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Multiscale models of ion transport in porous media relate microscopic material properties (e.g., pore size distribution and pore
connectivity) to their macroscopic counterparts (e.g., porosity, effective diffusion coefficient and effective electrical conductivity).
We derive a macroscopic model of ion transport in electrically charged nanoporous materials, and the corresponding effective
diffusion coefficient, electric conductivity and transference numbers, that explicitly account for dynamic changes in electrical double
layer (EDL) and possible overlap of EDLs in nanopores. The general equations comprising this model reduce to a model of an
electrical double layer capacitor (EDLC) used to interpret measurements of the EDLC voltage response to charging. While the
original representation relies on empirical coefficients (e.g., Bruggeman’s relation), our effective coefficients are derived from the
first principles and vary with a range of electrochemical conditions (e.g., initial concentration of ions in the electrolyte). The resulting
model predictions of the EDLC voltage response match the experimental data better than the original model does.
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Rapid growth of the global economy, depletion of fossil fuels, and
increasing environmental concerns accelerate the shift to renewable
(e.g., solar and wind) energy production and electric and/or hybrid
electric vehicles with low CO2 emissions. These and other applications
rely on energy conversion and storage technologies. Some of the
most effective and practical technologies for electrochemical energy
conversion and storage are batteries, fuel cells, and electrochemical
supercapacitors. Their performance needs to substantially improve in
order to meet power density and energy density demands. This requires
breakthroughs in our understanding of electrochemical phenomena at
the nanoscale and ability to model these processes at the device scale,
and parlaying them into design of new materials and devices.

Nanoscale pore-structure of, e.g., electrodes affects energy stor-
age through formation of electrical double layer (EDL) at the solid
material/electrolyte interfaces.1–5 EDL formation also plays an impor-
tant role in other physical, chemical and biological systems, including
separation processes used to remove heavy metals from aqueous so-
lutions, groundwater remediation mediated by electrosorption, and
capacitive desalination.6

Nanoporous materials with a hierarchical porous structure are
thought to possess attractive electrosorption and capacitance char-
acteristics due to their large specific surface area (provided by mir-
cropores) and fast transport (facilitated by mesopores).7 However,
their large surface areas do not always translate into more energy
stored on the surface, because the local electrical potential formation
can both dominate ion transport and sorption inside nanopores and
restrict pore accessibility. For example, poor electrochemical acces-
sibility of micropores was found to significantly reduce the extent
of surface reactions between the electrode material and electrolyte.8,9

This suggests that porous structure of a nanoporous material controls
power density and accessibility to the energy stored on the interface.

Qualitative understanding and quantitative predictions of this phe-
nomenon and, more specifically, the effects of EDL on ion trans-
port are a prerequisite for bottom-up design of new nanoporous
metamaterials.10 Guided by the goal of maximizing an electrode’s
specific surface area accessible to electrolyte, an optimal design of
such materials must account for the potential overlap of EDLs in
nanoporous structures saturated with a very dilute solution, which
decreases not only the ion transport rate but also the equilibrium con-
centration of ions inside the pores. Such design strategies are guided
by mathematical models that relate microscopic material properties
(e.g., pore size distribution and pore connectivity) to their macro-
scopic counterparts (e.g., porosity, effective diffusion coefficient and
effective electrical conductivity).

A commonly used approach is to postulate the equivalency of
mathematical descriptors on the pore and continuum scales and to use
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phenomenological relations to express coefficients of the continuum-
scale equations in terms of their pore-scale counterparts. For instance,
a diffusion process taking place within the pore network of a porous
electrode might be described by diffusion equations at both scales,
and the molecular diffusion coefficient D in the pore-scale equation
is replaced at the continuum scale with an assumed effective diffusion
coefficient Deff = ωD/τ, where ω and τ are the material’s porosity
and tortuosity, respectively, often supplemented with Bruggeman’s
relation11 τ = ω−1/2. This widely-used expression for estimation of
effective properties in electrochemical systems is thought to be ap-
plicable for materials with low porosity, connected electrolyte trans-
port paths, and spherical electrode particles.12 Many porous electrode
metamaterials and local electrical conditions (electrolyte concentra-
tion and applied electric field) do not satisfy these conditions, under-
mining the veracity of the Bruggeman model (as we demonstrate in
this study) or, at least, the value of its exponent.11,13

Derivation of more rigorous models often relies on homogeniza-
tion, e.g., via multiple-scale expansions. For example, it was used to
derive macroscopic Poisson-Nernst-Planck (PNP) equations under as-
sumptions of either a fixed surface charge density on the solid matrix14

or an infinitely thin EDL;15 to obtain macroscopic Onsager’s recip-
rocal relations from a linearized version of PNP equations;16 and to
derive a macroscopic PNP-based model of water flow and ion trans-
port in geological deformable porous media.17–20 In addition to pro-
viding a map between the microscopic and macroscopic parameters
and processes, homogenization establishes both the rigorous macro-
scopic descriptors grounded in the first principles and the limits of
applicability of macroscopic models.21 The homogenization analyses
mentioned above are grounded in physical limitations: the assumption
of a fixed surface charge density translates into an upscaled Poisson
equation that does not contain information about the local electric
potential distribution14 and is not applicable for electrochemical pro-
cesses in which zeta potential and solution concentration change in
response to charging/discharging.19,20

In contrast to these and other similar studies (e.g., Ref. 22) we
derive a macroscopic model of ion transport in electrically charged
nanoporous materials, and the corresponding effective diffusion coef-
ficient, electric conductivity and transference numbers, that explicitly
account for dynamic changes in the EDL. Our model goes beyond
the infinitely thin EDL approximation and, hence, accounts for possi-
ble overlap of EDLs in nanopores. The general equations comprising
this model reduce to a model of an electrical double layer capacitor
(EDLC) used to interpret measurements of the EDLC voltage response
to charging.23 While the original model23 relies on empirical coeffi-
cients, such as Deff = ωD/τ or its Bruggeman’s analog Deff = ω3/2 D,
our effective coefficients are derived from the first principles and vary
with electrochemical conditions (e.g., initial concentration of ions in
the electrolyte). The resulting model predictions of the EDLC voltage
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response match the experimental data23 better than the original model
did.

