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Abstract Uncertainty about geologic makeup and properties of the subsurface renders inadequate a
unique quantitative prediction of flow and transport. Instead, multiple alternative scenarios have to be
explored within the probabilistic framework, typically by means of Monte Carlo simulations (MCS). These
can be computationally expensive, and often prohibitively so, especially when the goal is to compute the
tails of a distribution, that is, probabilities of rare events, which are necessary for risk assessment and
decision making under uncertainty. We deploy the method of distributions to derive a deterministic
equation for the cumulative distribution function (CDF) of hydraulic head in an aquifer with uncertain
(random) hydraulic conductivity. The CDF equation relies on a self-consistent closure approximation,
which ensures that the resulting CDF of hydraulic head has the same mean and variance as those
computed with statistical moment equations. We conduct a series of numerical experiments dealing with
steady-state two-dimensional flow driven by either a natural hydraulic head gradient or a pumping well.
These experiments reveal that the CDF method remains accurate and robust for highly heterogeneous
formations with the variance of log conductivity as large as five. For the same accuracy, it is also up to four
orders of magnitude faster than MCS in computing hydraulic head with a required degree of confidence
(probability).

1. Introduction
Quantitative predictions of fluid flow in subsurface environments are compromised by multiscale het-
erogeneity and insufficient site characterization. These factors introduce uncertainty in input parameters
(e.g., hydraulic conductivity and storage coefficient) and forcings (e.g., initial and boundary conditions and
recharge rate), rendering model outputs uncertain as well. Quantification of predictive uncertainty is typi-
cally done within the probabilistic framework, which equates uncertainty with randomness. Thus, uncertain
inputs and outputs of a given model, for example, the groundwater flow equation, are treated as spatiotem-
poral random fields characterized by corresponding probability density functions (PDFs) or cumulative
distribution functions (CDFs). In other words, such a model has infinitely many solutions some of which
are more likely than others; to assign probability to a particular solution, for example, hydraulic head h(x)
at any point x of a simulation domain, one has to compute hydraulic head's CDF Fh(H; x) ≡ P[h ≤ H; x],
the probability that an uncertain prediction of head h at point x does not exceed a value H.

Such information is required for risk assessment and decision making under uncertainty (e.g., Tartakovsky,
2007, 2013), yet it is absent in most stochastic analyses of subsurface flow and transport, which focus on
the first two statistical moments of a system state, for example, on mean head h̄(x) as its “best” prediction
and head variance 𝜎2

h(x) as a measure of predictive uncertainty (e.g., among many others, Dagan & Neu-
man, 1997; Li et al., 2003; Neuman et al., 1996). Monte Carlo simulations (MCS) can be used to compute the
CDF Fh(H; x). However, this approach requires a large number of Monte Carlo (MC) realizations to estimate
the tails of Fh(H; x), considerably more than that required to estimate h̄(x) and 𝜎2

h(x) with the same accu-
racy. When a single model run is computationally expensive, the use of MCS to calculate Fh might become
unfeasible.

Numerical strategies aiming to outperform MCS in terms of computational efficiency include quasi-MC
(Caflisch, 1998), multilevel MC (Giles et al., 2015), and various stochastic finite element methods (Xiu, 2010).
While widely used in practice, including for subsurface-related applications (e.g., Ciriello et al., 2017; Dod-
well et al., 2015; Liodakis et al., 2018; and the references therein), under certain conditions such methods
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can be slower than MCS. For example, multilevel MC might become slower than regular MC when esti-
mating a system state's distribution to the same accuracy (Giles et al., 2015), and polynomial chaos-based
techniques have been shown to underperform MC if random parameter fields in (nonlinear) models exhibit
short correlation lengths and/or high variances (Barajas-Solano & Tartakovsky, 2016).

The method of distributions (Tartakovsky & Gremaud, 2016) provides another alternative to MCS by deriv-
ing a single deterministic equation for either PDF or CDF of a system state. It often treats nonlinearities
in a governing equation exactly and remains robust and efficient for coefficients with short correlation
length, including white noise. The method has been used extensively to quantify parametric uncertainty
in hyperbolic problems, such as nonlinear advection-reaction transport (Boso et al., 2014; Lichtner & Tar-
takovsky, 2003; Shvidler & Karasaki, 2003; Tartakovsky & Broyda, 2011) and multiphase flow described by
the Buckley-Leverett equation (Ibrahima et al., 2015, 2018; Wang et al., 2013). To the best of our knowledge,
development of the method of distributions for elliptic problems with random coefficients (e.g., steady-state
groundwater equation with uncertain hydraulic conductivity) remains an open challenge.

That is because the Laplace operator in parabolic and elliptic equations requires a closure approximation
for the PDF or CDF equations. In turbulence and combustion literature, such a closure is obtained with the
interaction by exchange with the mean (IEM) approximation (Villermaux & Falk, 1994) or its subsequent
modifications (Raman et al., 2005). By construction, these closures preserve the mean of a state variable but
have been shown to give incorrect estimates of its variance. The self-consistent closure of Boso & Tartakovsky
(2016) ameliorates this deficiency by preserving both the mean and variance. It has been used to quantify
uncertainty in advection-dispersion (Boso & Tartakovsky, 2016) and advection-dispersion-reaction (Boso
et al., 2018) problems.

We develop the method of distributions for single-phase flow in subsurface environments with uncertain
hydraulic conductivity and external forcings. Section 2 contains a formulation of groundwater flow prob-
lem with uncertain inputs and a derivation of the PDF and CDF equations for hydraulic head. In section
3, we compare numerical solutions of the CDF equation with MCS results in terms of their accuracy and
computational efficiency. In this section we also demonstrate the robustness of the proposed method by
analyzing its performance for different degrees of input uncertainty (variance of log hydraulc conductivity).
Main findings and conclusions drawn from our study are summarized in section 4.

