WATER RESOURCES RESEARCH, VOL. 40, W05104, doi:10.1029/2003WR002099, 2004

Nonlocal and localized analyses of conditional mean
transient flow in bounded, randomly heterogeneous
porous media

Ming Ye' and Shlomo P. Neuman
Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona, USA

Alberto Guadagnini

Dipartimento di Ingegneria Idraulica Ambientale e del Rilevamento, Politecnico di Milano, Milan, Italy

Daniel M. Tartakovsky

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
Received 25 February 2003; revised 10 February 2004; accepted 17 February 2004; published 12 May 2004.

[11 We consider the numerical prediction of transient flow in bounded, randomly
heterogeneous porous media driven by random sources, initial heads, and boundary
conditions without resorting to Monte Carlo simulation. After applying the Laplace
transform to the governing stochastic flow equations, we derive exact nonlocal (integro-
differential) equations for the mean and variance-covariance of transformed head and flux,
conditioned on measured values of log conductivity ¥ = In K. Approximating these
conditional moment equations recursively to second order in the standard deviation oy of
Y, we solve them by finite elements for superimposed mean-uniform and convergent flows
in a two-dimensional domain. An alternative conditional mean solution is obtained
through localization of the exact moment expressions. The nonlocal and localized
solutions are obtained using a highly efficient parallel algorithm and inverted numerically
back into the time domain. A comparison with Monte Carlo simulations demonstrates
that the moment solutions are remarkably accurate for strongly heterogeneous media with
o7 as large as 4. The nonlocal solution is only slightly more accurate than the much
simpler localized solution, but the latter does not yield information about predictive
uncertainty. The accuracy of each solution improves markedly with conditioning. A
preliminary comparison of computational efficiency suggests that both the nonlocal and
localized solutions for mean head and its variance require significantly less computer time
than is required for Monte Carlo statistics to stabilize when the same direct matrix solver is
used for all three (we do not presently know how using iterative solvers would have
affected this conclusion). This is true whether the Laplace inversion and Monte Carlo
simulations are conducted sequentially or in parallel on multiple processors and regardless
of problem size. The underlying exact and recursive moment equations, as well as the
proposed computational algorithm, are valid in both two and three dimensions; only the
numerical implementation of our algorithm is two-dimensional.  INDEX TERMS: 1829
Hydrology: Groundwater hydrology; 1869 Hydrology: Stochastic processes; 3210 Mathematical Geophysics:
Modeling; 3230 Mathematical Geophysics: Numerical solutions; KEYWORDS: transient flow, uncertainty,
heterogeneity, spatial variability, localization, parallel computing
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renders the groundwater flow equations stochastic. The
solution of such equations consists of the joint, multivar-
iate probability distribution of its dependent variables or,
equivalently, the corresponding ensemble moments. It is
advantageous to condition the solution on measured
values of input variables (parameters and forcing terms)
at discrete point in space-time (conditioning on measured

1. Introduction

[2] Hydraulic parameters vary randomly in space and
are therefore often modeled as spatially correlated random
fields. This, together with uncertainty in forcing terms
(initial conditions, boundary conditions and sources),
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values of the dependent variables requires an inverse
solution and is not discussed here). The equations can
then be solved by conditional Monte Carlo simulation or
by approximation. A typical solution includes the first two
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conditional moments (mean and variance-covariance) of
head and flux. The first moments constitute optimum
unbiased predictors of these random quantities, and the
second moments are measures of the associated prediction
errors.

[3] The Monte Carlo approach is conceptually straight-
forward but requires knowing or assuming the joint multi-
variate distribution of all random inputs parameters and
forcing terms; is computationally demanding; and lacks
theoretical convergence criteria for moments higher than
the mean (for which such criteria exist, e.g., Morgan
and Henrion [1990] and Shapiro and Homem-de-mello
[2000]). Its computational burden stems from the need to
(1) generate random realizations of the input parameters
(e.g., log-conductivity) on a grid that is much finer than
their spatial correlation (integral) scale, so as to preserve
their geostatistical properties; (2) solve the flow problem
numerically on this fine grid; (3) repeat steps 1 and 2 many
times (typically thousands) for a given set of random
forcing functions, so as to minimize sampling error; and
(4) repeat steps 1-3 for each set of random forcing
functions representing different scenarios.

[4] We focus on an alternative that allows computing
leading conditional ensemble moments of head and flux
directly by solving a recursive system of moment equations.
The moment equations are distribution free and thus obviate
the need to know or assume the multivariate distributions of
random input parameters or forcing terms. Tartakovsky and
Neuman [1998a] developed exact integro-differential equa-
tions for the first two conditional moments of head and flux
in a bounded, randomly heterogeneous domain. Their
equations are nonlocal and non-Darcian in that the mean
flux depends on mean head gradients at more than one point
in space-time. Tartakovsky and Neuman [1998b] explored
ways to localize the exact conditional mean equations in
real, Laplace- and/or infinite Fourier-transformed domains
so as to render them Darcian. Such localization entails an
approximation which does not extend to moments higher
than one. To render the nonlocal moment equations work-
able, Tartakovsky and Neuman [1998a] approximated them
recursively through expansion in powers of oy a measure
of the conditional standard deviation of log conductivity Y=
In K. Their recursive approximations are nominally limited
either to mildly heterogeneous oy < 1 or to well-condi-
tioned strongly heterogeneous media oy > 1. The authors
have not evaluated their expressions numerically.

[s] In this paper we develop analogous recursive
approximations in Laplace space and solve them by a
finite element algorithm patterned after that developed for
steady state flow by Guadagnini and Neuman [1999a,
1999b]. The moment equations include Green’s functions
that need to be computed once for a given boundary
configuration and are then applicable to a variety of
forcing scenarios. For comparison, we compute condition-
al mean head and flux by finite elements in Laplace space
using (1) a localized version of the exact moment
equations and (2) a standard Monte Carlo approach. We
do so for superimposed mean-uniform and convergent
flows in a two-dimensional domain. All three sets of
solutions are inverted numerically back into the time
domain by using a parallelized version of an algorithm
due to Crump [1976] and De Hoog et al. [1982].
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Previously, sequential or parallel versions of this algo-
rithm were used to solve deterministic flow and transport
problems by Sudicky [1989], Xu and Brusseau [1995],
Gambolati et al. [1997], Pini and Putti [1997], and
Farrell et al. [1998], and to conduct Monte Carlo
simulations of transport by Naff et al. [1998]. We assess
the relative accuracies of the recursive nonlocal and
localized solutions through comparison with the Monte
Carlo results. We compare the computational efficiencies
of unconditional recursive nonlocal and Monte Carlo
solutions as functions of grid size for the special case
where a single direct matrix solver is applied to both. A
more comprehensive comparison of computational effi-
ciencies, in which recursive nonlocal moment and Monte
Carlo solutions are obtained in manners that are optimal
for each, is outside the scope of this study.

[6] Our approach differs from standard perturbative sol-
utions [e.g., Dagan, 1982; Indelman, 1996, 2000, 2002;
Zhang, 1999, 2002] in several ways. On a fundamental
level, our approach originates in a set of conditional
moment equations that are exact, compact, formally incor-
porate boundary effects, provide a unique insight into the
nature of the problem (as explained by Neuman [1997,
2002]), and lead to unique localized moment equations that
look like standard deterministic flow (and transport) equa-
tions, allowing one to interpret the latter within a condi-
tional stochastic framework [Neuman and Guadagnini,
2000; Guadagnini and Neuman, 2001]. Both the nonlocal
and localized equations describe the spatial-time evolution
of moments representing random functions rendered statis-
tically inhomogeneous (in space) and nonstationary (in
time) due to the combined effects of sources, boundaries,
and conditioning. To approximate the exact moment equa-
tions recursively, we use a valid expansion in terms of
(deterministic) moments rather than a theoretically invalid
expansion in terms of random quantities [e.g., Dagan, 1989;
Zhang, 2002], which may (but is not guaranteed) to yield
valid results after subsequent averaging.