Problem Description

We consider a hierarchical porous material � with a characteristic
length L . Let P denote the part of this material occupied by nanopores
whose characteristic length scale, e.g., a typical pore diameter, is l such
that ε ≡ l/L � 1. The impermeable solid skeleton S occupies the rest
of the nanoporous material, i.e., � = P ∪ S . The (multi-connected,
smooth) boundary between the pore space P and the solid skeleton S
is denoted by �.

The pore space P is completely occupied by an ionized fluid, in
which cations and anions have concentrations c+(x, t) and c−(x, t),
respectively; these concentrations have units [mol/L3], and vary both
in space, x ∈ P , and time t . Interactions between the ionized solution
and static charges at the solid-fluid interface � give rise to an electrical
double layer.

Microscopic models of ion transport through the hierarchical
porous material � track the spatiotemporal evolution of c±(x, t) inside
a complex pore network P; they rest on a solid electrochemical foun-
dation but are computationally demanding, and often prohibitively
so. Macroscopic models treat the porous material � as a continuum,
i.e., associate ion concentrations C±(x, t) with a certain (representa-
tive elementary) volume of the material, over which the pore-scale
concentrations c±(x, t) are averaged; such models are largely phe-
nomenological, but relatively fast to solve. Microscopic and macro-
scopic formulations are provided below. Establishing the relationship
between the two is one of the main goals of this study.

Microscopic transport model.—Processes in the fluid-filled pores
P .—We adopt the dilute theory of solvents, which treats ions as point
charges and defines electrochemical potential [J/mol] as μ± = μ̄± +
RT ln c± + z± Fϕ where μ̄± is a reference value, and z± are the ion
charges (valencies) [−]. Here R [J/K/mol] and F [C/mol] are the
gas and Faraday constants, respectively; T [K] is temperature; and ϕ
[V] is the electric potential. Spatial variability of μ± induces ionic
(Nernst-Planck) fluxes J±

NP = −M±c±∇μ±, where the ion mobility
M± is related to the molecular diffusion coefficient of ions in the fluid,
D± [L2/T], by the Einstein relation M± = D±/RT . In the absence
of homogeneous chemical reactions, mass conservation of anions and
cations, ∂t c± = −∇ · J±

NP, gives rise to the Nernst-Planck equations

∂c±
∂t

= ∇ · [D±(∇c± + c±
z± F

RT
∇ϕ)], x ∈ P. [1]

The total (net) ionic charge density q ≡ F(z+c+ + z−c−) is related to
the electric potential ϕ(x, t) through a Poisson equation,

− E∇2ϕ = F(z+c+ + z−c−), x ∈ P, [2]

where E is dielectric constant of the solvent.

Processes on the fluid-solid interface �.—Within the electrical
double layer (EDL) framework, the electrically charged surface � is
“coated” with a compact Stern layer comprised of mixture of solvent
molecules and a single layer of adsorbed ions. These are effectively
immobilized by the interplay of adsorption, van der Waals forces
and hydrogen bonding. To simplify the presentation, we assume the
thickness of the Stern layer, �S ∼ 0.03 nm to 0.2 nm (a typical diameter
of an ion)24 to be negligible relative to the characteristic pore size
�p ∼ 1.0 nm (a typical diameter of a micropore) to 25.0 nm (that of
a mesopore), so that the Nernst-Planck-Poisson (PNP) Equations 1–2
are defined on the whole domain P and the corresponding boundary
conditions are specified on the fluid-solid interface �. (The analysis
presented below is valid even when this assumption does not hold, in
which case the transport domain P is reduced by the thickness of the
Stern layer to P− and the interface � is replaced with �−, the surface
of P−.)

Following the standard practice,25,26 we assume that the surface �
carries a constant electric (zeta) potential ϕ� , which translates into a

Dirichlet boundary condition

ϕ(x, t) = ϕ�, x ∈ �. [3]

This assumption is applicable if the solid matrix S is highly conduc-
tive, which occurs, e.g., in carbon aerogels27. Heterogeneous chemical
reactions, f±(c−, c+), at the fluid-solid interface �, give rise to Robin
boundary conditions

− n · D±(∇c± + c±
z± F

RT
∇ϕ) = f±(c−, c+), x ∈ �. [4]

When the EDL is stably formed, the situation considered in the
present analysis, the surface electrosorption reaction reaches equi-
librium, f± ≡ 0. This implies the absence of the net local current
source.

EDL-explicit decomposition.—The remaining part of the EDL con-
sists of a diffusive layer, in which the EDL potential ϕEDL(x, t) decays
rapidly with the distance from the charged surface �. Depending on a
pore’s size, this diffusive layer can either occupy the entire pore space
or coexist with an electrically neutral (c+/ν+ = c−/ν− ≡ cb, where
ν± are the dissociation coefficients) bulk electrolyte6 present in the
pore’s core. This suggests a decomposition of the unknown electric
potential ϕ(x, t) into the sum28

ϕ = ϕEDL + ϕb. [5]

It follows from Eq. 2 and the electroneutrality condition that the bulk
electric potential ϕb(x, t) satisfies

∇2ϕb = 0, x ∈ P; ϕb = 0, x ∈ �; [6]

and is driven by an externally imposed (macroscopic) potential
gradient.

