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NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS IN
RANDOM DOMAINS∗

DONGBIN XIU† AND DANIEL M. TARTAKOVSKY‡

Abstract. Physical phenomena in domains with rough boundaries play an important role in a
variety of applications. Often the topology of such boundaries cannot be accurately described in all
of its relevant detail due to either insufficient data or measurement errors or both. This topological
uncertainty can be efficiently handled by treating rough boundaries as random fields, so that an
underlying physical phenomenon is described by deterministic or stochastic differential equations in
random domains. To deal with this class of problems, we propose a novel computational framework,
which is based on using stochastic mappings to transform the original deterministic/stochastic prob-
lem in a random domain into a stochastic problem in a deterministic domain. The latter problem
has been studied more extensively, and existing analytical/numerical techniques can be readily ap-
plied. In this paper, we employ both a stochastic Galerkin method and Monte Carlo simulations
to solve the transformed stochastic problem. We demonstrate our approach by applying it to an
elliptic problem in single- and double-connected random domains, and comment on the accuracy
and convergence of the numerical methods.
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1. Introduction. Physical phenomena described by differential equations in do-
mains with rough geometries are ubiquitous and include applications ranging from sur-
face imaging [24] to manufacturing of nano-devices [5]. Indeed, given a proper spatial
resolution, virtually any natural or manufactured surface becomes rough. Conse-
quently, there is a growing interest in experimental, theoretical, and numerical stud-
ies of deterministic and probabilistic descriptions of such surfaces and of solutions of
differential equations defined on the resulting domains.

The early attempts to represent surface roughness and to study its effects on sys-
tem behavior were based on simplified, easily parameterizable, deterministic surface
inhomogeneities, such as symmetrical asperities to represent indentations [32, 26] and
semispheres to represent protrusions [17]. More general representations of surface
roughness, which nevertheless admit simple parameterizations, include sinusoidal cor-
rugations [13] and periodic linear segments [6]. A recent trend in describing surface
roughness is to use fractal and fractal-like representation. These include deterministic
Von Koch’s [10, 6, 8] and Minkowski’s [6] fractals, as well as their random generaliza-
tions [29].
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Alternatively, one can use random fields to represent rough surfaces whose de-
tailed topology cannot be ascertained due to the lack of sufficient information and/or
measurement errors [15, 27]. In this paper, we adopt random representations of rough
surfaces, because of their generality. Such an approach allows us not only to make
predictions of the system behavior, but also to quantify the corresponding predictive
uncertainties.

The presence of uncertainty in rough boundaries necessitates the development
of new approaches for the analysis and numerical solution of differential equations
defined on random domains. For example, classical variational formulations might
not be suitable for such problems [1], and a finite difference approach [34] is shown
to be accurate only for relatively simple rectangular irregularities. Most of the ex-
isting analyses deal with deterministic roughness and are very problem-specific. For
example, the use of conformal mappings [7, 6] requires that a physical phenomenon
be accurately described by Laplace’s equation in two dimensions, while the use of
the Liebmann method [8] requires a particular geometry configuration and Dirichlet
boundary conditions on the rough surface.

Adoption of a probabilistic framework to describe rough surfaces renders even
essentially deterministic problems stochastic; e.g., deterministic equations in random
domains give rise to stochastic boundary-value problems. This necessitates the search
for new stochastic analyses and algorithms. For example, rigorous bounds for elliptic
problems on random domains have been derived for both Dirichlet [2] and Neumann [1]
boundary conditions, and perturbation solutions of Laplace’s equation in a domain
bounded by a random fractal boundary with a small surface dimension have been
obtained [29]. One of the very few existing numerical studies employed traditional
Monte Carlo simulations [6], which turned out to be so computationally expensive as
to become impractical.

In this paper, we present a computational framework that is applicable to a wide
class of deterministic and stochastic differential equations defined on domains with
random (rough) boundaries. A key component of this framework is the use of robust
stochastic mappings to transform an original deterministic or stochastic differential
equation defined on a random domain into a stochastic differential equation defined
on a deterministic domain. This allows us to employ the well-developed theoretical
and numerical techniques for solving stochastic differential equations in deterministic
domains. The idea of transforming irregular domains into their regular counterparts
has been used in computational fluid dynamics [33] and optimization problems [4],
among other applications. The proposed approach extends this idea to stochastic
problems.