[7] On a practical level, our approach leads to localized
moment equations that are almost as easy to solve as
standard deterministic flow equations, and to recursive
nonlocal moment equations written in terms of Green’s
functions, which are independent of internal sources and
the magnitudes of boundary terms. Once these functions
have been computed for a given boundary configuration,
they can be used repeatedly to obtain solutions for a wide
range of internal sources and boundary terms (scenarios).
The same is not true for standard perturbation expressions
such as those developed for transient flow in bounded
domains by Zhang [1999].

[8] The underlying exact and recursive moment equa-
tions, as well as the proposed computational algorithm, are
valid in both two and three dimensions, though we imple-
ment them numerically in two dimensions.

2. Statement of Problem

[o] We consider transient flow in a domain {2 governed
by Darcy’s law

q(x, 1) = —K(x)Vh(x,1) xeq (1)
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and the continuity equation

S.(%) % CV.qx) (0  x€Q 2)
subject to initial and boundary conditions
h(x,0) = Hy(x) xeQ (3)
h(x,t) = H(x,1) xel)p (4)
—q(x,7) -n(x) = Q0(x,7) x€ely (5)

where q is Darcy flux, x is a vector of space coordinates, ¢ is
time, K is a scalar hydraulic conductivity forming a
correlated random field, ~ is hydraulic head, S; is a
deterministic specific storage term, f is a random source
term, Hy(x) is random initial head, H is randomly prescribed
head on Dirichlet boundaries I'p, O is random flux into the
flow domain across Neumann boundaries I'y, and n is a unit
vector normal to the boundary I' = I', U I'y pointing out of
the domain. The forcing terms f, Hy, H, and Q are taken to
be uncorrelated with each other or with K.

[10] All quantities in equations (1)—(5) are defined on a
consistent nonzero support volume w, centered around x,
which is small in comparison to €2 but sufficiently large for
Darcy’s law to be locally valid [Neuman and Orr, 1993].
This operational definition of w does not generally conform
to a representative elementary volume (REV) in the tradi-
tional sense [Bear, 1972]. Conditioning and the action of
forcing terms render the solution of equations (1)—(5)
nonstationary in space-time.

[11] The Laplace transform of a function g(¢) is defined as
[Carslaw and Jaeger, 1959]

Llg(n] =20\ = / " g()e e (6)

where X\ is a complex Laplace parameter. The Laplace
transform of a derivative is

g{% —xg(\) — g(0) )

Applying equations (6) and (7) to (1)—(5) yields trans-
formed flow equations

q(x,\) = -K(x)Va(x,\) x€Q (8)

V- aq(x, ) + S (N(x,N) = £ (%, ) + Ss(x)Ho(x)
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where H, q, H, O, and f are Laplace transforms of 4, q, H,
0, and f; respectively.

3. Exact Conditional Moment Equations

[12] Let (K(x)). be the ensemble mean of K(x) condi-
tioned on w-scale measurements at a set of discrete points in
Q. As such, (K(x)). forms a relatively smooth optimum
unbiased estimate of the fluctuating random function K(x).
The unknown hydraulic conductivity K(x) differs from its
known estimate (K(x)). by a zero mean random estimation
error K'(x) such that
(12)

K(x) = (K(x)), +K'(x)  (K'(x))=0

Likewise we write

A(x,N) = (R(x, V), + 7 (x, x)@(x, x)>C: 0 (13)

6("7 >\) = <Q(x7 >\)>c + E(L >\) <q/(x7 >\)>c: 0 (14)

3.1. Exact Conditional Mean Equations
[13] Substituting equations (12)—(14) into (8)—(11) and
taking conditional ensemble mean yields the following

exact conditional mean equations for the Laplace transform
of head:

(@ N)e= —(K(x)). V(A(x, N)) + Te(x, \)

re(x ) = (KA (6 N)) xeo (19

V- (@(x,N)) o SsCONA(X, V),
= (V) +S(x){Ho(x))  x€Q (16)
(h(x V)= (AxN)  xeTp (17)
—@(x,N), - n(x) =(0(x,N)) xely (18)

where (), (Ho), (H), and (Q) are unconditional ensemble
mean forcing terms and T is a transformed “residual flux.”
As shown in Appendix A, the latter is given implicitly by

Fo(x,\) = /Q a.(y,x, ) Vy (B(y, N)).dy + /Q .y, MF (y, N)dy

(19)

with kernels

2y x ) = (K@K OVVIGE.xN) - (20)

c

d.(y,x,\) = <K’(x)vxv§6(y,x, x)> (21)

c
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Here G(y, x, \) is a transformed random Green’s function
defined in Appendix A. The kernels are similar to those
obtained for steady state [Guadagnini and Neuman, 1999a]
except that they include the complex Laplace parameter .
From equations (15) and (19) it is evident that the
transformed residual and mean flux are nonlocal in space
(they depend on mean head gradient at points other than x)
and non-Darcian (there is no effective or equivalent
hydraulic conductivity valid for arbitrary directions of
conditional mean flow in Laplace space).
3.2. Exact Conditional Second Moment Equations

[14] Let Ch(x, ¥, t, 5) = (K (x, DA'(y, 5)). be the condi-
tional covariance of head corresponding to two points (X, f)
and (y, s) in space-time. Applying Laplace transform to
Che(x, y, t, s) with respect to ¢ yields a transformed
conditional covariance Cp(X, y, \, s) = (W' (x, NA'(y, 5)).
between the transformed head /(x, \) and the or1g1na1 head
h(y, ). Similarly, Cqu(x, ¥, \, 5) = (@' (x, N)q"(y, 5)). is a
transformed conditional cross-covariance tensor between
the transformed flux q(x, \) and the original flux q(y, s),
the superscript 7" denoting transpose.

[15] We show in Appendix B that C,.(x, y, \, s) satisfies
exactly the equation

— Vi - [{K(x))cv,(a,c(my7 N, 8) + Po(x,y, ), 5)
uc(x,y,s)Vy(h(x,\)) ] +
= 8,0 (Hy ()W (v.9)) + (7 e N (v.5) )

SS(X)XF},C(X, Y, >\7 S)

xe (22)

subject to boundary conditions

Crelxyns) = (H (6 VH(v,5)) x€Tp  (23)
[(K(x))cvxaw()gy Ns) + Pe(x, ¥, N, 8) + (X, y, )
Vi (h(x, WJ n(x) = <§’(x, X)h’(y,s)>c xeTy (24)

where Px, y, \, 5) = (K'(X)V, Z(x, NA(y, ). is a third
moment given explicitly by

P.(X,¥,\,5) =
VZ<K/(X)V,J;/(X7 NVIG(z,y,s — T)> r.(z, T)dzdT

J
/Q <K'(X)K'(z y, s — T)>C
h(z, 7)) dzdv

(
o(z) <H(’)(Z)G(z, ¥, )K' (X)Vih (x, >\)>Cdz

Vi (x, NV G(z,

/ (12,16, — DK () T (x, >\)>cdzdﬂr

2)H'(z,7)V ' (x, V! G(z,y,5 — 7)),

X).G(z,y,s — T) Vi (x x)> dzdr
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(KK (y, 5))e

The conditional cross covariance u.(X, y, S) =
between head and conductivity is given by

(x,¥,5)

//r

_/0 /sz<h(z,7)>c.<1< (V,G(a.y.s — DK (). dadr (26)

(G(z,y,s — T)K'(X)) dzdT

as in equation (53) of Tartakovsky and Neuman [1998a]

Explicit expressions for (Hh').., (f'1')., (H'})., and <Q’ e

are given in Appendix B. The conditional head variance
Cho(x, X, 1, f) can be obtained through inverse transforma-
tion of Cj.(X, X, \, £) at time ¢. The latter is given explicitly
by (Appendix B)

Coelxx N 1) = (W (3 VH (x, 1)) =
S;<K (y)VH (y, >\)>C~ (VyGly, x, NI (x, t)>cdy
- [ v,

Q
4 /} (v, NG(
+ A Su(¥) () () Gly, x, NI (x, ). dy
x.1) - n(y)dy

!