Thermodynamic equilibrium between the EDL and electrolyte’s
core requires the equality of their respective chemical potentials μ±
and μb±. Recalling the definition of chemical potential, this yields
z± Fϕ + RT ln c± = z± Fϕb + ν± RT ln cb. Combining this with the
decomposition in Eq. 5 yields a Boltzmann distribution for ion con-
centrations in the EDL,

c± = ν±cb exp

(
− z± F

RT
ϕEDL

)
. [7]

Relations 5 and 7 transform dependent variables ϕ(x, t), c+(x, t)
and c−(x, t) into new unknowns ϕEDL(x, t), ϕb(x, t) and cb(x, t). Sub-
stituting these relations into Eqs. 1 and 4 gives transformed Nernst-
Planck equations

∂

∂t

(
cbe− z± F

RT ϕEDL

)
= ∇ ·

[
D±e− z± F

RT ϕEDL

(
∇cb + z± F

RT
cb∇ϕb

)]
,

x ∈ P [8a]

subject to the boundary conditions

n ·
(

∇cb + z± F

RT
cb∇ϕb

)
= 0, x ∈ �. [8b]

Substituting Eqs. 5 and 7 into Eqs. 2 and 3, while accounting for
Eq. 6, leads to a Poisson-Boltzmann equation

− ∇2ϕEDL = F

E cb

(
ν+z+e− z+ F

RT ϕEDL + ν−z−e− z− F
RT ϕEDL

)
, x ∈ P

[9a]

subject to the boundary condition

ϕEDL = ϕ�, x ∈ �. [9b]

This formulation of the PNP equations we proposed in Ref. 28 and
subsequently used to upscale fluid flow in clays.18–20

To simplify the presentation, we set D− = D+ ≡ D and consider
symmetric completely dissociated electrolyte ions, i.e., assume the
equality of the ion charges (valency), z+ = −z− ≡ z, and dissocia-
tion constants, ν+ = ν− ≡ ν. However, the methodology developed
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below is equally applicable to multicomponent and/or asymmetric
electrolytes.

Non-dimensional formulation.—The subsequent analysis is facili-
tated by introducing, in addition to ε = l/L , dimensionless variables

x̂ = x
L

, t̂ = tD
L2

, ∇̂ = L∇, ĉb = cb

cin
, ϕ̂ = Fϕ

RT
, [10]

where cin is the initial ion concentration, and rewriting Eqs. 11a and 12
in dimensionless form:

∂

∂ t̂
(ĉbe∓zϕ̂EDL ) = ∇̂ · [

e∓zϕ̂EDL (∇̂ ĉb ± zĉb∇̂ϕ̂b)
]
, x̂ ∈ P̂ [11a]

subject to the boundary conditions

n̂ · (∇̂ ĉb ± zĉb∇̂ϕ̂b) = 0, x̂ ∈ �̂; [11b]

and

ε2∇̂2ϕ̂EDL = l2

λ2
D

ĉb sinh(zϕ̂EDL), λD =
√

RTE
2F2zνcin

; x̂ ∈ P̂

[12a]

subject to the boundary condition

ϕ̂EDL = ϕ̂�, x̂ ∈ �̂. [12b]

In nanoporous materials the Debye length λD, a characteristic
length of the EDL, is of the same order of magnitude as the charac-
teristic pore size l.

Macroscopic transport model.—Macroscopic representations of
the nanoporous material � treat it as a continuum, without separating
it into the pore space P and the solid skeleton S . In other words,
macroscopic ion concentration C(x, t) and electric potential �(x, t)
are defined at every “point” x ∈ �. One macroscopic characteristic of
such a material is its porosity, ω = ‖P‖/‖�‖. Our goal is to estimate
more elusive macroscopic properties, such as an effective diffusion
coefficient, which are properties of both a nanoporous material and
an electrolyte.

We use the multiple-scale expansion technique10,29–31 to derive ef-
fective (macroscopic) counterparts of the PNP Equations 11 and 12.
The method explicitly accounts for the spatial variability of ion con-
centration, and other dependent variables, on both macroscopic scale
(across the porous material, denoted by the coordinate x) and micro-
scopic scale (inside individual pores, denoted by the coordinate y). We
assume that the bulk concentration and potential exhibit pronounced
variability on both scales, i.e., cb = cb(x, y, t) and ϕb = ϕb(x, y, t);
while the spatial variability of the EDL potential is confined to the
nanoscale, i.e., ϕEDL = ϕEDL(y, t).

The latter assumption enables one to decouple Eqs. 11 and 12, and
to compute ϕEDL(y) by solving Eq. 12 on a “unit cell” U representative
of the material’s pore structure,

∇̂2ϕ̂EDL = l2ĉ�
b

ε2λ2
D

sinh(zϕ̂EDL), ŷ ∈ P̂U ; ϕ̂EDL = ϕ̂�, x̂ ∈ �̂U

[13]

where c�
b is a characteristic ion concentration in the system, e.g., its

initial or average value; and P̂U and �̂U are the pore space and fluid-
solid interface contained in the unit cell U . Then, Eq. 11 is upscaled in
Appendix A to yield continuum-scale Nernst-Planck equations sat-
isfied by macroscopic ion concentration C(x, t) and electric potential
�(x, t),

ω
∂C

∂t
= ∇ ·

[
Deff

±

(
∇C ± zF

RT
C∇�

)]
. [14]

Figure 1. (a) A unit cell comprising a homogeneous isotropic nanoporous
material with porosity ω = 0.67 and pore throat size 1.5 nm. (b) Spatial
distribution of the closure variable χ(y1, y2) for electroneutral fluid, computed
by solving the scalar version of 16 with ϕEDL = 0 for cin = 0.93 M. (c) and
(d) Spatial distributions of the closure variables χ+(y1, y2) and χ−(y1, y2),
respectively, computed by solving the scalar versions of 16 with ϕEDL = 0.3 V
for cin = 0.93 M.