In section 2, we provide a general mathematical formulation of a random domain
problem. A stochastic mapping technique, which is defined by a solution of an ap-
propriate boundary value problem for Laplace’s equation, is presented in section 3.2.
A mathematical formulation of the transformed stochastic equations in deterministic
domains is given in section 3.3. This section also contains the description of two nu-
merical approaches, Monte Carlo simulations (section 3.3.1) and a stochastic Galerkin
method (section 3.3.2), whose relative strengths are discussed in section 3.3.3. In sec-
tion 4, we apply our computational approach to a two-dimensional elliptic problem
defined on both single- and double-connected random domains. For moderately high
random dimensions (up to 16-dimensional random space), the stochastic Galerkin
method is shown to be more efficient than Monte Carlo simulations. We conclude by
listing a few open issues in section 5.
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2. Differential equations in random domains. Let ω ∈ Ω be a random
realization drawn from a complete probability space (Ω,A,P), whose event space
Ω generates its σ-algebra A ⊂ 2Ω and is characterized by a probability measure
P. For all ω ∈ Ω, let D(ω) ⊂ Rd be a d-dimensional random domain (d = 1, 2, 3),
bounded by boundary ∂D(ω), some or all of whose segments are random. We consider
the following stochastic (linear or nonlinear) boundary value problem: for P-almost
everywhere (a.e.) in Ω, given a : D(ω) → R and b : ∂D(ω) → R, find a stochastic
solution v : D̄(ω) → R such that

L (x; v) = a(x) in D(ω),
B(x; v) = b(x) on ∂D(ω).

(2.1)

Here x = (x1, . . . , xd) is the coordinate in Rd, L is a differential operator, and B is
a boundary operator. The operator B can take various forms on different boundary
segments, e.g., B ≡ I, where I is the identity operator, on Dirichlet segments and
B ≡ n · ∇ on Neumann segments whose outward unit normal vector is n. The
operators L and B, as well as the driving terms a and b, can be either deterministic
or random. To simplify the presentation, we assume that the shape of the boundary
∂D(ω) is the only source of randomness. This is done without loss of generality,
since incorporation of other sources of randomness is straightforward, and stochastic
equations in deterministic domains have been studied extensively. Finally, we assume
that the random boundary ∂D(ω) is sufficiently regular, and the boundary condition
in (2.1) is properly posed, to guarantee the well-posedness a.e. ω ∈ Ω of the stochastic
boundary-value problem (SBVP) (2.1). We refer to this problem as a random domain
problem or RDP.

Except for a few studies mentioned in section 1, and despite their practical and
theoretical importance, RDPs have not been systematically analyzed. At the same
time, the theory of stochastic partial differential equations in fixed deterministic do-
mains is relatively mature. To take advantage of the existing methods for deterministic
domains, we introduce a one-to-one mapping function and its inverse

ξ = ξ(x, ω), x = x(ξ, ω),(2.2)

which transforms the random domain D(ω) ⊂ Rd into a deterministic domain E ⊂ Rd,
whose coordinates are denoted as ξ = (ξ1, . . . , ξd); i.e., for P-a.e. ω ∈ Ω,

x ∈ D(ω) ←→ ξ ∈ E.(2.3)

The stochastic mapping (2.3) transforms the deterministic differential operators L
and B into their stochastic counterparts L and B, respectively, and RDP (2.1) into
the following SBVP. For P-a.e. ω ∈ Ω, given f : E × Ω → R and g : ∂E × Ω → R,
find a stochastic solution u : Ē × Ω → R such that

L (ξ, ω;u) = f(ξ, ω) in E,
B(ξ, ω;u) = g(ξ, ω) on ∂E,

(2.4)

where f and g are the transformed functions of a and b, respectively. Note that since
the random mapping (2.3) depends only on random D(ω), other possible sources of
randomness, including coefficients of the differential operators in (2.1) and boundary
and initial conditions, can be easily incorporated into the formulation of RDP (2.1)
and do not change the following analysis.
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Fig. 2.1. A schematic representation of a computational domain D(ω) with the random bound-

ary segment Q̂1Q2 and its mapping onto a deterministic rectangular domain E, where four reference
points Qi are mapped onto Pi, i = 1, 2, 3, 4.