(K'(y)VyG(y,x, N (x,1)) dy

Gly.x WK (x.1)) dy

- - <H/(Y7 )\)K(y)vyé(% X, >\)h/(

+ /F (O NG xNH (x.0) dy

c

(27)

[16] The conditional cross-covariance tensor ch(x Yy,
X 8) = (@' (x, Nq(y, 5)). of the flux is given explicitly
by (Appendix B)

Cac(X, ¥, N 8) = —Te(x, Nr! (v, s)

+ (K(X)) VY Cre(x, ¥, N ) KY)).

+ (K (X)) Vaie (v, % NV (3, 5),

+ (K(0) (K 0V () VIH(3,9))
V(R N), V(.. 5) (K (3),
(KK (1)) Vx (A%, X)), Ty (h(y. ).
+ Vi (h(x, >\)>C<K/(X)K/(Y)VyT H(y,s)),
+ (K')VH (x NVIH (v.5)) (K(¥)
+ (KK )Vl (x,N)) VI (h(y,5)).

+ (K XK' (¥) Vol (%, V3 H (v,5)) (28)

where 7.y, X, \) = (K'(y)#/(x, \)). is given explicitly by
(Appendix B)

u.(y, X, \) = — /QFC(Z, INE Vz<6(z, X, >\)K’(y)>ﬂdz

VZT <E(z,

5 >\)>C<K/(Z)VZE(Z, y, >\)K’(y)>cdz

(29)
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The conditional variance tensor Cgy (X, X, #, #) of flux is
obtained through inverse transformation of ch(x X, \, f) at
time z. The latter is given explicitly by (Appendix B)

Cye(X, X, N, 1) = —Fe(x, 1] (x,7)
+ (K(X)) (VH (x, NVTH (x,2)) (K(x)),
(K( )>> (X NV (h(x,1)),

+ (K(x)) (K" () VI (x, N VTH (x,1)),

= V{(h(x,\)) rl(x,1)(K(x)),

+ V{h(x,N)) (K'(0)K'(x)) V" (h(x,1)).
+ V{h(x,\) (K'(x)K'(x)VTH (x,1)),
+ (K'(x)VH (x, NVTH (x,1)) (K (x))
+ (K' (0K (VA (x, X)) V7 (h(x.1)),
+ (K' (K (x)VH (x, )V H (x,1)),

c

4. Recursive Nonlocal Conditional Moment
Approximations

[17] To render the above conditional moment equations
workable, it is necessary to employ a suitable closure
approximation. Tartakovsky and Neuman [1998a, 1999]
developed recursive nonlocal approximations in space-time
to leading orders of oy Elsewhere [Ye, 2002], we develop
recursive nonlocal approximations to second order in oy in
the Laplace domain. As the latter are similar in principle to
the former, we present them here without development.

4.1. Recursive Nonlocal Conditional Mean
Approximations in the Laplace Domain
[18] The recursive nonlocal conditional mean flow equa-

tions are given to zero order in oy by

<q<°> (x, x)>6: _KG(x)v@(‘”(x, x)>c

x €

31

+ Sy (x)(Ho(x)) xe (32)
<E< (x, x)>G: (Hx,N)  xelp (33)
—<q<°> (x, x)>0- n(x) = (O(x,\)) xeTy  (34)

and to second order by

<q(2) x x)>C: ~ Ko(x) {v <E(2) (x, x)>c +ozyz(x) V<z<o> (x, x)>(}

+7(x,\)  xeQ (35)

V- <q<2> (x, x)>c+ Ss(x)>\<ﬁ(2) (x, x)>c: 0 xeQ (36
<Z<2) (x, x)>c: xeTh (37)

7<q(2) (x, x)>a n(x)=0 xely (38)
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where the superscript designates orders of approximation in
oy KG(x) = exp gY(x) is the conditional geometric mean of
K(X), 03(x) = (Y*(x)). is the conditional variance of ¥(x), and

F(x)) = / a2y, x NV (B (v, ) dy
Q C
- / Ko(x)Ko(y) (Y (0Y'(y)),

A <G(O) (¥, %, >\)>CV_V<h(O) (y. )\)>cdy (39)
where (Gy, x, \)). is the zero-order approximation of the
random Green’s function and (Y'(x)Y(y)). is the conditional
covariance of Y between points x and y. The first-order
approximation is governed by a homogencous equation
subject to homogenecous boundary conditions and so it
vanishes identically, (A"(x, X)), = 0. We approximate the
mean head and flux by their leading terms up to second order
as

(R(x,N), ~ <E<°) (x, x)>

@), ~ @

c

+ (B xN) o)

(x V), + @2 (x,N),

4.2. Recursive Nonlocal Conditional Second Moment
Approximations in the Laplace Domain

[19] To second order in oy C = Ci = 0, and the
second-order approximation of the conditional head covari-
ance C,2(x, y, \, s) is governed by
= Vi [KeViC (x, v hs) + (%, v,5) V(R (x,0) ) |

+ S(ONC) (%3 M) =
(2.y.5)) dz

S,(x) / 2)Cryy (x <

//CfXZ)\T< zy,v—T>dsz (41)
623 Y, A, 8) = //CHXZXTKG()
I'p
X VZ<G(0) (z,y,s — ’I’)> - n(z)dzdt xel)p
‘ (42)

[Ko(VaC (x y 0 5) 4+ (5, v, 9 V(B (60) | -n(x)

:/OS /FNFQ(x,z,x,T)<

where Cy,, C,; Cyy, and fQ are transformed covariances of
the forcing terms H,, f, H, and Q, respectively:

Chy (x,2) = (Hy(x)Hy (2))
Crxz ) = (F (xNf(2,7) )
Cy(x,z,\,7) = <ﬁ,(x7 NH' (z, T)>

Co(x,z,\,7) = <Q’(x,x)Q’(z, T)>

For consistency, we assume that all random fluctuations in
forcing terms are of order oy Perturbation expansion of

GOz,y,s — T)> dzdr xely

(43)
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P.(x,y, \, 5) in equation (25) and u.(x, y, §) in equation (26)
yields the leading terms

0

FE, )(x !

o) =Py N s) =P (xy hs) =0 (45)

u(x,y,s )fu“)(

ul? (x,y,s) = —Kag(x / /QKG N(Y'(2)Y'(x)),

><VZ< (Z,T)> . VZ<G( )(z7y,s—‘r)> dzdT (46)
Perturbation of the conditional covariance C.(X, X, X\, 1)
yields leading terms

= d,lc) (X, X, \,2) =0

— [ u@(y,x, t)Vy<ﬁ(0) (y, >\)>C- Vy<@(0)(y7 X, >\)>Cdy

o[ [ [ertrann(c® wne=) (G .x ) duavar
+/Q Q S )8 (2)Crn (v, 2 )<G(O>(Z X l‘)>c<6<0)(y,x7>\)>cdzdy

/ / / Cul(y.z,\ 1)K (2)V, <G< )(z,x,t77)>‘- n(z)
T'p JTp =
Ko()Vy(G" (v.x,)) - n(y)dzdydr

+ /Ot /r , /r Coly. 2 (6" (2.1 - T)>c<a(0) oz, x)>c

x dzdydr (47)

[20] Perturbation of the conditional cross-covariance ten-
sor of flux Cq.(X, y, N\, 5) yields leading terms

=0

CqC (X7 y7 >\7 S) =

e

CqC (X7 y7 >\7 S) =
—(2

Ke(x)Kg(y) [vxv; CP(x,y. ) 5)

+ <Y'(X)Y’(y)) v (1" xN) vy

=) —
Cye (X,¥y,N,5) =0

(1905.))