Here the effective diffusion coefficients Deff
± are second-order semi-

positive-definite tensors defined by

Deff
± = Dω

G±

∫
P̂U

e∓zϕ̂EDL (I + ∇yχ


±)dy, G± =

∫
P̂U

e∓zϕ̂EDL dy,

[15]

where I is the identity matrix, and the closure variables χ±(y) are
U-periodic vector functions, which are computed as solutions of
boundary-value problems

∇y[e∓zϕ̂EDL (I + ∇yχ
�
±)] = 0, y ∈ P̂U ;

n(I + ∇yχ±
) = 0, y ∈ �̂U ;∫
P̂U

χ±dy = 0. [16]

A few observations about this general result are in order. First,
the effective Equations 14 are identical to those obtained phenomeno-
logically from the solute material balance considerations6. Second,
the rigorous derivation of these equations enables one to express the
diffusion coefficient tensor in Eq. 15 in terms of the pore structure and
electrical double layer potential, as opposed to treating them as fitting
parameters. Third, it follows from Eq. 16 that the off-diagonal ele-
ments of the second-rank tensor ∇yχ

�
± are zeros, i.e., ∂χ±,i/∂yk = 0

for i �= k. Consequently, the off-diagonal elements of the diffusion
tensors Deff

± are zero as well.
By way of example, let us consider a homogeneous isotropic

nanoporous material assembled from the unit cell shown in
Figure 1a. The unit cell’s symmetry suggests that χ±,1 = χ±,2, i.e.,
χ±(y) = χ±(y)(1, 1)
. The resulting isotropy of the nanoporous ma-
terial implies that the diffusion coefficients in Eq. 15 become scalars,
Deff

+ and Deff
− . Figure 1b exhibits χ(y), a solution of the unit cell

problem 16 with ϕ� = 0 and, hence, ϕEDL = 0, in the absence of
electrical charge on the fluid-solid interface �. For charged surfaces
(ϕ� = 0.3 V), solutions for the closure variables χ+(y1, y2) and
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Figure 2. The normalized effective diffusion coefficient of an isotropic
nanoporous material, Deff/D, computed alternatively with Bruggeman’s rela-
tion Deff = Dω3/2 and our model 15 and 17. Unlike Bruggeman’s relation,
our model captures the dependence of Deff on electrical surface potential ϕ�

and initial ion concentration cin.

χ−(y1, y2) are shown in Figures 1c and 1d, respectively. These three
solutions demonstrate that the double layer potential ϕEDL affects the
effective transport properties of nanoporous materials (the size of the
pore throats in this example is 1.5 nm).

This finding is in contrast with often used phenomenological re-
lations such as Deff = ωD/τ, where τ is the tortuosity of a porous
medium, which is set to τ = ω−0.5 in the Bruggeman model6. Such
expressions are not readily adaptable to anisotropic materials and
do not account for EDL’s presence in charged nanoporous materials
and, hence, for the dependence of Deff on applied voltage. Figure 2
shows the dependence of the normalized effective diffusion coeffi-
cientDeff/D on porosity ω, predicted with both Bruggeman’s relation,
Deff = Dω3/2, and the weighted harmonic mean (a binary effective
diffusion coefficient6),

Deff = 2Deff
+ Deff

−
Deff+ + Deff−

, [17]

of the effective diffusion coefficients Deff
− and Deff

+ computed with
Eq. 15. As expected, the discrepancy between the two predictions
increases with the surface potential ϕ� .

The effective model presented above also allows one to estimate
an electrode’s surface potential ϕ� , which is generated by applying an
external voltage V . This is done by inverting a relationship32

ϕ� = V

2
− ϕecm − σ

CH
, [18]

where ϕecm is the electrocapillary maximum, CH is the Helmholtz
capacitance, and σ is the surface charge density. The electrocapillary
maximum ϕecm determines a material’s resistance to applied voltage,
i.e., the applied electrical driving force that has to be exceeded for
electrosorption to set in; experiments on carbon aerogel electrodes27

showed that 0.1 V ≤ ϕecm ≤ 0.25 V. For a dilute solution and low ap-
plied voltage 1.2 V, the Helmholtz capacitance CH is practically inde-
pendent of both the surface potential and electrolyte concentration27,33

and has values34 ranging from 20 μF/cm2 to 45 μF/cm2. Finally, the

Figure 3. Schematic representation of an electrical double layer capacitor
(EDLC) cell. Pore space of the cathode and anode and the separator is filled
with electrolyte. The electrolyte within the carbon electrodes is electrically
neutral, i.e., the total charge of the ions adsorbed on the electrode surfaces is
balanced by the surface charge on the carbon electrodes. The separator is made
of a porous dielectric material, such as glass fiber.

surface charge density σ is computed as6,27,32

σ =
√

4ERT I

√
cosh

(eϕ�

kT

)
− cosh

(eϕmin

kT

)
,

I = z2C, ϕmin = min
y∈UP

ϕEDL(y) [19]

where I is the ionic strength, ϕmin is the midplane potential computed
by solving Eq. 13. Combining Eqs. 18 and 19 gives a transcendental
equation for ϕ� , whose solution, depending on the choice of param-
eters, varies between 0.2 V and 0.4 V when the external voltage
V = 1.2 V is applied.

Application to Electrical Double Layer Capacitors

Electrical double layer capacitors (EDLCs) store energy in the
EDL; they have been shown to possess high power density and long re-
versible cycle life. These properties suggest that EDLCs can be used in
electric and hybrid electric vehicles to offset the low charge/discharge
of current in batteries, providing an acceleration boost. The perfor-
mance of EDLCs has been analyzed with effective electrodiffusion
models, which were validated with experimental data23,35,36. Our goal
is to improve the predictive power of EDLC models by using our
expressions for the effective diffusion coefficients.

A mathematical model of EDLCs.—A typical EDLC consists
of three compartments, positive and negative electrodes separated
by a porous dielectric material (Fig. 3), which are fully saturated
with electrolyte. The models6,23 assume that i) both the electrodes
(made from a porous activated-carbon material) and the separator are
homogeneous and isotropic, ii) temperature is uniform and constant
throughout the EDLC, and iii) convection in the cell is negligible.

Under these assumptions, the EDLC behavior is characterized
by three macroscopic state variables: electrolyte ionic concentration,
C(x, t); electrolyte potential, �(x, t); and electric potential of the
solid phase, �s(x, t). For the EDLC in Fig. 3, these variables satisfy
a three-equation model23 (see Appendix B for derivation),

CEDL
∂(�s − �)

∂t
= ∂

∂x

(
σs

∂�s

∂x

)
, [20]

∂

∂x

(
σs

∂�s

∂x
+ κeff ∂�

∂x
+ κeff RT

2t+ − 1

zF

∂ ln C

∂x

)
= 0, [21]

ω
∂C

∂t
= ∂

∂x

(
Deff ∂C

∂x

)
− α

∂(�s − �)

∂t
, [22]

 

http://ecsdl.org/site/terms_use


Journal of The Electrochemical Society, 164 (4) E53-E61 (2017) E57

Table I. Parameter values used in the experimental study23 of
supercapacitors.