The geometry of the deterministic domain E is to a large extent arbitrary and
should be chosen in a way that simplifies the subsequent analysis and computa-
tion. Consider, for example, the domain D(ω) in Figure 2.1, whose boundary seg-

ment Q̂1Q2(ω) is random. Possible choices of the corresponding deterministic do-
main E include domains whose deterministic boundary segments remain unchanged,

and the random boundary segment Q̂1Q2(ω) is replaced with (i) its ensemble mean

E[Q̂1Q2(ω)], where E denotes the expectation operator in the probability space, and
(ii) its upper or lower bounds. (Depending on the problem, one can define such bounds
based on either the total volume of D(ω) or the distance of ∂D(ω) to a certain loca-
tion in the domain of interest, or in some other way.) Here, to facilitate numerical
simulations in the transformed domain E, we choose it to have a canonical shape,
such as the rectangle P1P2P3P4 shown in Figure 2.1.

3. Computational framework. A computational framework that is applicable
to a wide range of practical applications should provide (i) a general parameteriza-
tion of the random boundary ∂D(ω), (ii) an effective way to obtain the stochastic
mapping (2.2), and (iii) an efficient method for solving the subsequent SBVP (2.4) in
deterministic domains. We construct such a framework by introducing a stochastic
mapping based on solutions of Laplace’s equations (section 3.2), and by employing two
complementary numerical algorithms to solve the resulting SBVPs: a Monte Carlo
method and a stochastic Galerkin method (section 3.3).

While the approach discussed in this section is applicable to one- and three-
dimensional problems as well, here we consider the two-dimensional domain shown in
Figure 2.1, to simplify the presentation. Without loss of generality, we assume that

only the segment Q̂1Q2 of the overall boundary ∂D(ω) is random, and we represent

it as Q̂1Q2(ω) = r(z, ω)e1 + s(z, ω)e2, where e1 and e2 are unit vectors in the x1

and x2 directions, respectively; r and s are the parameterization functions for the
segment; and z is the parameterization variable. We seek to map D(ω) onto a square
E = [0, 1] × [0, 1].

3.1. Parameterization of random boundary. Parameterization of the ran-

dom boundary Q̂1Q2 consists of the following steps. First, we use Reynolds decom-
position to represent random functions, e.g., A(ω) = 〈A〉 + A′(ω), as the sums of
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their ensemble means 〈A〉 ≡ E[A(ω)] and zero-mean fluctuations A′(ω). The latter
term can be characterized by a variety of techniques, including its representation as a
random field with a given point distribution and two-point correlation function. Here,
following common practice, we approximate the fluctuation term by a finite number
K ≥ 1 of mutually uncorrelated random variables Y1(ω), . . . , YK(ω) with zero mean
and unit variance, so that r(z, ω) and s(z, ω) in (3.4) can be approximated as

r(z, ω) ≈ 〈r(z)〉 +

K∑
k=1

r̂k(z)Yk(ω)(3.1)

and

s(z, ω) ≈ 〈s(z)〉 +
K∑

k=1

ŝk(z)Yk(ω).(3.2)

The parameterization (3.1) and (3.2) is an approximation of the true processes, whose
accuracy and robustness are the subject of ongoing research in the field of numerical
generation of random processes. If these processes are non-Gaussian, this task be-
comes particularly challenging [16, 28, 30, 39]. (In such cases, the goal is often reduced
to approximating pointwise marginal distribution functions and two-point covariance
functions.) Analysis of the errors induced by the finite-term representations in (3.1)
and (3.2), as well as of their efficiency, is beyond the scope of this paper. Instead we
refer the interested reader to the references mentioned above.

The choice of a parameterization of the random boundary Q̂1Q2 defines the ex-
pansion coefficients {r̂k} and {ŝk}. One popular choice is the Karhunen–Loève (KL)
decomposition [23], which is an optimal decomposition in terms of the mean-square ap-
proximation error and has been used extensively to represent random inputs [3, 14, 36].
Other types of decomposition also can be employed. In section 4 of this paper, we
explore both the KL expansion and a Fourier expansion.

