion coefficients through the
dependence of uEDL on the total (initial) ion concentration
Cin and externally applied electric potential V. Alternative
templates used to generate two-dimensional hierarchical
nanoporous materials (Materials 1 and 2) are shown in Fig. 1.

We use sizes of the micropores and mesopores represen-
tative of materials proposed for electrical double layer
capacitors.13,14 Specifically, the diameter of nanobridges
(micropores) in Fig. 1 is set to d¼ 0.7 nm and their length to
l¼ 3 nm; the mesopore radius R is allowed to vary between
2 nm to 5 nm; and the half-width of the throats between two
adjacent mesopores is set to r¼ 0.4 nm.

The reliance on the PBE (3) to compute the EDL poten-
tial uEDL restricts our analysis to dilute concentrations. For
example, the PBE was shown to yield accurate predictions for
low concentrations of monovalent electrolytes.15,16 We use
Cin¼ 0.1 M (mol/L) as the upper limit of ion concentration.

External voltage V is limited by the breakdown voltage
of electrolyte species, Vbr. For aqueous-solution electrolytes,
Vbr can reach 1.23 V, while for organic electrolytes Vbr can
be as high as 4 V.5 For a given V, the diffuse-layer potential,
uC, on the charged material is estimated from

uC ¼
V

2
$ /ecm $

r
CH

; (6)

where /ecm ( 0:1–0:25 V is electrical capillary maximum,
r ¼ rðuCÞ is the surface charge density, and CH( 20
– 45 lF/cm2 is the Helmholtz capacitance.11,16 For aqueous-
solution electrolytes, this equation yields uC in the range
between 0.2 V and 0.4 V. The results presented below are for
uC ¼ 0:2 and 0.4 V. Finite-element solutions of (3) and (4)
and Gaussian quadratures in (1) and (2) are calculated with
COMSOL software.

Prior to identification of pore structures that yield optimal
macroscopic properties of Materials 1 and 2, we explore effects
of the materials’ operating regime (initial concentration Cin and
diffuse-layer potential uC) on the principle components, D1

and D2, of the normalized binary diffusion coefficient in (5).
Figure 2 shows the dependence of D1 and D2 on mesopore
radius R for fixed throat width 2 r¼ 0.8 nm, uC ¼ 0:2 V and a
range of values of Cin. Overall, Material 2 has larger effective
diffusion coefficients D1 and D2. The longitudinal diffusion
coefficient of both materials, D1, exhibits qualitatively different
behaviors for highly dilute (Cin¼ 0.01 M) and more concen-
trated (Cin¼ 0.05 and 0.1 M) electrolytes; D1¼D1(R) is con-
vex in the former case and concave in the latter. The highly
dilute electrolyte has the EDL whose thickness exceeds that of
its more concentrated counterparts; this reduces the pore space
available for ion migration, resulting in diffusion coefficients
D1 which are smaller than those for uncharged materials.

The transverse diffusion coefficient, D2, for both materials
generally decreases with mesopore radius R (Fig. 2). That is
because the rise of R increases both porosity and, for the fixed

FIG. 1. Templates for generation of hierarchical nanoporous materials con-
taining mesopores of radius R and micropores of diameter d (pore-throat
size is 2 r).2,12
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value of pore-throat width 2r, tortuosity, with the latter having
the dominant effect. The transverse diffusion coefficients D2

for the electrically neutral Materials 1 and 2 for all R and Cin

tend to exceed those for their electrically charged counterparts.
The non-monotonic behavior of D2(R) for Material 2

in Fig. 2 occurs at relatively low diffuse layer potential uC
¼ 0:2 V and relatively high initial concentration Cin¼ 0.1 M.
It might reflect the combined effects of externally applied volt-
age V, electrolyte concentration Cin, and pore structure. It van-
ishes when a larger electric field V is applied, resulting in
uC " 0:3 M (Fig. 3).

The complex behavior of the effective diffusion coeffi-
cient for electrically charged materials, shown in Figs. 2 and 3,
suggests a possibility of designing and fine-tuning nanoporous
materials not only for specific applications but also for particu-
lar operating regimes. A material, which has optimal sorption
characteristics under electrically neutral conditions,12 might
exhibit suboptimal electrosorption properties due to the
presence of the EDL whose width is controlled by external
conditions. Moreover, while mesopores provide good electro-
chemical accessibility but a relatively low specific surface
area, micropores often have the size comparable to the Debye
length and, hence, possess a large specific surface area but
restrict ion transport. Hence, optimal design of such hierarchi-
cal nanoporous materials should involve optimization with
respect to both the pore structure and operating conditions.