Parameter Value Units

Electrodes thickness, Lcat = Lan 50 μm
Separator thickness, Lsep 25 μm

Initial ion concentration, cin 0.93 mol/l
Porosity of electrodes, ω 0.67 -
Porosity of separator, ω 0.6 -

Solid phase conductivity, σs 52.1 S/m
Tortuosity of separator, τsep 1.3 -

Charge number, z 1 -
Dissociation coefficient, ν 1 -

Charging current, i 36.4 A/m2

Conductivity of electrolyte at cin, κ 0.67 mS/cm
Molecular diffusion coefficient, D 4.312 × 10−5 cm2/s

that is defined for x ∈ [0, L]. Here the effective conductivity of the
electrolyte, κeff , is given by

κeff = νz2 F2cin

RT
(Deff

+ + Deff
− ); [23a]

the transference number t+, the fraction of the current carried by
cations, has the form

t+ = Deff
+

Deff+ + Deff−
; [23b]

σs is the electric conductivity of the solid phase, with σs = 0 in the
dielectric separator (Lcat < x < Lcat + Lsep); the EDL capacitance
CEDL is absent in the dielectric separator (CEDL = 0 for Lcat < x <
Lcat + Lsep); and

α = CEDL

νzF

⎧⎪⎨
⎪⎩

t+ − 1 0 < x < Lcat

0 Lcat < x < Lcat + Lsep

t+ Lcat + Lsep < x < L .

[23c]

Since σs = 0 for Lcat < x < Lcat +Lsep, it follows from Eq. 20 that
in the separator iliquid = i , i.e., the liquid-phase current iliquid equals
the total (externally applied) current i . Moreover, since the solid phase
of the separator is dielectric, �s = 0 for Lcat < x < Lcat + Lsep.

The partial-differential Equations 20–22 are subject to the follow-
ing boundary conditions.23 Since the EDLC surface is impermeable
to electrolyte and the current it carries,

∂C

∂x
= 0,

∂�

∂x
= 0 at x = 0, L; [24a]

with the second condition stemming from iliquid = 0. Application of
the external current i to the anode (x = L) gives rise to the boundary
condition

σs
∂�s

∂x
= −i at x = L . [24b]

Finally, the (reference) electric potential at the cathode (x = 0) is set
to

�s = 0 at x = 0. [24c]

The initial conditions are �(x, 0) = 0, σs ∂x�s(x, 0) = −i and
C(x, 0) = cin.

An observable quantity, and the quantity of interest computed with
Eqs. 20–24, is an EDLC’s voltage response, Vcell(L , t) ≡ �s(L , t) −
�s(0, t) = �s(L , t), to charging with the constant current i .

Model parametrization.—The experimental study23 of an EDLC’s
voltage response involves activated carbon electrodes, whose homo-
geneous, orderly aligned microstructure has average pore throat size
of 1.5 nm, with porosity ω = 0.67. These and other relevant param-
eter values from this experiment are collated in Table 1. The nearly
equal solvated tetrafluoroborate anion and tetraethylammonium cation

Figure 4. Measured EDLC voltage response to charging23 (stars), and its
counterparts predicted with the original model23 (dotted line), the same model
supplemented with the Bruggeman relation (dashed line) and our effective
model (solid line).

sizes in acetonitrile used in the experiment suggest the equality of
their molecular diffusion coefficients, D+ = D− = D. The value of
D = 4.312 × 10−5 cm2/s was determined from measurements of the
electrical conductivity of acetonitrile by using a free-electrolyte ver-
sion of Eq. 23a, D = RT κ/(2νz2 F2cin). The EDL capacitance CEDL

serves as the only fitting parameter23.

Simulation results.—The parametrization of the mathematical
model 20–24 in the analysis23 is completed by employing the em-
pirical relation Deff

± = Deff = Dω/τ with an assumed tortuosity value
of τ = 2.3. According to Eq. 23, the equality Deff

+ = Deff
− translates

into t+ = 0.5 and κeff = κω/τ. Fitting the resulting model predic-
tion of the EDLC voltage response to data yields CEDL = 42 F/cm3,
with the predicted voltage response Vcell(t) shown in Figure 4 by
the dotted line. A modification of this procedure, which replaces the
assumed tortuosity value with that given by the Bruggeman relation
τ = ω−0.5 = 1.2, yields CEDL = 44 F/cm3 and the prediction of Vcell(t)
that is closer to the experiment (Fig. 4).

Unlike these two phenomenological relations, our model 15 yields
unequal effective diffusion coefficients for cations and anions, Deff

− �=
Deff

+ , which accounts for the EDL effects.c Substituting these values
into Eqs. 23b and Eqs. 17 yields the cation (tetraethylamonium ion)
transference number t+ = 0.779 and the effective binary diffusion
coefficient Deff , respectively. Fitting the resulting model prediction of
the EDLC voltage response to data yields CEDL = 47 F/cm3, with the
predicted voltage response Vcell(t) shown in Figure 4 by the solid line.
This result demonstrates that our model matches the data better than
its empirical counterparts; crucially, it does not rely on the assumed
relation Deff = Dω/τ. (If needed, one can estimate an electrode’s
tortuosity from this relation, which for the material under investigation
yields τ = ωD/Deff = 2.4 or τ = ω−2.3).