3.2. Mapping of the random domain. We construct the stochastic mapping
of D(ω) onto E via solutions of the Laplace equations

∂2x1

∂ξ2
1

+
∂2x1

∂ξ2
2

= 0,
∂2x2

∂ξ2
1

+
∂2x2

∂ξ2
2

= 0 in E,(3.3)

subject to the boundary conditions

x1(0, ξ2) = x1|̂Q4Q1
, x1(1, ξ2) = x1|̂Q3Q2

,(3.4a)

x1(ξ1, 0) = x1|̂Q4Q3
, x1(ξ1, 1) = r(z, ω)(3.4b)

and

x2(0, ξ2) = x2|̂Q4Q1
, x2(1, ξ2) = x2|̂Q3Q2

,(3.4c)

x2(ξ1, 0) = x2|̂Q4Q3
, x2(ξ1, 1) = s(z, ω),(3.4d)

where xi| ̂QmQn
denotes the xi coordinate along the boundary segment Q̂mQn. Similar

mappings have been used extensively to solve numerically deterministic problems in
structured body-fitted curvilinear coordinates [33], and more recently to analyze the
interface dynamics in disordered media [19]. The properties and a more detailed
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technical description of such mappings can be found in [33]. The stochastic mapping
(3.3)–(3.4) can be viewed as a generalization of this idea to random domains. We also
remark that the boundary conditions (3.4) are not expressed in a definitive manner.
One can choose different distributions of boundary coordinates in x as boundary
conditions in (3.4), in order to achieve better computational results by, e.g., clustering
a mesh close to the regions of interests (see [33] for details).

As a result of (3.1) and (3.2), solutions of (3.3) can be expressed as

xi(ξ, ω) =

K∑
k=0

x̂i,kYk(ω), i = 1, 2.(3.5)

Then, denoting r̂0 ≡ 〈r〉 and ŝ0 ≡ 〈s〉, substituting the expansions (3.1) and (3.5)
into (3.3)–(3.4), and collecting the terms of each {Yk(ω)}, i.e., conducting a Galerkin
projection (in the random space) of the resulting equations onto the basis spanned by
{1, Y1(ω), . . . , YK(ω)}, we obtain (K + 1) equations for the expansion coefficients,

∂2x̂1,k

∂ξ2
1

+
∂2x̂1,k

∂ξ2
2

= 0,
∂2x̂2,k

∂ξ2
1

+
∂2x̂2,k

∂ξ2
2

= 0, k = 0, . . . ,K,(3.6)

subject to the boundary conditions

x̂1,k(0, ξ2) = x1|̂Q4Q1
· δk0, x̂1,k(1, ξ2) = x1|̂Q3Q2

· δk0,(3.7a)

x̂1,k(ξ1, 0) = x1|̂Q4Q3
· δk0, x̂1,k(ξ1, 1) = r̂k(z)(3.7b)

and

x̂2,k(0, ξ2) = x2|̂Q4Q1
· δk0, x̂2,k(1, ξ2) = x2|̂Q3Q2

· δk0,(3.7c)

x̂2,k(ξ1, 0) = x2|̂Q4Q3
· δk0, x̂2,k(ξ1, 1) = ŝk(z),(3.7d)

where δmn = 0 if m �= n and δmn = 1 if m = n is the Kronecker delta function.
Solutions of the deterministic boundary value problems (3.6)–(3.7) give the stochastic
mapping function xi(ξ, ω) in (3.5), whose metrics terms and Jacobian can be readily
evaluated.

3.3. Numerical solutions of the transformed equations. Since the stochas-
tic mapping xi(ξ, ω) in (2.2) is represented by (3.5) as a function of the random vari-
ables {Yk(ω)}Kk=1, the metrics terms and the Jacobian corresponding to the coordinate
transformation from x to ξ become functions of {Yk(ω)}Kk=1 as well. In particular,
the Jacobian takes the form

J(ξ, ω) ≡ ∂(ξ1, . . . , ξd)

∂(x1, . . . , xd)
= J(ξ, Y1(ω), . . . , YK(ω)).(3.8)

Hence, according to the Doob–Dynkin lemma [25], a solution of the SBVP (2.4) can
be described by a finite number of random variables {Yk(ω)}Kk=1, i.e.,

u(x, ω) = u(x, Y1(ω), . . . , YK(ω)).(3.9)

The transformed SBVP (2.4) in the fixed domain E can be solved by a variety
of techniques, including perturbation methods [18] and second-moment analyses [22].
In this paper, we use two complementary approaches, Monte Carlo simulations and
stochastic Galerkin methods.