2. Problem Formulation and Method of Distributions
In this section we provide a probabilistic description of single-phase flow in a heterogeneous porous
medium with uncertain hydraulic conductivity K(x), and derive a deterministic equation for CDF Fh(H; x)
of hydraulic head h(x).

2.1. Single-Phase Flow in Porous Media
Steady-state flow in a d-dimensional saturated heterogeneous porous medium Ω ⊂ R

d is described by the
groundwater flow equation

∇ · [K(x)∇h(x)] = g(x), x ∈ Ω, (1)

subject to boundary conditions

h(x) = Φ(x), x ∈ ΓD; q(x) · n(x) = 𝜓(x), x ∈ ΓN ; q(x) · n(x) + ah(x) = 𝜑(x), x ∈ ΓR. (2)

Here g(x) represents point and/or distributed sources and sinks; Φ(x), 𝜓(x) and 𝜑(x) are the hydraulic
head, the normal component of the Darcy flux q(x) = −K(x)∇h(x), and their linear combination pre-
scribed, respectively, on the Dirichlet (ΓD), Neumann (ΓN ), and Robin (ΓR) segments of the boundary
𝜕Ω = ΓD ∪ ΓN ∪ ΓR of the flow domain Ω; and n(x) is the outward unit normal vector to ΓN .

The hydraulic conductivity K(x) and boundary functions Φ(x), 𝜓(x) and 𝜑(x) are uncertain and treated as
random fields. Specifically, K(x) is modeled as a second-order stationary multivariate lognormal field with
constant mean K̄, variance 𝜎2

K , correlation length 𝓁K , and correlation function 𝜌K(r∕𝓁K) where r = |x − y|
is the distance between any two points x, y ∈ Ω. The stationarity assumption precludes the presence of
distinct geological units or hydrofacies; it can be relaxed by deploying the random domain decomposition
(Winter et al., 2003) that treats individual facies as stationary. The boundary functions Φ(x), 𝜓(x) and 𝜑(x)
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are characterized by single-point CDFs FΦ(Φ; x), F𝜓 (Ψ; x) and F𝜑(𝛶 ; x), respectively, and by arbitrary spa-
tial correlation structures. These statistical properties of the inputs can be either estimated from spatially
distributed data or assigned by experts.

A solution of (1) and (2) with random K(x), Φ(x), 𝜓(x), and 𝜑(x) is the one-point CDF of hydraulic head,
Fh(H; x) = P[h(x) ≤ H]. Our goal is to derive a deterministic equation satisfied by Fh(H; x).

2.2. CDF Equation for Hydraulic Head
The main result of our study is the derivation of a (d + 1)-dimensional deterministic equation for the CDF
Fh(H; x) of the hydraulic head h(x). Let us consider a functional Π(H, h(x)) = (H − h(x)), where (·) is
the Heaviside function and H is the coordinate in the event space for the random hydraulic head h(x). The
ensemble mean of Π over all possible values of the random variable h at any point x is the single-point CDF
of h,

Fh(H; x) = ⟨Π(H, h(x))⟩. (3)

Multiplying (1) with −𝜕Π∕𝜕H and accounting for the equality ∇Π = −(𝜕Π∕𝜕H)∇h yields a stochastic
(d + 1)-dimensional advection-diffusion equation for Π,

∇ · [K(x)∇Π] − K(x) 𝜕
2Π
𝜕H2 ∇h(x) · ∇h(x) = −g(x) 𝜕Π

𝜕H
. (4)

We use the Reynolds decomposition to represent the random functions in (4) as the sum of their ensemble
means and zero mean fluctuations around these means, K = ⟨K⟩ + K′ and Π = ⟨Π⟩ + Π′ . The ensemble
average of the resulting equation yields an unclosed equation for the CDF Fh(H; x, t),

K̄∇2Fh + M = −g(x)
𝜕Fh

𝜕H
, M ≡ ∇ · ⟨K′(x)∇Π′⟩ − ⟨K(x) 𝜕

2Π
𝜕H2 ∇h(x) · ∇h(x)⟩. (5)

This equation is unsolvable, since the mixed moments in the definition of M are unknown. Several approx-
imations (closures) can be used to express these moments, which account for diffusion and dissipation of
uncertainty, in terms of the known quantities. We generalize the classic IEM approach (Villermaux & Falk,
1994) by postulating a closure

M ≈ [𝛼(x)(H − h̄(x)) + 𝛽(x)]
𝜕Fh

𝜕H
, (6)

where h̄ is the mean hydraulic head and 𝛼 and 𝛽 are the closure variables. The IEM closure has been for-
mulated in the context of diffusive processes, wherein it takes advantage of the fact that diffusion drives
probable states to the mean. Our use of this approximation is guided by the functional similarity between (5)
and the (steady-state) advection-diffusion equation. Substitution of (6) into (5) gives a closed CDF equation

K̄∇2Fh + [𝛼(x)(H − h̄(x)) + 𝛽(x) + g(x)]
𝜕Fh

𝜕H
= 0, (x,H) ∈ Ω × (Hmin,Hmax). (7)

Empirical or phenomenological selection of the closure variables (Haworth, 2010; Pope, 2001; Raman et al.,
2005) does not automatically guarantee an accurate reproduction of the first and second statistical moment
of the distribution, that is, mean h̄(x) and variance 𝜎2

h(x).