Suppose that our goal is to design a metamaterial that
has both the maximum sorbing capacity (or, equivalently,
specific surface area A) and the binary diffusion coefficients
that do not deviate by more than 6 5% from their target val-
ues D?

1 and D?
2; the material is to operate in a device with

prescribed Cin and uC. This formulation gives rise to a con-
straint optimization problem

max
p2P
AðpÞ; p ' fR; r; d; lg (7a)

subject to

0:95D?
i ) DiðpÞ ) 1:05D?

i ; i ¼ 1; 2; (7b)

where P is the four-dimensional parallelepiped defining the
low (Llow) and upper (Lup) limits of the four pore-scale deci-
sion variables {R, r, d, l}, whose values are reported in Table
I. This table also contains the target values of the normalized
binary diffusion coefficients D?

1 and D?
2 for Materials 1 and 2

that are estimated from their respective maxima in Fig. 3.
Solutions of the optimization problem (7) are obtained

with the derivative-free Nelder-Mead method implemented in
COMSOL. They are presented in Table II for operating condi-
tions characterized by uC ¼ 0:3 V and either Cin¼ 0.1 M or
Cin¼ 0.01 M. For both material templates, optimal macro-
scopic properties are obtained by choosing the mesopore diam-
eter 2 R( 3 – 4 nm, the mesopore-throat width 2r* 1.0 nm,
and the microchannels of diameter d* 0.6 nm and length
l* 3.3 nm. In materials design, one should increase these val-
ues by adding the Stern layer’s width. Both Materials 1 and 2
are nearly isotropic, with the longitudinal and transverse diffu-
sion coefficients D1*D2. Material 2 outperforms Material 1 in
terms of both diffusive characteristics and electrosorption
capacity (specific surface area).

In summary, charged solid materials exert considerable
influence on the transport process via accumulation of
ions within the EDL, affecting the optimal pore structure of
nanoporous materials designed to handle, e.g., solute transport

FIG. 2. Dependence of principal com-
ponents, D1 and D2, of the binary dif-
fusion coefficient tensor on mesopore
radius R, for Materials 1 and 2 with
pore-throat width 2 r¼ 0.8 nm, diffuse-
layer potential uC ¼ 0:2 V, and several
values of initial ion concentration Cin.
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with Langmuir adsorption.12 Optimal design of such materials
is facilitated by mapping a material’s pore-network topology
onto its macroscopic characteristics. Homogenization theory
was employed to construct such a map, which then was
used to design materials with optimal energy/power density

performance. The latter step relied on two-dimensional mate-
rial-assembly templates. Follow-up studies will deal with opti-
mal selection from a set of three-dimensional templates.
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FIG. 3. Dependence of principal com-
ponents, D1 and D2, of the binary diffu-
sion coefficient tensor on mesopore
radius R, for Materials 1 and 2 with
pore-throat width 2 r¼ 0.8 nm, initial
ion concentration Cin¼ 0.1 M, and sev-
eral values of diffuse-layer potential uC.

TABLE I. Low (Llow) and upper (Lup) limits of the pore-scale decision varia-

bles that define the pore structure of Materials 1 and 2. Target values for the
longitudinal (D?

1) and transverse (D?
2) binary diffusion coefficients for these

two materials.

R (nm) r (nm) d (nm) l (nm)

Llow 1.6 0.5 0.6 3.0

Lup 3.0 0.7 1.0 5.0

Material 1 Material 2

Cin (M) D?
1 D?

2 D?
1 D?

2

0.01 0.24 0.24 0.37 0.37

0.1 0.24 0.23 0.36 0.36

TABLE II. Optimal microscopic and macroscopic properties of Materials 1

and 2.

Cin (M) R (nm) r (nm) d (nm) l (nm) x D1 D2 A

Material 1

0.01 1.79 0.40 0.60 3.15 0.42 0.24 0.25 1.23

0.1 1.76 0.57 0.60 3.30 0.42 0.20 0.23 1.24

Material 2

0.01 1.81 0.58 0.60 3.69 0.62 0.37 0.38 1.42

0.1 1.74 0.60 0.60 3.13 0.60 0.36 0.37 1.46
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