Figure 5 exhibits temporal snapshots of the ion concentration
and electric potential profiles computed alternatively with our rig-
orously derived model and the empirical Bruggeman relation. The
system’s nonlinearity magnifies the relatively minor errors in the

cThese values were computed as follows. In the experiment23, application of the constant
charging current i = 36.4 A/m2 to the anode changed the EDLC voltage from V = 1.6 V
to V = 2.2 V (Fig. 4). We took the midpoint voltage as external voltage V = 1.9 V of
EDLC cell during charging; from Eqs. 18 and 19, the diffuse layer potential ϕ� = 0.4 V
was calculated. Due to short charging time, the influence of concentration variation on
EDL potential distribution is negligible. Double layer potential in Eq. 13 is thus solved
with characteristic ion concentration c�

b = cin = 0.93 M and the diffuse layer potential
ϕ� = 0.4 V.
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Figure 5. Temporal snapshots, at t = 1, 8 and 18 s, of the (a) ion concentration
C(x, t) and (b) electric potential �(x, t) profiles computed with our rigorously
derived model (solid lines) and the Bruggeman relation (dashed lines). Our
model predicts significantly higher gradients of both ion concentration and
electric potential.

voltage-response predictions introduced by the Bruggeman relation
(Fig. 4), resulting in the significant underestimation of the concen-
tration and potential gradients (Fig. 5). Our model predicts the ion
diffusion and electric conductivity coefficients that are smaller than
their Bruggeman counterparts; consequently, the charge conservation
in Eqs. 21 requires the significantly higher ion concentration and elec-
tric potential gradients to maintain sufficient amount of the ionic flux
in electrolyte. The gradients of both the ion concentration and electric
potential increase with time, as the EDLC continues to be charged
with a constant current. At the early stage of charging (t = 1 s),
the large electrolyte potential gradient in the vicinity of the separator
(Fig. 5b) induces the non-monotonic spatial distribution of ion con-
centration (Fig. 5a). This behavior is due to the prescribed uniformity
of the initial concentration, whose effect dissipates with time.

Conclusions

We derived expressions for effective diffusion coefficients Deff
± and

transference numbers t±, which are used in macroscopic (continuum-
scale) models of ion transport in nanoporous materials. These ex-
pressions relate the nanoscale topological properties of such materials
(e.g., pore size and connectivity) to their macroscopic counterparts
(e.g., porosity and tortuosity) and account for the nonlinear effects of
the electrical double layer (EDL) on ion transport. While applicable to
a wide range of electrochemical phenomena in porous materials, these

expressions are deployed here to estimate the voltage response of an
electrical double layer capacitor (EDLC) to charging. Our analysis
leads to the following major conclusions.

(1) The effective diffusion coefficients Deff
± are, in general,

second-rank semi-positive definite tensors, reflecting possible
anisotropy of nanoporous structures.

(2) Even if molecular diffusion coefficients of cations (D+) and an-
ions (D−) in an electrolyte are equal, their effective counterparts
differ, Deff

+ �= Deff
− , unless the binary electrolyte is symmet-

ric (i.e., has equal dissociation coefficients, ν+ = ν−, and ion
charges, z+ = z−).

(3) Even if the cations and anions in an electrolyte have similar
size, their effective transference numbers are not equal, t+ �= t−,
unless the binary electrolyte is symmetric.

(4) These features of the effective parameters are a manifestation of
the EDL’s effects on diffusion of ions in nanoporous materials.
These effects are not captured by phenomenological relations,
such as Bruggeman’s relation Deff = ω3/2 D, which estimate
the effective ionic diffusion Deff as a fraction of the molecu-
lar diffusion of ions in electrolyte, D, reduced by a power of
porosity ω.

(5) Bruggeman’s relation overestimates the effective diffusion co-
efficient and effective electric conductivity, especially for dilute
solutions and relatively large diffuse layer potentials ϕ� .

(6) By accounting for the electrochemical effect at the fluid-solid
interfaces (specifically, the reduction of surface area3), our ex-
pressions increase the accuracy of predictions of double-layer
capacitance of electrode materials.

(7) The use of our effective coefficients in a macroscopic model
of EDLC charging yields the predictions of voltage response
that are in close agreement with the data23. The reliance on
Bruggeman’s relation significantly underestimates the gradients
of both ion concentration and electric potential within the EDLC.

In common with,21,31,37,38 our analysis can also be used to establish
the limits of applicability of the effective representation (models)
of transport processes in porous media. Such descriptors typically
break down for highly localized phenomena that give rise to high
concentration gradients. The following assumptions are specific to
our treatment of electrodiffusion in nanoporous materials. Reliance on
the pore-scale Boltzmann equilibrium distribution in a binary dilute
electrolyte implies that an ion is treated as a point charge and the
EDL potential is approximated by the Poisson-Boltzmann equation.
To account for ion-wall and ion-ion interactions due to a finite size of
ions, one can deploy various approximations of the ion-ion correction
function, such as hypernetted chain, Percus-Yevick or mean spherical
approximations.17,39
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Appendix A: Homogenization of PNP Equations

In the derivations below we drop the hats over the dimensionless quantities to simplify
the notation. The “fast” (y) and “slow” (x) scales are related by y = ε−1x, with ε � 1,
such that ∇ = ∇x + ε−1∇y. The state variables cb(x, t) and ϕb(x, t) are replaced with
their two-scale counterparts cb(x, y, t) and ϕb(x, y, t), and the macroscopic (average) ion
concentration and electric potential are defined as

C(x, t) = ω

‖PU‖
∫
PU

cb(x, y, t)dy and �av(x, t) = ω

‖PU‖
∫
PU

ϕb(x, y, t)dy.

[A1]

Following the standard practice in homogenization, we postulate that the nanoporous
material � can be viewed as an assemblage of periodically repeated unit cells U , each of
which consists of the fluid-filled pore spacePU and solid phaseSU . Since ϕEDL = ϕEDL(y),
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cb = cb(x, y, t) and ϕb = ϕb(x, y, t), Eq. 11 yields

e∓zϕEDL
∂cb

∂t
= e∓zϕEDL ∇x · {∇xcb + ε−1∇ycb ± zcb(∇xϕb + ε−1∇yϕb)}

+ ε−1∇y · {e∓zϕEDL [∇xcb + ε−1∇ycb

± zcb(∇xϕb + ε−1∇yϕb)]}, y ∈ PU . [A2a]

The interfacial condition 4 takes the form

n ·
[
∇xcb + ε−1∇ycb ± zcb(∇xϕb + ε−1∇yϕb)

]
= 0, y ∈ �U . [A2b]

Next, the state variables cb(x, y, t) and ϕb(x, y, t) are expanded in asymptotic series
in the powers of the small parameter ε,

cb(x, y, t) =
∞∑

m=0

εm cm (x, y, t), ϕb(x, y, t) =
∞∑

m=0

εmϕm (x, y, t), [A3]

where the functions cm (x, y, t) and ϕm (x, y, t) areU-periodic in y. Substituting A3 into A2
and collecting the terms of equal powers of ε yields the following set of recursive boundary-
value problems (BVPs) for the expansion coefficients ci and ϕi (i = 0, 1, . . .).