+ Kg(x)Vy y,x>\V<h >
+Ko(y) Vi <E<°’<x N) Vyul(x,y.s) (48)
The leading terms of u(y, X, \) are
W xN) = <Koly) [ Kol (V@Y 0)),
x VI <E<°) (z, x)> vz<6“’) (z,x, x)> dz (49)
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Perturbation of ch(x, X, \, 1) yields

~(0) _ =M _
Cye (x,x,\, 1) = Cye (x,x,X\,2) =0

C(x,x, N\ 1) = Kg(x)Ke(x) K{v%’(x NVTH (x, t)] (2)>

+ cé(x)V<ﬁ(0) (x, >\)> VT< )(x, t)>c}
— KeF (x NV (10 (x,1))
- KG(x)v<h<°> (x, >\)>CF£2>T

c

(x,1) (50)

where the covariance tensor (VA/(x, MVTH (x, t)(2)>c of
head gradient is given by equation (B8) as

< [Vﬁ(x, NVIH (x, t)} (2)> -
— S;VXV§< y,x)\>
@)

xvy@(( )> VU (y, x, t)dy

t
[ [emannvi(@ )
0 Q JQ ¢
x VT<G<°>(Z X, — T)> dzdydr
+, fso

@Cu (v, 2)V:(C" (v x. )
X Vx<

)(z,x, t)> dzdy

t
w[ [ ] Cutvanm
0 JI'p JTp

X Vy [KG(Y)vy<E(O) (¥, %, X)>C- n(y)}
X VT[ ¢(z)V, <G(0)(z X, t— )>C (z)]dzdyd’r

//H/FVCQMXT < (y7xk)>

x V1<G (z,x,t — T)>Cdldyd’l'

5. Localization of Conditional Mean Flow
Equations

[21] As the transformed residual flux r.(x, \) and mean
flux (q(x, N\)). are non-Darcian, the notion of effective
hydraulic conductivity loses meaning in the context of flow
prediction based on ensemble mean quantities. In some
special cases, localization of the mean equation is
possible so that the flow becomes approximately Darcian
in the mean. Localization is valid when (1) V{A(x, N\)).
varies slowly in space (not necessarily in time) wherever
a.(y, X, \) is nonzero and (2) r.x, \) does likewise
wherever d.(y, X, \) is nonzero. Then equation (19) can
be approximated via

T (X, \) ~ /Qﬁc(y, X, )\)dyV@(x >\)>c+ /g;ac(y, X, \)dy T.(x,\)

(52)
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and if [T — [od(y, x, \)dy] ™" exists where I is the identity
tensor, equation (52) can be rewritten in local form as

F (%, \) & Ke(%, ) VA%, N)) (53)

c

where

-1
K== [ ac<y,x,x>dy} [atxnay 59

Substituting equation (53) into (15) yields the conditional
mean Darcian expression

@(x,N), & —Keap(x, NV(A(x,N)), (55)
where K. ,,,(X, \) is a spatially varying conditional appar-
ent hydraulic conductivity tensor in the Laplace domain,
given by

Keapp (X, X) = (K(x)) ] = Ke(x,N) (56)
Equations (52)—(56) are identical to those obtained previ-
ously by Tartakovsky and Neuman [1998b] upon first
developing moment expressions in space-time and then
applying the Laplace transform. There is no known way
to localize second-moment equations. Hence localization
yields no information about predictive uncertainty.

[22] To render localized mean equations workable, one
needs to evaluate the apparent hydraulic conductivity either
by inverse method against measured values of head and flux
or by recursive approximation. The latter approach yields to
second-order

K?Lpp(x7 N) = Kg(x) Kl + @)1_

Ko)WY )G x ) av] 7

Q
which requires computing the zero-order Green’s function
(not needed for inverse solution).

6. Numerical Approach

[23] We solve the recursive nonlocal moment equations
and localized mean flow equations in the Laplace domain
using a Galerkin finite element scheme similar to that
developed for steady state flow by Guadagnini and Neuman
[1999D]; details beyond those given here are given by Ye
[2002]. For purposes of Monte Carlo simulation, we use a
standard Galerkin finite element scheme on the same
grid to solve the Laplace-transformed stochastic flow
equations (8)—(11) for random realizations of hydraulic
conductivity. Independent Monte Carlo runs are conducted
in parallel on multiple processors. We then invert the results
numerically from the Laplace back into the time domain
using a parallelized version of an algorithm devised by
Crump [1976] and De Hoog et al. [1982]. The latter uses
trapezoidal rule to discretize the Laplace parameter into k =
0, 1, 2,..., 2M + 1 values Ny = N\g + thkw/T where \g =
—In(E)/(2T), i = /—1, Tis half a Fourier period, and E is a
dimensionless discretization error. Following Crump
[1976], Sudicky [1989], and Gambolati et al. [1997], we
set T = 0.8%ax, Where f,,,¢ is the simulation period, £ =
107, and M = 23 to yield stable results.
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S q.n=0 6 7

Figure 1. Computational grid, boundary conditions, con-
ditioning points (solid squares) and pumping well (solid
circle).

[24] Sudicky [1989] and D’Amore et al. [1999] have
shown that since the algorithm relies on a complex Laplace
parameter, it is more accurate than algorithms using real-
valued Laplace parameters, which tend to be unstable.
Nevertheless, the Gibbs phenomenon may cause the algo-
rithm to yield unstable solutions for ¢ < 0.1¢,, (Which
did not happen in our case). To avoid such instabilities,
Gambolati et al. [1997] suggested varying f,,,x SO as to
ensure that ¢ always remains in the stable range. Another
way to eliminate oscillations at relatively small time is to
increase M [Pini and Putti, 1997].

[25] As finite element moment equations associated with
various N\, values are mutually independent, we solve them
in parallel on multiple processors, each of which yields a
solution for one or more (depending on the number of
processors) \; values. Inverse head at any node j in the
finite element grid is calculated according to

1 1 2M+1
hi(t) = 7 exp(Not) Eh/"o + Z Re{h;x exp(iknt/T)}| (58)
=1

where 7y is the corresponding transformed head at M.
Though it is possible to perform these explicit calculations
in parallel, our use of a fast quotient-difference algorithm
renders it unnecessary.

[26] To compare the accuracy of the three solution
methods (recursive nonlocal and localized moment; Monte
Carlo) we base all of them on Laplace transformation
(according to Sudicky [1989] and Ye [2002], the latter is
more accurate than traditional time marching when applied
to a deterministic or single Monte Carlo run). As Monte
Carlo simulations are mutually independent we automati-
cally assign each to one processor, which performs the
Laplace inversion sequentially for all X\, values (rather than
distributing the inversion among different processors as we
do in the case of moment equations). Because of commu-
nication between processors [Mendes and Pereira, 2003]
this results in less than 100% efficiency.

7. Two-Dimensional Examples

[27] We illustrate our approach on conditional and un-
conditional examples of superimposed mean uniform and
convergent flows in a two-dimensional rectangular domain.
The domain is subdivided into 800 square elements (20 rows
and 40 columns) of uniform size Ax; = Ax, = 0.2 measured
in arbitrary consistent length units (Figure 1). The length of
the domain is L; =40 x 0.2 = 8 and its width is L, = 20 X
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0.2 = 4. A uniform deterministic head H; = 8 (in similar
length units) is prescribed on the left boundary (x; =0) and a
constant head Hy = 4 on the right boundary (x; = 8). The
bottom (x, = 0) and top (x, =4) boundaries are impermeable.
Constant deterministic initial head Hy = 4 is assigned to all
but the prescribed head boundary nodes of the grid. A
pumping well (point sink) of deterministic strength O, (in
arbitrary consistent units of length per time) is placed at the
center node of the domain (x; =4, x, = 2). Transient flow is
simulated over a period ¢, = 20 of similar time units.
Solutions of the finite element equations are obtained at
discrete time steps £=10.1,0.3,0.5,0.7,0.9, 1,2, 3,4,5,6, 7,
8,9, 10, 11, 13, 15, 18, and 20. We employ the same
computational grid and time steps for all moment and Monte
Carlo solutions to render them directly comparable.