Following Boso and Tartakovsky (2016) and Boso et al. (2018), we construct the closure variables 𝛼 and 𝛽
in a way that ensures that the CDF equation (7) gives rise to the moment equations satisfied by h̄ and 𝜎2

h.
We start by recalling that if a random variable h is defined on an interval [Hmin,Hmax], then the mean and
variance of the CDF Fh(H) are

h̄(x) = Hmax − ∫
Hmax

Hmin

Fh(H; x)dH, 𝜎2
h(x) = H2

max − 2∫
Hmax

Hmin

HFh(H; x)dH − h̄(x)2. (8)

Hence, since Fh(Hmin; x) = 0 and Fh(Hmax; x) = 1, integrating (7) over H yields

K̄∇2h̄ − 𝛽(x) − g(x) = 0. (9)
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By the same token, multiplying both sides of (7) by H and integrating the resulting equation over H yields

K̄∇2𝜎2
h + 2K̄∇h̄ · ∇h̄ − 2𝛼(x)𝜎2

h + 2h̄[K̄∇2h̄ − 𝛽(x) − g(x)] = 0

or, accounting for (9),

K̄∇2𝜎2
h + 2K̄∇h̄ · ∇h̄ − 2𝛼(x)𝜎2

h = 0. (10)

On the other hand, approximations of h̄(x) and 𝜎2
h, denoted, respectively, by h̃(x) and 𝜎̃2

h, satisfy moment
equations (Appendix A)

K̄∇2h̃ + 𝜌(x) − g(x) = 0, 𝜌 ≡ K̄ lim𝛘→x
[∇x · ∇𝛘CYh(x,𝛘)] (11)

and

K̄∇2𝜎̃2
h + 2V(x) = 0 (12a)

with

V ≡ 1
2

K̄ lim𝛘→x
[∇xh(0) · ∇xCYh(x,𝛘) − ∇𝛘 · ∇xCh(x,𝛘)] +

(
1 +

𝜎2
Y

2

)
g(x)CYh(x, x). (12b)

The moment equations are derived via perturbation expansions in the variance 𝜎2
Y of log conductivity

Y (x) = ln K(x), and are accurate up to the first order in 𝜎2
Y . In these equations, h0(x) is the zeroth-order

approximation of h̄(x); the mean head h̄ is approximated with h̃ = h(0) + h(1) + (𝜎4
Y ), and the variance 𝜎2

h
with 𝜎̃2

h = [𝜎2
h]

(1) +(𝜎4
Y ); CYh(x, 𝜒) is the first-order approximation of the cross covariance ⟨Y′ (x)h

′
(𝜒)⟩; and

Ch(x, 𝜒) is the first-order approximation of the hydraulic head's autocovariance ⟨h′
(x)h

′
(𝜒)⟩.

Imposition of the equivalency between the mean (h̄) and variance (𝜎2
h) computed with the CDF method,

(9) and (10), and the moment equations, (11) and (13), yields expressions for the closure variables 𝛼(x)
and 𝛽(x). Specifically, the equations for the mean, (9) and (11), are equivalent (up to the first order in 𝜎2

Y )
if 𝛽 ≡ −𝜌; and the equations for the variance, (10) and (13), are the same (up to the first order in 𝜎2

Y ) if
𝛼 ≡ (K̄∇h̄ · ∇h̄ − V)∕𝜎2

h. These conditions yield

𝛼(x) = K̄∇h̄ · ∇h̄ − V
𝜎2

h

, 𝛽(x) = K̄∇2h̄ + g(x), V(x) = −1
2

K̄∇2𝜎2
h. (13)

These terms can be computed with various methods, including MCS. In that case, the computational advan-
tage of using this CDF equation to compute Fh stems from the fact that it takes many fewer MC realizations
to estimate h̄(x) and 𝜎2

h(x) than Fh(H; x). In our implementation, we accelerate the computation further by
deploying deterministic moment equations (Appendix A) to compute h̄(x) and 𝜎2

h(x).

The CDF equation (7) is subject to boundary conditions that reflect both possible uncertainty about the
boundary functions Φ(x) and 𝜓(x) in (2) and general properties of CDFs. To be specific, we consider
Γ = ΓD ∪ ΓN , the random boundary function Φ(x) to be characterized by a single-point CDF FΦ(Φ; x), and
set 𝜓 ≡ 0. Then (7) is subject to boundary conditions

Fh(H; x) = FΦ(H; x), x ∈ ΓD; ∇Fh(H; x) · n(x) = 0, x ∈ ΓN . (14a)

(As discussed in Appendix B, derivation of boundary conditions for inhomogeneous Neumann and/or Robin
boundary segments is more evolved and omitted here for the sake of brevity.) If the boundary head Φ is
known with certainty, that is, is deterministic, then its CDF is the Heaviside function, FΦ(H; x) = [H −
Φ(x)]. The general property of a CDF provides the remaining boundary conditions in the H space,

F(H = Hmin; x) = 0, F(H = Hmax; x) = 1. (14b)

This straightforward formulation for boundary conditions in the phase space is a key advantage of CDF
equations over PDF equations, for which the corresponding boundary conditions may not be uniquely
defined and have to be supplemented with the conservation of probability condition.
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A plethora of efficient numerical schemes have been developed to solve linear advection-diffusion equations
like (7). Since the coefficients of the CDF equation (7) are ensemble averages (e.g., K̄), they are significantly
smoother than their randomly fluctuating counterparts (e.g., K). Consequently, this equation, and the cor-
responding moment equations, can be solved on coarser grids than the underlying stochastic flow equation
to achieve the same accuracy. We use this fact to further speed up the computations.

Our numerical solution of the boundary value problem (7)–(14) comprises two modules. The first module
provides finite-volume solutions of the statistical moment equations (SME) (A4)–(A12) and yields numerical
approximations of the statistical moments of head, h̄(x) and 𝜎2

h(x). It utilizes the research code developed
by Likanapaisal et al. (2012). The second module computes the coefficients 𝛼(x) and 𝛽(x) in (7), and solves
the latter in nonconservative form by employing a finite-difference scheme.

If needed, PDF of the hydraulic head, fh(H; x), can be obtained either by differentiating Fh(H; x) or by
deriving a (d + 1)-dimensional PDF equation (Tartakovsky & Gremaud, 2016).