Terms of order ε−2.—Collecting the terms of order ε−2 yields

∇y · [�c0e∓zϕEDL (∇yc0 ± zc0∇yϕ0)] = 0, y ∈ PU [A4a]

subject to

n · (∇yc0 ± zc0∇yϕ0) = 0, y ∈ �U . [A4b]

This homogeneous BVP has a trivial solution, i.e., both c0 and ϕ0 are independent of y.
That indicates insignificant spatial variability of both bulk concentration and bulk potential
at the pore scale.

Terms of order ε−1.—Since c0 and ϕ0 are independent of y, collecting the terms of
order ε−1 yields

∇y · [e∓zϕEDL ∇y(c1 ± zc0ϕ1)] = −∇ye∓zϕEDL · (∇xc0 ± zc0∇xϕ0), y ∈ PU

[A5a]

subject to

n · ∇y(c1 ± zc0ϕ1) = −n · (∇xc0 ± zc0∇xϕ0), y ∈ �U . [A5b]

This BVP involves both the fast and slow scales; to decouple these scales we introduce
pore-scale U-periodic closure variables14,18–20 χ±(y), such that

c1 ± zc0ϕ1 = χ± · (∇xc0 ± zc0∇xϕ0). [A6]

Substituting this closure approximation into A5 gives

∇y · [e∓zϕEDL (I + ∇yχ


±)(∇xc0 ± zc0∇xϕ0)] = 0, y ∈ PU [A7a]

subject to the boundary condition

− n · [(I + ∇yχ


±)(∇xc0 ± zc0∇xϕ0)] = 0, y ∈ �U . [A7b]

These BVPs are turned into identities if the vector functions χ

±(y) are defined as

solutions to the first two equations in 16. When supplemented with the third condition
in 16, this definition ensures that a solution of the unit cell problem, i.e., the vector
functions χ


±(y), is unique.40–43

Terms of order ε0.—Collecting the terms of order ε0 yields

e∓zϕEDL
∂c0

∂t
= e∓zϕEDL ∇x · {∇xc0 + ∇yc1 ± zc0(∇xϕ0 + ∇yϕ1)}

+∇y · {e∓zϕEDL [∇xc1 + ∇yc2 ± zc0(∇xϕ1 + ∇yϕ2)

± zc1(∇xϕ0 + ∇yϕ1)]}, y ∈ PU [A8a]

subject to

n · [∇xc1 + ∇yc2 ± zc0(∇xϕ1 + ∇yϕ2) ± zc1(∇xϕ0 + ∇yϕ1)] = 0, y ∈ �U .

[A8b]

Approximating cb and ϕb in A1 with their leading-order counterparts, c0 and ϕ0, and
integrating A8a over PU leads to

∂C

∂t
= ∇x ·

[
∇xC ± zC

ω
∇x�av + ω

G±‖PU‖
∫
PU

e∓zϕEDL ∇y(c1 ± zc0ϕ1)dy

]
, [A9]

where G± is defined in Eq. 15. Accounting for A6, this turns into

∂C

∂t
= ∇x ·

[(
I + 1

G±

∫
PU

e∓zϕEDL ∇yχ


±dy

) (
∇xC ± zC

ω
∇x�av

)]
. [A10]

To account for the effects of electrical potential in the solid matrix, it is common6 to define
an average potential for the fluid-solid mixture. In our context, it is equivalent to defining
the average as �(x, t) = 1

‖U‖
∫
PU

ϕb(x, y, t)dy, i.e., setting � = �av/ω. This leads to

Eq. 14 with the effective diffusion coefficient tensors Deff
± given by Eq. 15.

The condition
∫
PU

χ±dy = 0 also ensures the order (in ε) consistency between the
approximations of the (dimensionless) bulk electrochemical potential μ̂b± = ln ĉb± +
z±ϕ̂b and other state variables. Indeed, dropping the hats, substituting the expansions A3
into this expression and retaining the terms up to the second order in ε yields μb± =
ln c0 ± zϕ0 + ε(c1 ± zc0ϕ1)/c0 + O(ε2). Accounting for the closure A6 this leads to
μb± = ln c0 ± zϕ0 + εχ± · ∇x(ln c0 ± zϕ0) +O(ε2). Integration of this expression over
PU yields the leading-order approximation of the average electrochemical potential in
terms of the leading-order approximations of the average concentration and bulk potential.

Appendix B: Macroscopic Model of an EDLC Cell

Charge conservation.—Total electrical current through a porous electroconductive
material, i = isolid + iliquid, is the sum of the currents through its solid (isolid) and liquid-
saturated (iliquid) phases. Hence, conservation of the total charge, ∇ · i = 0, yields

∇ · iliquid = −∇ · isolid. [B1]

Because of electric double layer charging/discharging, the charges are stored in double
layer capacitance. Conservation of charge in the liquid phase leads to6

∇ · iliquid = CEDL
∂(�s − �)

∂t
, [B2]

where CEDL is the EDL capacitance [F/cm3]. Substituting B1 into B2 and using Ohm’s
law in solid phase isolid = −σs∇�s, where σs is the electric conductivity of the solid phase
[S/m], yields

CEDL
∂(�s − �)

∂t
= ∇ · (σs∇�s). [B3]

Mass conservation.—Macroscopic mass balance (Nernst-Plank) equations for posi-
tively and negatively charged ions have the form

ω
∂C±
∂t

= −∇ · J±
NP + S±, J±

NP = −Deff
± ∇C± − Deff

±
z± F

RT
C±∇�. [B4]