[28] The log hydraulic conductivity Y(x) is taken to be
statistically homogeneous and isotropic with the widely
used [Dagan, 1989; Zhang, 2002] exponential covariance
function

Clr) = 0% exp (7 ;) (59)

where 7 is separation distance (lag) between two points in
the domain and / is the integral scale of Y. This choice of
covariance function is purely for illustration purposes, our
solution algorithms being equally capable of admitting other
valid forms of this function. Whereas an exponential co-
variance causes steady state head variance to grow without
limit as the distance between prescribed head boundaries
increases, this is not a problem in a finite domain where
boundaries render the head statistically nonhomogeneous
[Dagan, 1989].

[29] For purposes of Monte Carlo simulation we assume
that Y is multivariate Gaussian (no such distributional
assumption is required for the moment solutions). Random
Y fields are generated using the sequential Gaussian simu-
lation code SGSIM [Deutsch and Journel, 1998]. Each
element is assigned a constant conductivity corresponding
to the value generated at its center. We generate 2500
unconditional realizations of ¥ with mean (Y) = 0, variance
o2 =4, and correlation scale / = 1. The grid thus includes a
minimum of five elements per correlation scale as recom-
mended by, among others, Ababou et al. [1989].

[30] For purposes of conditional simulation, we ‘“mea-
sure” Y (without error) across an unconditional random
field at 12 evenly distributed conditioning points shown
by solid squares in Figure 1. We then generate 2500
corresponding conditional realizations of Y. Figure 2 depicts
images of one such conditional realization and the condi-
tional sample mean my and variance §% of all 2500 realiza-
tions. As expected, the conditional Y fields are statistically
nonhomogeneous in that their mean and variance vary with
location.

[31] To render our comparison of nonlocal and localized
moment solutions with Monte Carlo results meaningful, the
same input statistics (mean, variance, and covariance of Y)
are used for all three. We note that for comparative purposes
it is not necessary that the Monte Carlo simulations fully
stabilize, only that all three sets of input statistics be
identical (this was originally pointed out by Guadagnini
and Neuman [1999a, 1999b]). In practice, nonlocal and
localized solutions do not require generating random fields,
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Figure 2. Images of (a) a conditional realization of Y,
conditional sample (b) mean my and (c) variance Sy of
NMC = 2500 realizations with unconditional o7 =4, / = 1.
See color version of this figure at back of this issue.

and one would typically infer the corresponding input
statistics from measurements, using geostatistical methods.
Upon plotting the sample mean and variance of head and
flux at selected points in space-time versus the number of
realizations (Ye [2002], not shown here), we find that
whereas the conditional sample means become effectively
stable after about 1000 realizations, the conditional sample
variances continue to vary slowly even as the number of
realizations approaches our maximum of 2500.

7.1. Conditional Mean Hydraulic Head

[32] Visual examination of conditional mean head con-
tours (Ye [2002], not shown here) obtained through recur-
sive nonlocal, localized, and Monte Carlo solutions
indicates that the three sets of solutions agree remarkably
well. Figure 3 depicts profiles of mean head and second-
order mean head corrections at time ¢+ = 5 along two
sections. The localized moment solution is seen to be as
accurate (in comparison to the Monte Carlo results) as the
nonlocal recursive solution except near the pumping well
where it becomes relatively poor due to a steep increase in
mean head gradient. The corresponding nonlocal solution is
surprisingly accurate considering the strong heterogeneity
of the underlying Y field (unconditional 0% = 4). This is
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Figure 3. (a and b) Conditional mean head and (¢ and d) second-order head corrections at time ¢ = 5

along longitudinal section x, = 2 and transverse section x; = 4 for c2=41=1.

due to the second-order correction, which is seen to be
significant near the well. Results at times other than ¢ = 5
(not shown) exhibit similar patterns of behavior.

[33] Figure 4 compares temporal variations in conditional
mean head at the pumping well (4.0, 2.0) and at an upstream
point (2.0, 2.0) as computed by the three methods of
solution (note that the initial head across the domain is 4,
as is the head on the left boundary). All three solutions
evolve at similar rates at both points. Whereas the nonlocal
and localized solutions agree closely with Monte Carlo
results at the upstream point, the localized solution seriously
overestimates these results at the pumping well. Indeed, the
second-order nonlocal correction at the latter is significant
at all times. It initially decreases with time and later slowly
increases.

7.2. Conditional Variance of Hydraulic Head

[34] Figure 5 compares profiles of conditional head
variance at ¢+ = 5 obtained by the nonlocal (dashed) and
Monte Carlo (solid) solution methods. Although our non-
local results represent the lowest possible order of approx-
imating head variance, they compare remarkably well with
MC results except near the pumping well, where they
underestimate predictive uncertainty. Elsewhere along the
two sections the nonlocal solution overestimates head
uncertainty by a small amount. Conditional head variance
is zero at the upstream (left) and downstream (right)
deterministic Dirichlet boundaries, increasing toward the
center of the domain with a sharp rise near the pumping
well.

[35] Figure 6 depicts profiles of conditional head variance
along section x, = 2 at times = 0.5, 1, and 10. Profiles after
¢t =10 do not change visibly with time and are therefore not

shown. There is good qualitative agreement between the
nonlocal and Monte Carlo solutions, which improves quan-
titatively with time. The manner in which conditional head
variance evolves with time at upstream point (2.0, 2.0) and
downstream point (6.0, 2.0) is illustrated in Figure 7.
Uncertainty is seen to increase and then decrease monoton-
ically with time upstream and increase downstream of the
well. There is no qualitative difference between the nonlocal
and Monte Carlo results, though they differ quantitatively
upstream of the well at early time.

7.3. Conditional Covariance of Hydraulic Head

[36] The covariance is spatially nonhomogeneous due to
conditioning and forcing, with acceptable agreement be-
tween nonlocal and Monte Carlo results (Ye [2002], not
shown here). Figure 8 illustrates how the temporal condi-
tional head covariance Cj,.(x; =y, =2, X, =y, =2, t, 5) varies
with time ¢ relative to three reference times s = 0.5, 1, and 10.
Crdx =Yy, t, s) is seen to be nonstationary in time due to the
transient nature of the problem. For example, Cj,(x =Yy, =15,
s = 10) differs from C,(x =y, £ =15, s = 10) even though
both are associated with the same time lag, |t — s| = 5.
Agreement between the nonlocal and Monte Carlo solutions
improves as time and reference time increase.

7.4. Conditional Mean Hydraulic Flux

[37] Figure 9 depicts profiles of longitudinal mean
flux, second-order mean flux correction and residual flux
at t+ = 5 along two sections. Analogous results for
transverse mean flux are shown in Figure 10. Both the
nonlocal and localized solutions compare favorably with
Monte Carlo simulations, the former more closely than
the latter. Second-order components of the longitudinal
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Figure 4. Conditional mean head versus time at points
(a) x; = 4, x, =2 (pumping well) and (b) x; = 2.0, x, = 2.0

sections x, = 3 at times (a) t = 0.5, (b) =1, and (c) t = 10

and second-order head corrections at these points for ol=4,

obtained with NMC = 2500 Monte Carlo (solid curves) and
nonlocal moment (dashed curves) solutions for 07 =4, [ = 1.

mean flux are seen to be strongly affected by the location of
conditioning points (open circles in Figures 9¢ and 9f).
Figure 9d indicates that longitudinal mean flux exhibits
a maximum at conditioning point (3.1, 0.7) (x;/L; =

I=1.
20— -
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Figure 5. Conditional head variance along sections (a) x, =
2 and (b) x, = 3 at time 7 = 5 obtained with NMC = 2500
Monte Carlo (solid curves) and nonlocal moment (dashed

curves) solutions for o3 = 4, [ =

1.