3. Numerical Experiments
We use two sets of numerical experiments to demonstrate the accuracy, robustness, and versatility of the
proposed approach. These experiments involve mean uniform flow driven by externally imposed hydraulic
head gradient and convergent flow toward a pumping well.

In both cases, the two-dimensional flow domainΩ is a square of dimensionless (normalized with the domain
size L) length 1. The log hydraulic conductivity (transmissivity) Y (x) = ln K(x) is modeled as a second-order
stationary multivariate Gaussian field with zero mean (Ȳ = 0), variance 𝜎2

Y , an isotropic exponential covari-
ance function CY (r) = 𝜎2

Y exp(−r∕𝓁Y ), and dimensionless (normalized with the domain size L) correlation
length 𝓁Y . The position vector x = (x1, x2)⊤ and the distance r = |x − y| between any two points x and y in
the flow domain Ω are normalized with the domain size L. The flow domain boundaries x2 = 0 and x2 = 1,
are impermeable; the deterministic (known with certainty) hydraulic heads hin and hout are imposed along
the boundaries x1 = 0 and x1 = 1, respectively.

The mean uniform flow is driven by a hydraulic head gradient J ≡ (hout − hin)∕L = 0.1, with the dimen-
sionless hydraulic heads hin = 1.1 and hout = 0.1 (normalized with the reference hydraulic head href). The
spatial domain Ω is discretized with a staggered 99 × 99 grid, and the number of grid points along the H
coordinate is set to 55. The radial flow is induced by a pumping well located at the center of the domain,
(x1 = 1∕2, x2 = 1∕2), and operated at a fixed dimensionless hydraulic head of hwell = 0.1; the dimensionless
hydraulic heads at the boundaries x1 = 0 and x1 = 1 are hin = hout = 1. In our implementation, a pump-
ing well is represented by the source term g(x) = Twell(h(x) − hwell) in (1), where Twell is the prescribed well
transmissibility. In this case, Ω is discretized with a 105 × 105 grid, and 60 grid points are used to discretize
the H coordinate.

For both flow scenarios, we compare our estimates of the hydraulic head CDF Fh(H; x) with those computed
via MCS. Equiprobable MC realizations were generated by the sequential Gaussian simulator (Deutsch &
Journel, 1998). Our convergence study of the exceedance probability for a given hydraulic head value H,
P[h(x) > H] = 1 − Fh(H; x), in the mean uniform flow case with 𝜎2

Y = 1 and 𝓁Y = 0.3, revealed that an MC
estimate of P[h(x) > H] stabilizes after about NMCS = 7, 000 MC realizations. To use the MCS estimates of
Fh(H; x) as a yardstick for ascertaining the accuracy of our CDF method for all experiments, we therefore
rely on a conservative number of realizations NMCS = 10, 000.

3.1. Accuracy of the CDF Method
Since the coefficients in the CDF equation (7) are given in terms of the mean and variance of the hydraulic
head h(x), we start by analyzing the ability of the SME (A4)–(A12) to accurately approximate h̄(x) and 𝜎2

h(x).
Figure 1 exhibits these statistical moments along the cross section x2 = 0.5 for 𝜎2

Y = 1 and 𝓁Y = 0.3 in the
case of mean uniform flow, and for 𝜎2

Y = 2.0 and 𝓁Y = 0.2 in the case of convergent flow. These profiles
h̄(x1, ·) and 𝜎2

h(x1, ·) are alternatively computed with MCS, the SME, and the CDF method.

By construction, the CDF Fh(H; x) in (7) must have the same moments h̄(x) and 𝜎2
h(x) as their counter-

parts computed with the SME. Figure 1 reveals a slight discrepancy between these two sets of moments, as
quantified by the average errors

𝜖mean = 1||Ω||∫Ω
|h̄SME − h̄CDF|dx, 𝜖var =

1||Ω||∫Ω
|𝜎2

h,SME − 𝜎2
h,CDF|dx, (15)
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Figure 1. Mean (left column) and variance (right column) of hydraulic head, h̄(x1, x2 = 1∕2) and 𝜎2
h(x1, x2 = 1∕2), for

mean uniform flow (top row) and flow to a well located at the middle of the domain (bottom row). These moments are
alternatively computed with Monte Carlo simulations (MCS), the statistical moment equations (SME), and the CDF
method. The statistical properties of log conductivity are Ȳ = 0; and 𝜎2

Y = 1 and 𝓁Y = 0.3 in the case of mean uniform
flow, and 𝜎2

Y = 2.0 and 𝓁Y = 0.2 in the case of convergent flow.

where ||Ω|| is the volume of the flow domain Ω. The errors 𝜖mean and 𝜖var decrease as the grid size along the
H coordinate, 𝛥H, decreases (Figure 2). This result confirms that the discrepancy is solely due to numerical
solution of the CDF equation and the subsequent evaluation of the quadratures required to compute the
first two moments of a CDF.

Figure 2. Average discrepancies 𝜖mean (left) and 𝜖var (right) between the mean and variance of hydraulic head h(x),
alternatively computed as quadratures of the CDF F(H; x) in (7) or by solving the SME. The discrepancies decay as the
grid size along the H coordinate, 𝛥H, becomes smaller. The statistical properties of log conductivity are Ȳ = 0; and
𝜎2

Y = 1 and 𝓁Y = 0.3 in the case of mean uniform flow, and 𝜎2
Y = 2.0 and 𝓁Y = 0.2 in the case of convergent flow.

YANG ET AL. 8636



Water Resources Research 10.1029/2019WR026090

Figure 3. Spatial maps of exceedance probability P[h(x) > H = 0.8] = 1 − Fh(H = 0.8; x) obtained with MCS (left
column) and CDF method (right column) for mean uniform flow (top row) and convergent flow (bottom row). The
statistical properties of log conductivity are Ȳ = 0; and 𝜎2

Y = 1 and 𝓁Y = 0.3 in the case of mean uniform flow, and
𝜎2

Y = 2.0 and 𝓁Y = 0.2 in the case of convergent flow.