The concentrations of cations (C+) and anions (C−) are related to the ion concentration
C by

C = C+
ν+

= C−
ν−

, [B5]

where ν± are the dissociation coefficients. Combined with B5, the charge neutrality
condition,6 Fz+C+ + Fz−C− = 0, gives

z+ν+ + z−ν− = 0. [B6]

(For example, asymmetric electrolyte CaCl2 has ν+ = 1 and ν− = 2, and the ion charges
z+ = 2 and z− = −1.) The current density S±(x, t) represents the rate of ion transfer
to/from the EDL storage. We express it as

S± = H[±(� − �s)]MREDL, [B7]

where H[·] is the Heaviside function, M(x) is the membership function such that M = 1
for all x in the electrodes and = 0 otherwise, and the transfer rate REDL is defined as
follows. Multiplying B4 with Fz± and summing up the resulting two equations, while
accounting for B5 and B6, yields ∇ · iliquid = F(z+ S+ + z− S−); combining this with B2
and B7 gives an expression for the transfer rate,

MREDL = CEDL

ψF

∂(�s − �)

∂t
, [B8]

where ψ = z+H(� − �s) + z−H(�s − �).

Problem reformulation in terms of charge current.—The analyzes6,23 found it
necessary to rewrite conservation laws B4 and B1 in terms of the ionic flux iliquid =
F(z+J+

NP + z−J−
NP). Substituting the definition of J±

NP in B4 into this expression we obtain

iliquid

ν+z+ F
= − F

RT

(
z+ Deff

+ + ν−z2
−

ν+z+
Deff

−

)
C∇� −

(
Deff

+ + ν−z−
ν+z+

Deff
−

)
∇C. [B9]

Using the latter to eliminate C∇� from the definition of J+
NP leads to

J+
NP = −ν+Deff

+ ∇C + t+iliquid

z+ F
, [B10]

with the binary effective diffusion coefficient Deff and the transference number t+ defined
as

Deff
+ = ν−z−(z− − z+)Deff

+ Deff
−

ν+z2+ Deff+ + ν−z2− Deff−
, t+ = ν+z2

+ Deff
+

ν+z2+ Deff+ + ν−z2− Deff−
. [B11]
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By the same token, eliminating C∇� from the definition of J−
NP yields

J−
NP = −ν−Deff

− ∇C + t−iliquid

z− F
[B12]

with

Deff
− = ν+z+(z+ − z−)Deff

+ Deff
−

ν+z2+ Deff+ + ν−z2− Deff−
, t− = ν−z2

− Deff
−

ν+z2+ Deff+ + ν−z2− Deff−
. [B13]

Hence, we obtain a general expression for the ion fluxes

J±
NP = −ν±Deff

± ∇C + t±iliquid

z± F
. [B14]

The charge conservation law B1 is rewritten6,23 by combining it with Ohm’s law,
isolid = −σs∇�s, the definition of the the ionic flux, iliquid = F(z+J+

NP + z−J−
NP), and the

definitions of J±
NP in Eq. B4:

∇ · (κeff∇�) + F∇ · [(ν+z+Deff
+ + ν−z−Deff

− )C∇ ln C) = −∇ · (σs∇�s), [B15]

where the effective conductivity of the electrolyte is defined as

κeff = F2C

RT
(ν+z2

+Deff
+ + ν−z2

−Deff
− ). [B16]

When combined with the expressions for the transference numbers t+ and t− in Eqs. B11
and B13, this definition of κeff transforms B15 into

∇ ·
[
κeff∇� + κeff RT

F

(
t+
z+

+ t−
z−

)
∇ ln C

]
= −∇ · (σs∇�s). [B17]

A three-compartment formulation.—The mass conservation Equations B4 and B14
are simplified when written for each compartment (the two electrodes and separator in
Fig. 3 separately. In the cathode (0 < x < Lcat), � − �s > 0 and combining B4, B7, B8
and B14 yields mass conservation equations

ω
∂C

∂t
= ∇ · (Deff

+ ∇C) + t−CEDL

ν+z+ F

∂(�s − �)

∂t
[B18a]

and

ω
∂C

∂t
= ∇ · (Deff

− ∇C) − t−CEDL

ν−z− F

∂(�s − �)

∂t
. [B18b]

These two equations are identical since, accounting for Eq. B6, Deff
+ = Deff

− ≡
Deff . A similar procedure is used to derive mass conservation equations for the anode
(Lcat + Lsep < x < L), wherein �−�s < 0. Finally, mass conservation equations for the
separator (Lcat < x < Lsep) are derived by setting S± = 0. The resulting mass balance
equation takes the form

ω
∂C

∂t
= ∇ · (Deff∇C) − α

∂(�s − �)

∂t
, 0 < x < L; [B19a]

where

α =

⎧⎪⎪⎨
⎪⎪⎩

t−CEDL
z−ν− F 0 < x < Lcat

0 Lcat < x < Lcat + Lsep

t+CEDL
z+ν+ F Lcat + Lsep < x < L .

[B19b]

The three conservation Equations, B3, B17 and B19, govern the dynamics of the three
state variables, C(x, t), �(x, t) and �s(x, t). These equations are subject to boundary
conditions at the EDLC external surfaces x = 0 and x = L . When solved separately in
each of the compartments, they are also subject to continuity conditions at the internal
interfaces x = Lcat and x = Lcat + Lsep.23

Model simplification for symmetric binary electrolytes.—These equations are sim-
plified for a symmetric binary electrolyte (ν+ = ν− ≡ ν) with equal of ion charges
(z+ = −z− ≡ z). In this case, both Deff

+ in B11 and Deff
− in B13 reduce to Deff given by

Eq. 17, t+ in B11 gives rise to its counterpart in Eq. 23b, t− in B13 becomes t− = 1 − t+,
and κeff in B16 is approximated with Eq. 23a upon replacing the ion concentration C with
its initial value cin. Finally, the governing Equations B3, B17 and B19 reduce to their
one-dimensional counterparts 20, 21 and 22.
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