0.8

0.7+,

0.6
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0.4
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0.3875) where mean log conductivity is the largest
(Figure 2b), causing mean longitudinal flux to converge.
Figure 11 illustrates how conditional longitudinal and
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Nonlocal at point (6,2)
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20

Figure 7. Conditional head variance versus time at points
x1 = 2, x, = 2 (upstream) and x; = 6, x, = 2 (downstream)
with NMC = 2500 Monte Carlo (solid curves) and nonlocal

moment (dashed curves) solutions for o3 = 4, [ = 1.
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transverse mean fluxes vary with time at an upstream
point.

7.5. Conditional Cross-Covariance Tensor of Flux at
Zero Lag

[38] The components of the conditional cross-covariance
tensor of flux at zero lag are designated by Cye11(X, X, £, )
(longitudinal flux variance), C,o(X, X, t, f) (transverse
flux variance), and Cyeia(X, X, ¢, 1) = Cyeai(X, X, £, 1)
(cross-covariance between longitudinal and transverse
fluxes). Figures 12—14 depict profiles of these compo-
nents at time ¢ = 5 as computed by the nonlocal
and Monte Carlo methods. We note once again that
although our nonlocal solution represents the lowest
possible order of approximating second moments, these
compare remarkably well with the Monte Carlo results,
even near the well. Flux variances exhibit maxima in
the vicinity of the pumping well. The profile of
Cie1(x, X, t, 1) along section x, = 1.9 exhibits local
minima at conditioning points (open circles in Figure 12a).
In Figures 13 and 14, Cyex(x, X, 1, 1) and Cye12(X, X, £, ?)
are close to zero near deterministic boundaries where trans-
verse flux vanishes due to uniform deterministic boundary
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-u’.q|>

: 0.75
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Figure 9. Profiles of conditional longitudinal mean flux, second-order longitudinal mean flux
correction and residual flux at time # =5 along sections (a—c) x, = 1.9 and (d—f) x, = 0.7 for or=4,1=1.

Open circles designate conditioning points.
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Figure 10. Profiles of conditional transverse mean flux, second-order transverse mean flux correction
and residual flux at time ¢ = 5 along sections (a—c) x, = 1.9 and (d—f) x, = 0.7 for 0§ =4, [ = 1.

conditions. The profile of Cy.i2(x, X, ¢, f) is more or
less antisymmetric about the pumping well along section
x>, = 1.9 (Figure 14a) and uniform along section x, = 2.5
(Figure 14b).

[39] Figures 1516 illustrate profiles of C,.11(X, X, ¢, ?)
and Cy0(X, X, ¢, f) along section x, = 1.9 at times 1= 0.5, 1,
and 10. Variation with time after = 10 is negligible. Similar
profiles of C,.12(X, X, ¢, t) change slightly over time.
The nonlocal solution agrees reasonably well with Monte
Carlo results, somewhat better at late than at early time.
Both Cyeii(x, X, £, ) and Cyex(X, X, ¢, 1) are generally
larger upstream than downstream of the pumping well.
Figure 17 shows how components of the cross-covariance
tensor of flux evolve with time upstream and downstream of
the well.

7.6. Comparison of Conditional and Unconditional
Moment Solutions

[40] For the sake of brevity, we do not illustrate
unconditional solutions corresponding to the above flow
problem. Instead, we list in Table 1 the maximum
normalized absolute (MNAD) and root mean square
(MNRMS) deviations of conditional and unconditional
nonlocal moment solutions from corresponding Monte
Carlo results, and in Table 2 the maximum and maximum
averaged (MA) variances of head and flux as obtained

from the conditional and unconditional moment solutions.
MNAD and MNRMS are accuracy measures defined as

MNAD = max [P0 () — P ()
g Pie(4)
L& , 1/2
v 2 (P (5) = P (1) (60)
MNRMS = max =

I SO}

i=1

where P; /(¢ is a moment (mean or variance of head or
flux) computed at node 7 and time ¢ using nonlocal moment
equations, and P;y(Z) is the same moment computed by
Monte Carlo simulation, N being the total number of nodes.
The predictive variance measures in Table 2 are maximum

N
= max Pivi(t) and MA = mjax%ZP,-,ME(tj) where P now
stands for the variance of head orl fllux.

[41] Table 1 demonstrates that conditioning enhances the
overall accuracy of the nonlocal moment solution, as
compared to Monte Carlo results. Table 2 shows that
conditioning brings about a significant reduction in the
maximum and overall predictive variance of head and flux.
The latter is seen, for example, upon comparing profiles of
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Figure 12. Profiles of conditional variance of longitudinal
flux along sections (a) x, = 1.9 and (b) x, = 2.5 at time =5
obtained by NMC = 2500 Monte Carlo (solid curves) and
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Figure 13. Profiles of conditional variance of transverse
flux along sections (a) x, = 1.9 and (b) x, = 2.5 at time =5
obtained with NMC = 2500 Monte Carlo (solid curves) and
nonlocal moment (dashed curves) solutions for o7 =4, /= 1.
Open circles designate conditioning points.
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Figure 14. Profiles of conditional cross covariance
between longitudinal and transverse flux at zero lag along
sections (a) x, = 1.9 and (b) x, = 2.5 at time ¢# = 5 obtained
with NMC = 2500 Monte Carlo (solid curves) and nonlocal
moment (dashed curves) solutions for o3 = 4, [ = 1. Open
circles designate conditioning points.

13 of 19



W05104

W@ 0.5 NMC=2500
- 3 k. 2= oot Nonlocal
= 4 o.=4, I=1
:. I AYong section x,=1.9
=2
B
&)
1 L
0 05 075
x,/L,
3
NMC=2500
25
P soommes Nonlocal
= 2 o.=4, =1
;; . A\lcmg section x,=1.9
ER
o
0.5
0 05 075
x,/L,
3
o (¢) t=10 NMC=2500
el Monlocal
o 2t G'\l,=4. =1
- secti =
Z st Along section x,=1.9
UT:r 11
= \\\“4/\»\
Pl i — T ——
0 0.5 05 0.75
x,/L
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unconditional variance of head (Figure 18) and longitudinal
flux (Figure 19) at time ¢ = 5 with corresponding profiles of
conditional variance (Figures 5 and 12, respectively). A
comparison of Figures 19 and 12 illustrates the improve-
ment in accuracy achieved through conditioning.

8. Preliminary Comparison of Computational
Efficiencies

[42] We compare the computational efficiencies of recur-
sive nonlocal moment and Monte Carlo methods in terms of
run times, rather than memory, as (1) optimizing one usually
degrades the other and (2) memory is not a major limitation
on modern supercomputers, which we use for our examples.
In general, the recursive nonlocal method is associated with
a larger number of variables (e.g., covariance of log
hydraulic conductivity, zero- and second-order head and
flux) and therefore requires more memory than does the
Monte Carlo method. To ensure that run times are compa-
rable, we use the same computational grid, finite element
scheme, and matrix solver for both methods. Parallel
computing is done in FORTRAN using message passing
interface (MPI), which is portable across a variety of
computing platforms, coupled with single program multiple
data (SPMD) programming, which allows the same code to
run on multiple processors. We recognize that different
grid sizes, numerical schemes, matrix solvers, and methods
of parallelization may be required to render the run time
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of each method optimal; as exploring all these possibilities
would be outside the scope of this paper, we consider
our comparison of computational efficiencies to be of a
preliminary nature.