Consistent with the previous SME-focused studies (e.g., Li et al., 2003; Neuman et al., 1996; Likanapaisal
et al., 2012; Severino & De Bartolo, 2015; Tartakovsky & Neuman, 1998a, 1998b; among many others), the
mean and variance of hydraulic head computed with the SME are in agreement with those inferred from
MCS, regardless of the flow regime. The discrepancy between the two approaches is larger for the vari-
ance than for the mean. It also increases with the variance of log conductivity (𝜎2

Y ), which is used as a
small perturbation parameter to derive the SME: 𝜎2

Y = 1 for the mean uniform flow, and 𝜎2
Y = 2 for the

convergent flow.

Spatial maps of exceedance/nonexceedance probabilities (P[h(x) > H] = 1 − Fh(H; x) and P[h(x) ≤ H] =
Fh(H; x), respectively) for a selected hydraulic head threshold H are required to identify regions in the spatial
domain where the corresponding risk is higher than desired. Figure 3 exhibits such maps of the probability
of h(x) exceeding H = 0.8 for mean uniform and convergent flows. With some degree of abstraction, these
can be used to delineate the coastal regions in risk of seawater intrusion due to rising sea levels (the mean
uniform flow scenario) or identify well capture zones with a prescribed level of confidence (the convergent
flow scenario). These probabilities are alternatively computed with the reference MCS and as a solution of
the CDF equation (7). Visual inspection of the two sets of map, as well as the CDFs Fh(H; x) presented in
Figure 4 for several points x ∈ Ω, demonstrates a close agreement between the two methods.

A more quantitative assessment of the agreement between the CDFs computed with the CDF method (Fh)
and the reference MCS comprising NMCS = 10000 realizations (FMCS

h ) is provided by the first Wasserstein
distance between two distributions (also known as Earth Mover's metric)

(x) ≡ ∫
Hmax

Hmin

|Fh(H′, x) − FMCS
h (H′, x)|dH′. (16)
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Figure 4. Hydraulic head CDFs Fh computed with MCS and the CDF method at selected locations x = (x1, x2)⊤ in the
flow domain for mean uniform flow (top row) and convergent flow (bottom row).

The numerical integration is carried out with the Gauss-Legendre quadrature rule. The resulting contour
plots of (x) are shown in Figure 5. The error metric (x) is smallest close to locations where the hydraulic
head h is known with certainty (the prescribed head boundaries in the case of mean uniform flow, and the
prescribed head boundaries and the well in the case of convergent flow), and increase with distance from
those locations. The behavior of (x) mirrors that of the hydraulic head variance 𝜎2

h and reflects the error in
the perturbation-based estimation of the latter. In both flow scenarios, (x) remains small, not exceeding
0.011 for mean uniform flow and 0.023 for convergent flow. This performance is remarkable, given relatively
large values of the perturbation parameter 𝜎2

Y used in these simulations (𝜎2
Y = 1 and 2 for mean uniform

flow and convergent flow, respectively).

Figure 5. Spatial maps of the Wasserstein distance (x) between the hydraulic head CDFs computed with the CDF
method and Monte Carlo simulations for mean uniform flow (left) and convergent flow (right).
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Table 1
Computational Time of the CDF Method and MCS in the Case of Mean Uniform Flow

Method Grid size Error ave CPU time
CDF method 33 × 33 1.02 × 10−2 4.25 × 10−1 min

99 × 99 8.14 × 10−3 1.77 × 101 min
MCS with 1,240 realizations 99 × 99 8.14 × 10−3 1.33 × 102 min
MCS with 10,000 realizations 99 × 99 0 1.07 × 103 min

3.2. Computational Efficiency of the CDF Method
As mentioned in section 1, a raison d'être for the development of the method of distributions and other
uncertainty quantification techniques is the need to outperform MCS in terms of computational efficiency.
While the CDF method calls for solving a (d + 1)-dimensional linear partial differential equation, like (7),
MCS consist of repeated solves of a large number of d-dimensional (possibly nonlinear) PDEs like the flow
equation (1). In addition, coefficients in the CDF and moment equations are smooth functions (ensemble
averages), whereas coefficients in the original equations fluctuate randomly in space. For example, the aver-
age conductivity K̄ in (7) is constant, even though K(x) can vary by orders of magnitude from one cell of a
numerical grid to the next. The spatial homogeneity of K̄ not only increases the efficiency of the linear solver
used to solve the SME (A4)–(A12) but also allows us to solve these equations on coarser grids without any
averaging of cell properties.

The resulting computational gains provided by our CDF method are reported in Tables 1 and 2 for mean
uniform flow and convergent flow, respectively. The computation times are reported for an Intel Xeon
e5-2660 machine running at 2.2 GHz. The CPU comparison is carried out for the same discrepancy level,
defined by the average Wasserstein distance between the CDFs computed with our method and MCS,
ave = ||Ω||−1∫Ω(x)dx. Specifically, the discrepancy level ave ≈ 0.01 of the CDF method is achieved by
MCS with NMCS = 1, 240 realizations in the mean uniform flow regime and with NMCS = 1, 470 realizations
in the convergent flow regime. For the same discrepancy level of ave ≈ 0.01, the CDF method is about an
order of magnitude faster than MCS when the same numerical grid is used. Coarsening the mesh used to
solve the SME by a factor of 3 results in the similar discrepancy level while speeding up the computation by
another order of magnitude.

3.3. Robustness of the CDF Method
The accuracy of the CDF method is expected to depend on the degree of uncertainty/regularity in the
hydraulic conductivity, as characterized by 𝜎2

Y and 𝓁Y . We perform a series of numerical experiments to
analyze the robustness of the CDF method to the magnitude of these statistical parameters.

Impact of conductivity's variance. The closure approximations for the SME (A4)–(A12) are obtained via the
perturbation expansion in the variance of log hydraulic conductivity 𝜎2

Y . Consequently, one would expect
the accuracy of the CDF method to deteriorate as 𝜎2

Y increases. Yet the average Wasserstein distance between
our CDF solution and its MCS estimate does not appreciably change (ave increases by about a factor of 2)
as 𝜎2

Y increases from 1 to 5 (for fixed 𝓁Y = 0.1); that is, the spatial variability of conductivity K(x) increases
by about 5 orders of magnitude (Figure 6a).
Impact of conductivity's correlation length. The correlation length 𝓁Y controls the degree of regularity of

the (log) conductivity field. The dependence of ave on 𝓁Y (for fixed 𝜎2
Y = 1.0) is shown in Figure 6b. In

both flow configurations, ave increases with 𝓁Y as long as 𝓁Y ≤ 0.7 and decreases when 𝓁Y ≥ 0.7. The
maximum values of ave are 0.014 and 0.0086 for mean uniform flow and convergent flow, respectively.
The heterogeneous structures of the hydraulic conductivity field do not appear when the correlation length

Table 2
Computational Time of the CDF Method and MCS in the Case of Convergent Flow

Methods Grid size Error ave CPU time
CDF method 35 × 35 1.09 × 10−2 5.15 × 10−1 min

105 × 105 9.20 × 10−3 2.12 × 101 min
MCS with 1,470 realizations 105 × 105 9.20 × 10−3 2.23 × 102 min
MCS with 10,000 realizations 105 × 105 0 1.52 × 103 min
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Figure 6. Dependence of the average Wasserstein distance between our CDF solution and its MCS estimate,
ave = ave(𝜎2

Y ,𝓁Y ), on the variance (𝜎2
Y for fixed 𝓁Y = 0.1, left) and correlation length (𝓁Y for fixed 𝜎2

Y = 1.0, right) of
log hydraulic conductivity Y = ln K for mean uniform flow and convergent flow.

is extremely small. The hydraulic conductivity field becomes homogeneous when the correlation length
approaches the size of a computational domain. Therefore, the heterogeneity and the approximation error of
the SME and closures are maximum when the correlation length is intermediate (Li et al., 2003). Regardless,
the average discrepancy ave remains small regardless of 𝓁Y , which demonstrates that the CDF method is
robust to the magnitude of 𝓁Y .

3.4. Impact of Moments' Approximation
Two types of approximations underpin the derivation of the CDF equation: the moment-preserving closure
leading to (7) and the perturbation approximation used to close the moment equations. The latter affects the
coefficients 𝛼 and 𝛽 in the CDF equation (7), which depend on the hydraulic head moments h̄(x) and 𝜎2

h(x).
To eliminate the second source of error or, equivalently, to isolate its impact, we compare the CDFs Fh(H; x)
obtained by solving the CDF equation (7), whose coefficients are alternatively computed with the SME and
the reference MCS. Since the moments computed with the reference MCS are treated as exact, their use in
the CDF equation (7) isolates the impact of the moment-preserving closure.

For both flow configurations, we set 𝜎2
Y = 3.0 and 𝓁Y = 0.4. Table 3 shows the relative minor impact of the

perturbation closures of the SME (A4)–(A12) on the average Wasserstein distance ave between the CDFs
resulted from the two strategies for computing the coefficients 𝛼 and 𝛽. However, this integral metric of
accuracy tells only part of the story. Figure 7 reveals that the CDF Fh(H; ·) computed with the reference
MCS moments is closer to the reference solution than the CDF Fh(H; ·) computed with SME moments. This
demonstrates that the performance of the CDF method relies on the accuracy of moments. It also increases
confidence in the moment-preserving closure leading to the CDF equation (7).

4. Summary and Conclusions
We developed the method of distributions to probabilistically predict single-phase flow in porous media with
uncertain hydraulic conductivity and/or uncertain boundary functions. The method results in a determin-
istic partial-differential equation for the CDF of hydraulic head. The derivation of this equation relies on a
novel moment-preserving closure approximation, which expresses the coefficients of the CDF equation in
terms of the mean and variance of hydraulic head. These hydraulic head statistics can be computed either

Table 3
Average Wasserstein Discrepancy ave Between the CDF Method With MCS Moments
and the CDF Method With SME Moments for Two Flow Configurations

Methods Error ave

Mean uniform flow Convergent flow
CDF method with MCS moments 2.26 × 10−2 1.72 × 10−2

CDF method with SME moments 2.78 × 10−2 2.02 × 10−2
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Figure 7. Hydraulic head CDFs Fh(H; x) computed with MCS, the CDF method with MCS moments, and the CDF
method SME moments at x = (0.5, 0.5)⊤ for mean uniform flow (left) and at x = (0.5, 0.25)⊤ for convergent flow (right).

with MCS or by solving the corresponding SMEs. The latter require an addition closure approximation, such
as perturbation expansions in variance of log hydraulic conductivity. We performed a series of numerical
experiments to evaluate the accuracy, robustness, and computational efficiency of the CDF method. Our
study leads to the following conclusions.

• The CDF method yields spatial maps of the exceedance probability for hydraulic head. This information is
required for probabilistic risk assessment, for example, for probabilistic delineation of well capture zones.

• The CDFs obtained with the CDF method are in good agreement with the reference MCS for a wide range
of statistical properties of hydraulic conductivity (its variance and correlation length). The CDF equations
remain robust for the conductivity variance as large as 5.

• The accuracy of the CDF method depends on the approximation of moments. Employing the exact MCS
moments instead of their SME-based counterparts as an input for the CDF equation increases the accuracy
of the solution.