[43] Table 3 compares Monte Carlo (MC) and moment
(ME) runtimes required to compute conditional mean and
variance of head and flux in the numerical example dis-
cussed earlier using one, four, and eight processors on a
University of Arizona SGI 2000 supercomputer (recently
replaced by a much more powerful HP TRU64 supercom-
puter). CPU run time is measured by a portable batch
system (PBS), which manages jobs submitted to an isolated
queue. Our nonlocal moment method consistently outper-
forms the Monte Carlo method by a significant margin. This
is true whether we use one or multiple processors. For
example, using one processor to compute conditional mean
head takes about 4 times as long with 2500 Monte Carlo
runs as with the nonlocal approach; computing conditional
head variance takes twice as long. These ratios of run time
increase considerably with an increase in the number of
processors. The same holds true for the unconditional case.

[44] In addition to grid size, numerical scheme, matrix
solver, and method of parallelization, computational effi-
ciency is also influenced by the number of random source
terms, number and location of conditioning points, and the
number of Monte Carlo runs. In this preliminary compari-
son we vary the grid size while keeping all other factors

14+ (a), =0.5 NMC=2500
_l2f —rEmanes Nonlocal
S gl o.=4, 1=l
» A.iong section x,=1.9
<~ 08 <

'—g'. 06F

U 04

0.2

L 0.25 05 0.75
XLy

14 ) =1 NMC=2500
_t2p o T e atatetate Nonlocal
= 1t o.=4, 1=1
% 08 A‘ong section x,=1.9
%o 2
H 06
O 04

02

0 025 05 0.75
X 1 'f L 1

45 () =10 NMC=2500
_t2f S MNonlocal
= 1t K o.=4, I=1
% o8l ) A\ong section x,=1.9
3 3 \ ks
&

x; /Ly

Figure 16. Profiles of conditional variance of transverse
flux along section x, = 1.9 at times (a) £ = 0.5, (b) =1, and
(¢) t = 10 for o7 = 4, [ = 1. Open circles designate
conditioning points.
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Figure 17. Conditional (a) variance of longitudinal flux,
(b) variance of transverse flux, and (c) cross covariance
between longitudinal and transverse flux at a zero lag versus
time at points x; = 1.9, x, = 1.9 (upstream) and x; = 5.9, x, =
1.9 (downstream) with NMC = 2500 Monte Carlo (solid
cgrves) and nonlocal moment (dashed curves) solutions for
oy=4,1=1.

Table 1. Maximum Normalized Absolute (MNAD) and Root-
Mean-Square (MNRMS) Deviations of Conditional and Uncondi-
tional Moment Solutions From Corresponding Monte Carlo
Results

Conditional Unconditional
Quantities MNAD, % MNRMS, % MNAD, % MNRMS, %
Mean head 12.06 0.5762 30.22 1.785
Mean flux g, 66.67 5.530 86.57 5.709
Mean flux ¢, NA 6.989 NA 12.63
Head variance 87.24 73.50 97.62 93.42
Flux ¢, variance 97.60 28.31 99.63 53.05
Flux ¢, variance 100.0 22.21 100.0 64.63
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Table 2. Maximum and Maximum Averaged (MA) Conditional
and Unconditional Moment Solutions

Conditional Unconditional
Quantities Maximum MA Maximum MA
Head variance 2.1584 0.3734 2.9867 0.8749
Flux ¢, variance 2.6436 0.6824 3.0940 0.8834
Flux ¢, variance 0.6763 0.1214 1.8328 0.1354

fixed, without conditioning. In particular, we employ a
direct LU factorization method (using the DLSACB,
DLFTCB, and DLFSCB routines of the IMSL library on
www.vni.com) and 2000 Monte Carlo runs. As full stabili-
zation of all corresponding sample statistics may require
many more such runs (e.g., 20,000 in the case of S. Li et al.
[2003] and 9000 and in the case of L. Li et al. [2003]), our
comparison is biased in this sense in favor of the Monte
Carlo method. It is biased in favor of the nonlocal recursive
method in that the latter would entail extra terms for second
moments of random sources.

[45] Figure 20a depicts ratios between runtimes required
for Monte Carlo and recursive nonlocal computations of
mean head and head variance on the University of Arizona
HP TRU64 supercomputer using one and 16 processors.
Our conditional example runs about 3 times faster on the
HP than on the SGI machine. Following optimization of our
codes on the HP machine, we find that as grid size increases
eightfold from 800 to 6400 finite elements, the run time
ratio for mean head decreases by a factor of 7.5 from 68.77
to 9.18 and that for head variance by a factor of 11 from
15.37 to 1.36 with one processor. When 16 processors are
used, these ratios drop slightly in a manner that does not
appear to have practical significance. The drop is due to a
somewhat better parallel performance of the Monte Carlo
method in comparison to the nonlocal recursive algorithm,
as is seen in Figure 20b; the latter compares the speedups of
the Monte Carlo, nonlocal mean head, and nonlocal head
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Figure 18. Unconditional head variance along sections
(a) xo, =2 and (b) x, = 3 at time # = 5 obtained with NMC =
2500 Monte Carlo (solid curves) and nonlocal moment
(dashed curves) solutions for o = 4, [ = 1.
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water flow, and to assess the corresponding prediction
uncertainty in bounded, randomly heterogeneous porous
media conditional on measurements without resorting to
Monte Carlo simulation. We have done so by solving
Laplace-transformed recursive conditional nonlocal mo-
ment equations using finite elements and numerical inver-
sion of the results back into the time domain (use of the
Laplace transform is limited to linear problems such as
ours). Although our theoretical approach allows accounting
formally for uncertainty in initial, boundary, and source
terms, we have not yet explored this feature of our solution
method numerically.

[48] 2. The moment equations we use are distribution-free
and thus obviate the need to know or assume the multivar-
iate distributions of random input parameters or forcing
terms, as is required for the Monte Carlo approach.

[49] 3. Our approach differs fundamentally from standard
perturbative solutions in that it originates in a set of
conditional moment equations which are exact, compact,
formally incorporate boundary effects, provide a unique
insight into the nature of the problem, and lead to unique
localized moment equations that look like standard deter-
ministic flow (and transport) equations, allowing one to
interpret the latter within a conditional stochastic frame-

70

I=1. ()
variance solutions with number of processors for the largest e O :z:: :g::ﬂ EL}
grid of 6400 elements, a speedup of 1:1 being ideal. It is .8 50} —e—— Head variance(1p)
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processors due to an increase in overhead caused by factors g, 40F
such as system idling and communication between process- & a0k
ors. The speedup of nonlocal mean head computation is & N
lower than that of nonlocal variance computation because é‘ 20k
the former requires solving four coupled moment equations 4
(zero-order head, zero-order Green’s function, second-order 10 3
residual flux, and second-order head) and the latter only | . : .
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Table 3. Run Times, in Minutes, of Monte Carlo (MC) and a =
Nonlocal Moment (ME) Solutions Required to Compute Condi- @)
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(). (9). o o Number processors
Pl l\l\ﬁg gﬂgg gf;gg igi?g 3232? Figure 20. (a) Run time ratio between 2000 Monte Carlo
P=4 MC 259.20 260.88 259.20 260.80 runs and mean head and head variance solutions for
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work. Both the nonlocal and localized equations describe
the space-time evolution of moments representing random
functions rendered statistically inhomogeneous (in space)
and nonstationary (in time) due to the combined effects of
sources, boundaries, and conditioning. To approximate the
exact moment equations recursively, we use a valid expan-
sion in terms of (deterministic) moments rather than a
theoretically invalid expansion in terms of random quanti-
ties, which may (but is not guaranteed to) yield valid results
after subsequent averaging. Our approach leads to localized
approximations which do not arise from standard perturba-
tion schemes.