• The CDF method is two orders of magnitude more efficient than MCS. This computational speed up stems
from the smoothness of the coefficients in the SME and CDF equation, for example, from replacing ran-
domly fluctuating hydraulic conductivity with its ensemble mean counterpart. This not only speeds up the
linear solver but also facilitates the use of low-cost coarse-scale solutions.

Our CDF equation is derived by using perturbation expansions in the variance 𝜎2
Y of log conductivity Y(x).

The CDF method can readily accommodate other stationary, unimodal distributions of conductivity K(x) by
using a Taylor expansion around their respective means K̄. It can also handle nonstationary and multimodal
distributions of K, which are indicative of subsurface environments composed of multiple hydrofacies. A
follow-up study will deal with this setting by deploying the random domain decomposition (Winter & Tar-
takovsky, 2002; Winter et al., 2003), as discussed in section 2. We also plan to deploy the CDF method to
characterize parametric uncertainty in realistic three-dimensional problems with complex boundary condi-
tions and source/sink terms (e.g., injection or production wells and spatially extended sources representing
recharge).

Appendix A: Derivation of Moment Equations
Derivation and analysis of the moment equations (MDEs) for the hydraulic head h have been a subject of
intensive research in stochastic hydrogeology for several decades (e.g., Li et al., 2003; Neuman et al., 1996;
Tartakovsky & Neuman, 1998a, 1998b; Severino & De Bartolo, 2015; among many others). A brief derivation
of the MDEs implemented numerically by Likanapaisal et al. (2012) is presented below for completeness.

The steady-state groundwater flow equation (1) is rewritten in terms of log hydraulic conductivity Y (x) =
ln K(x) as

∇2h + ∇Y · ∇h = g(x)e−Y . (A1)
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Using the Reynolds decomposition Y (x) = Ȳ + Y ′(x), recalling that Y(x) is second-order stationary multi-
variate Gaussian, that is, that its mean Ȳ and variance 𝜎2

Y = ⟨Y ′2⟩ are constant, defining by KG = exp(Ȳ ) the
geometric mean of the hydraulic conductivity K, expanding exp(Y ′) into a Taylor series around Y′ = 0, and
taking the ensemble mean of the resulting equation leads to

∇2h̄ + ∇ · ⟨Y ′∇h⟩ = g
KG

∞∑
n=0

1
(2n)!

𝜎2n
Y . (A2)

Here the notation ̄ and ⟨⟩ is used interchangeably to denote the ensemble mean of any random quantity
. The right-hand side is derived by taking advantage of the fact that all odd moments of a Gaussian Y′ are
0. The unknown ensemble moments h̄ and ⟨Y′∇h⟩ = ⟨Y′∇h

′⟩ are expanded into asymptotic series in the
powers of 𝜎2

Y ,

h̄ = h̄(0) + h̄(1) + … , ⟨Y ′∇h′⟩ = ⟨Y ′∇h′⟩(1) + ⟨Y ′∇h′⟩(2) + … , (A3)

where the superscript (n) indicates that the corresponding quantity is of order 𝜎2n
Y . The use of these expan-

sions formally limits the applicability of the resulting solutions to 𝜎2
Y∕2 < 1, but has been shown to remain

robust for 𝜎2
Y as large as 4.

Collecting the terms of equal powers of 𝜎2n
Y in (A2) yields a recursive set of partial-differential equations

∇2h̄(0) =
g

KG
, ∇2h̄(n) + ∇ · ⟨Y ′∇h⟩(n) = g

2KG
𝜎2n

Y , n ≥ 1. (A4)

The boundary conditions for these equations are obtained from (2) by following a similar procedure:

h̄(0) = Φ̄(x), h̄(n) = 0, n ≥ 1, x ∈ ΓD; (A5a)

−KG∇h̄(n) · n(x) = 1
(2n)!

𝜓̄(x)𝜎2n
Y , n ≥ 0, x ∈ ΓN ; (A5b)

−KG∇h̄(n) · n(x) + 1
(2n)!

ah(n)𝜎2n
Y = 1

(2n)!
𝜑̄(x)𝜎2n

Y , n ≥ 0, x ∈ ΓR. (A5c)

The latter results rely on a reasonable assumption that the hydraulic conductivity K is not correlated with
both 𝜓 and 𝜑.

Apart from n = 0, the equations in (A4) are unclosed since each of them contains two unknowns, h̄(n)

and ⟨Y′∇h⟩(n). To remediate this problem, we derive an equation for the first-order approximation of
cross-correlation CYh(𝜒, x) = ⟨Y′ (𝜒)h(x)⟩(1) by multiplying (A1) with Y′ (𝜒), taking the ensemble mean, and
retaining the terms of order 𝜎2

Y ,

∇2
xCYh(𝛘, x) + ∇xCY (x,𝛘) · ∇xh̄(0) = −

g
KG

CY (x,𝛘), (A6)

where CY (x, 𝜒) = ⟨Y′ (x)Y′ (𝜒)⟩ is the autocorrelation of Y(x). Accounting for the lack of correlation between
Y and the boundary functions Φ and 𝜓 , it follows from (2) that the moment equation (A6) is subject to
boundary conditions

CYh(𝛘, x) = 0, x ∈ ΓD; ∇xCYh(𝛘, x) · n(x) = 𝜓̄

KG
CY (x,𝛘), x ∈ ΓN . (A7)

Once this boundary value problem is solved and CYh(𝜒, x) is evaluated, we compute ∇xCYh(𝜒, x) and then
evaluate ⟨Y ′∇h⟩(1) = lim𝛘→x[∇xCYh(𝛘, x)]. We use the first-order (in 𝜎2

Y ) approximations of the statistical
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moments, that is, approximate the mean head h̄ with h̃ = h̄(0) + h̄(1). Multiplying (A4) with K̄ and summing
the equations for h̄(0) and h̄(1) yields subject to boundary conditions

h̃ = Φ̄(x), x ∈ ΓD; −KG∇h̃ · n(x) = 𝜓̄(x)

(
1 +

𝜎2
Y

2

)
, x ∈ ΓN ;

KG∇h̃ · n(x) + ah̃(x)

(
1 +

𝜎2
Y

2

)
= 𝜑̄(x)

(
1 +

𝜎2
Y

2

)
, x ∈ ΓR.

(A8)

An equation for the first-order approximation of the head variance, 𝜎̃2
h, is derived by subtracting (11) from

(A4), multiplying the resulting equation with h
′
(x), and taking the ensemble mean:

∇2
x𝜎

2
h(x) − 2⟨∇h · ∇h′⟩(1) + 2∇xh̄(0) · ⟨∇Y ′h⟩(1) = −

2g(x)
KG

CYh(x, x). (A9)

Similar to the equation for h̃, we compute ∇xCYh(x, 𝜒) to evaluate ⟨∇Y ′h⟩(1) = lim𝛘→x[∇xCYh(x,𝛘)]. To
obtain the workable expression for the unknown term ⟨∇h · ∇h

′⟩(1), we solve the equation for the first-order
approximation of the hydraulic head's autocovariance function, Ch(x, 𝜒) = ⟨h(x)h′

(𝜒)⟩(1). The equation for
Ch(x, 𝜒) is derived by multiplying (A1) with h

′
(𝜒), taking the ensemble mean, and retaining the terms of

order 𝜎2
Y ,

∇2
xCh(x,𝛘) + ∇xCYh(x,𝛘) · ∇xh̄(0) = −

g(x)
KG

CYh(x,𝛘). (A10)

The boundary conditions for this equation are obtained by multiplying (2) with h
′
(𝜒), taking the ensemble

average, and retaining the terms of order 𝜎2
Y ,

Ch(x,𝛘) = CΦh(x,𝛘), x ∈ ΓD; KG∇xCh(x,𝛘) · n(x) = C𝜓h(x,𝛘) − 𝜓̄(x)CYh(x,𝛘), x ∈ ΓN ;
KG∇xCh(x,𝛘) · n(x) − aCh(x,𝛘) = C𝜑h(x,𝛘) −

[
𝜑̄(x) − ah̃(x)

]
CYh(x,𝛘), x ∈ ΓR.

(A11)

The boundary cross covariances CΦh(x, 𝜒), C𝜓h(x, 𝜒) and C𝜑h(x, 𝜒) are computed by multiplying (2) with
h

′
(𝜒) and taking the ensemble average. If the boundary functions Φ and 𝜓 are deterministic, as is the case

in our numerical experiments, then CΦh(x, 𝜒) = 0 and C𝜓h(x, 𝜒) = 0.

Once this boundary value problem is solved, that is, Ch(x, 𝜒) is computed, we evaluate ⟨∇h · ∇h′⟩(1) =
lim𝛘→x[∇x · ∇𝛘Ch(𝛘, x)]. Multiplying (A9) with K̄ and evaluating ⟨∇h · ∇h

′⟩(1) and ⟨∇h · ∇h
′⟩(1) leads to the

closed equations (12) for the first-order approximation of the head variance subject to boundary conditions

𝜎̃2
h(x) = CΦh(x, x), x ∈ ΓD; K G∇x𝜎̃

2
h(x) · n(x) = 2C𝜓h(x, x) − 2𝜓̄(x)CYh(x, x), x ∈ ΓN ;

KG∇x𝜎̃
2
h(x) · n(x) − a𝜎̃2

h(x) = 2C𝜑h(x,𝛘) − 2
[
𝜑̄(x) − ah̃(x)

]
CYh(x,𝛘), x ∈ ΓR.

(A12)

Alternatively, 𝜎̃2
h can be obtained by taking the limit of the head's autocovariance function Ch(𝜒, x), that is,

𝜎̃2
h = lim𝛘→xCh(𝛘, x). The limit can be computed from the numerical solution of (A10), Ch, between the grid

point x and all grid points in the domain.

Appendix B: Boundary Conditions for the CDF Equation
Boundary conditions for the CDF equation along the physical boundaries ΓN and ΓR are obtained from (2)
in three steps. We show here the derivation for mixed type boundary conditions along ΓR; conditions along
ΓN are identical by imposing a = 0 and substituting 𝜑 with 𝜓 . First, we multiply (2) along ΓR by 𝜕Π∕𝜕H to
obtain

−K(x)∇Π · n(x) − aH 𝜕Π
𝜕H

= −𝜑 𝜕Π
𝜕H

. (B1)

Ensemble averaging of (B1) yields

−K̄(x)∇F · n(x) = aH 𝜕F
𝜕H

− 𝜑̄ 𝜕F
𝜕H

+ ⟨K′ 𝜕Π′

𝜕H
⟩ − ⟨𝜑′ 𝜕Π′

𝜕H
⟩ (B2)
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which requires closure. Consistently with the IEM closure developed for (1), we impose

−K̄(x)∇F · n(x) = aH 𝜕F
𝜕H

− 𝜑̄ 𝜕F
𝜕H

+
(
Γ(x)(H − h̄(x)) + 𝜂(x)

) 𝜕F
𝜕H

, x ∈ ΓR, (B3)

where Γ(x) and 𝜂(x) are required to guarantee consistency with the boundary conditions for the moment
equation (Appendix A). Upon integration, this yields

Γ(x) =
(K̄∕2)∇𝜎2

h · n(x) − a𝜎2
h(x) + 2ah̄2(x)

𝜎2
h(x) − 2h̄2(x)

, 𝜂(x) = K̄∇h̄ · n(x) − ah̄(x) + 𝜑̄(x). (B4)
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