[s0] 4. Our approach differs computationally from stan-
dard perturbative solutions in that it leads to localized
moment equations that are almost as easy to solve as
standard deterministic flow equations, and to recursive
nonlocal moment equations written in terms of Green’s
functions, which are independent of internal sources and
the magnitudes of boundary terms. Once these functions
have been computed for a given boundary configuration,
they can be used repeatedly to obtain solutions for a wide
range of internal sources and boundary terms (scenarios).

[51] 5. Though our localized algorithm is mathematically
much simpler and computationally more efficient than the
nonlocal algorithm, it has the disadvantage of being less
accurate and unable to provide information about predictive
uncertainty.

[52] 6. Our nonlocal recursive moment solution cannot be
guaranteed to converge for strongly heterogeneous media
with log hydraulic conductivity standard deviation, oy, of
order 1 or larger. Yet upon submitting it to a severe test by
considering superimposed mean uniform and convergent
flows in a strongly heterogeneous medium with oy = 4, the
solution proved to be remarkably accurate upon condition-
ing it on 12 “measured” log conductivity values. Removing
the conditioning points caused accuracy to diminish but the
solution remained acceptable. Hence the method appears to
be applicable to complex flows in strongly heterogeneous
media with or without conditioning.

[53] 7. Conditioning was shown to bring about a signif-
icant reduction in the predictive uncertainty of head and
flux.

[s4] 8. A preliminary comparison of supercomputer run-
times for mean head and its variance suggests that our
nonlocal moment algorithm consistently outperforms the
Monte Carlo method by a significant margin when the same
direct matrix solver is used for all three (we do not presently
know how using iterative solvers would have affected this
conclusion). The ratio between Monte Carlo and nonlocal
recursive run times diminishes toward an apparent asymp-
tote as problem size increases, regardless of number of
processors.

[55] 9. Our nonlocal algorithm is potentially well suited
for groundwater optimization problems and for the investi-
gation of various flow scenarios in randomly heterogeneous
aquifers. This is so because the corresponding finite element
matrices are independent of internal source terms or the
magnitudes of initial and boundary terms. Hence they can
be factored once and then used repeatedly to compute the
effect of varying the forcing terms on predicted head and
flux and on the associated prediction errors. This is in
contrast to the Monte Carlo method, which requires repeat-
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ing all simulations whenever there is a change in forcing
terms.

[s6] 10. The underlying exact and recursive moment
equations, as well as the proposed computational algorithm,
are valid in both two and three dimensions, though we have
implemented them here in two dimensions.

Appendix A

[57] The random Green’s function G(y, X, \), associated
with equations (8)—(11), satisfies

—Vy - [K(y)VyG(y, x, V)] + S;(y)\G(y,x, \)
subject to homogeneous boundary conditions

G(y,x,\) =0 yeTp (A2)

VyG(y,x,\) -n(y) =0 yely (A3)
where §(y — x) is the Dirac delta function. G(y, x, \)
is symmetric in the Laplace domain. Substituting
equations (12)—(14) into (8)—(11), taking conditional
ensemble mean, and subtracting the latter from the former
yields

V- [K(x)vz’(x,x)} +V- [K’(x)v@’(x, x)>j
_v. <K’(X)Vﬁ/(x, x)>c— Sy(X)NE (x,N)

= SMNH)(x) - (x,)) xeQ (A4)

subject to

B (x,\) = H'(x,\) xeTlp (A5)

K(X)VE (x,\) + K'(x)V{(A(x, x)>c—<1<'(x)vz’(x, >\)> ] “n(x)

=0 (x,\) xely (A6)

Expressing equations (A4)—(A6) in terms of y, multiplying

by G(y, X, \), integrating over €2, and applying Green’s first
identity twice gives the desired expression:

TN = [ (KW (), V,Glyx Ny
— | K@)V N). - 9580 x )y
+ [ 70N x Ny + [ S 05y x Ny
— | H (v, VK(y)VyG(y,x,\) - n(y)dy

I'p

-/ 0'(y. NG(y,x, Ndy (A7)

Applying the operator K'(x)V to equation (A7), taking
conditional ensemble mean, and recognizing that driving
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forces are statistically uncorrelated with hydraulic conduc-
tivity and hence the random Green’s function, leads to

(K'(x)VA(x,N)),

= A <K’(X)VXV§@(y,X,X)>C<K/(Y)Vﬁ/(y7k)>cdy

- [ @WK GVIIGE ) TNy )
This coupled with F.(x, N) = —(K'(X)VA(x, N). =
—(K'(x)Vh(x, N)). leads immediately to equations (19)—
@1).

Appendix B

[5s] Multiplying equations (A4)—(A6) by A'(y, s) and
taking conditional ensemble mean gives equations (22)—
(24). Expressing equation (BS) of Tartakovsky and Neuman
[1998a] in terms of y and s,

= /X (K'(z)V,H (z,7)),. - V.G(z,y,s — T) dzdt

0

_ /0 : [2 K'(2)V,{h(z, 7)), -

+ /2 Ss(z)Hy(2)G(z,y, s)dz

+/()S/Qf'(z,T)Gz

_ / i K(2)V,G(z,y,s — ) - n(z)H'(z, 7)dzd™

V.G(z,y,s — T)dzdT
s — T)dzdT

+ / [ 0@nGay,s — v)dadr (B1)
0 Ty

premultiplying by K'(x)V,/#/(x, \) and K'(x), and taking
conditional ensemble mean leads to the mixed conditional
moments (25) and (26), respectlvely Multiplying equation
(B1)by Hy, ', H', and Q', and taking conditional ensemble

mean gives exp11c1t expressions for the mixed conditional
moments in equations (22)—(24):

(HY (xR (y,5)), = / S,(2) (Hy()H}(2)) (G(z,y,5)).dz (B2)

<j (x, N // (X, \)f )><G(z,y,s ). dzdr
(B3)
(H'(x, N (y,s)).=— /X (H'(x, \H'(z,7))(K(2)
0 T'p

x VyG(z 7)), n(z)dzdT (B4)
(O (y.9)) =
/ ) / <Q’(x N0 (2, T)>(G(z,y,s—T)>cdzd'r (BS)
0 Ty

Multiplying equation (A7) by 4'(x, #) and taking conditional
ensemble mean gives equation (27). Substituting equa-
tions (12)—(14) into (8) yields
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(K(x)).VA (x,\)
WV {h(x,\)),— K'(x)VE'(x,))

q(x,\) = —F.(x,\) —

—K'(x (B6)

Expressing equation (B13) of Tartakovsky and Neuman
[1998a] in terms of y and s,

= —re(y,s) — (K(¥)) VI (y,9)
—K'(y)VH (y,s)

q'(y,s) —K'(y)V(h(y,s)).

(B7)

premultiplying the transpose of equation (B7) by (B6), and
taking conditional ensemble mean gives equation (28).
Multiplying equation (A7) by K'(y) and taking ensemble
mean yields equation (29). Applying the operator Vy to
equation (A7), postmultiplying by VZIA'(x, s), and taking
conditional ensemble mean leads to

(V' (x,

- /Q (VA VTG(y, x NEely, N VTH (x,0), dy

NVLH (x,1), =

- [ & 0TG5 x N T By )T (5.0,
+ [ PNV x NI (x0). dy

+ [ SO H ) VTl x N VI (5.0 dy

[ ROV G x ) (5 VT . 0)

+ / (v, N VsGly, x, NVIH (x,1), dy (B8)
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Figure 2. Images of (a) a conditional realization of ¥, conditional sample (b) mean myand (c) variance

S% of NMC = 2500 realizations with unconditional 0% =4, / = 1.
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