DIFFERENTIAL EQUATIONS IN RANDOM DOMAINS 1173

To facilitate numerical implementation, we further assume that the random vari-
ables {Yk(ω)}Kk=1 are mutually independent, rather than just uncorrelated. (Such an
assumption is not needed for Gaussian processes, for which independence and uncor-
relation are equivalent.) While this assumption might introduce additional errors in
the finite-term approximations (3.1) and (3.2) of target random processes, it enables
one to define the corresponding Hilbert functional spaces via simple tensor product
rules. In other words, the independence assumption is made for technical convenience,
and has been employed in many applications in stochastic simulations, e.g., [3, 21, 36]
and references therein. We also remark that similar assumptions are often made in
sampling methods, where random number generators typically generate independent,
not just uncorrelated, series of random numbers. It is worthwhile to point out that it
is possible to construct multidimensional functional spaces based on a finite number
of dependent random variables [31]. However, in its current form such a construction
is not amenable to a straightforward numerical implementation.

3.3.1. Monte Carlo simulations. Monte Carlo simulations (MCS) are one of
the most developed methods for solving stochastic differential equations. Although
their convergence rate is relatively slow—a typical Monte Carlo simulation consisting
of M realizations converges as 1/

√
M (see [11])—it is independent from the number

of random variables {Yk(ω)}Kk=1. We remark that the presence of random boundaries
∂D(ω) makes the direct use of MCS for solving the RDP (2.1) less than straightfor-
ward. Since each realization of the random domain D(ωj), j = 1, . . . ,M , is different,
a remeshing procedure is needed to render the statistical averaging of a solution at
any point x in the domain meaningful.

In our approach, we apply MCS to the transformed SBVP (2.4) instead. Since
this SBVP is defined on the fixed deterministic domain E, the use of MCS becomes
straightforward and consists of the following steps:

1. for a given number of realizations M , generate the independent random vari-
ables {Yk(ωj)}Kk=1, for j = 1, . . . ,M ;

2. for each j = 1, . . . ,M , use (3.1) and (3.2) to construct realizations of the

random boundary Q̂1Q2(ωj) = r(ωj)e1 + s(ωj)e2, and solve Laplace’s equa-
tions (3.6)–(3.7) to obtain realizations of the stochastic mapping xi(ξ, ωj), i =
1, . . . , d;

3. for each j = 1, . . . ,M , evaluate the metrics terms and the Jacobian J(ξ, ωj),
and solve the SBVP (2.4) in the deterministic domain ξ ∈ E ⊂ Rd;

4. postprocess the results to evaluate the solution’s statistics, e.g., 〈u(ξ)〉 ≡
E[u] = M−1

∑M
j=1 u(ξ, ωj).

For each realization j = 1, . . . ,M , step 3 solves a deterministic problem on a deter-
ministic domain E, which can be accomplished with any suitable spatial discretization
scheme.

3.3.2. Stochastic Galerkin method. Stochastic Galerkin (SG) methods are
polynomial-type expansions in the random space. In general, these methods exhibit
fast convergence rates, provided that solutions are sufficiently smooth in the random
space. The first SG methods employed polynomial chaos expansions [14], which are
based on the Wiener–Hermite expansion. More recent developments of the generalized
polynomial chaos employ non-Hermite polynomials to improve efficiency for a wide
class of problems. Such generalizations include global polynomial expansions based
on hypergeometrical polynomials [37, 36, 38], piecewise polynomial expansions [3, 9],
and wavelet basis expansions [20, 21]. Here we briefly review the framework based on
global polynomial expansions.
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Let {Yi}Ki=1 be independent random variables with probability density functions
ρi : Γi → R+, and assume that their images Γi ≡ Yi(Ω) are bounded intervals in R

for i = 1, . . . ,K. Then

ρ(y) =

K∏
i=1

ρi(Yi) ∀y ∈ Γ(3.10)

is the joint probability density of y = (Y1, . . . , YK) with the support

Γ ≡
K∏
i=1

Γi ⊂ RK .(3.11)

This allows one to rewrite (2.4) as a (d + K)-dimensional differential equation

L (ξ, y;u) = f(ξ, y), (ξ, y) ∈ E × Γ,
B(ξ, y;u) = g(ξ, y), (ξ, y) ∈ ∂E × Γ.

(3.12)

Let us define a one-dimensional polynomial space in L2
ρi

(Γi), the space for all square
integrable functions in Γi with respect to measure ρidYi,

W pi

i ≡ {v : Γi → R : v ∈ span {φm(Yi)}pi

m=0} , i = 1, . . . ,K,(3.13)

where {φm(Yi)} form a set of orthogonal polynomials satisfying the orthogonality
conditions ∫

Γi

ρi(Yi)φm(Yi)φn(Yi)dYi = h2
mδmn,(3.14)

with normalization factors h2
m =

∫
Γi

ρi(Yi)φ
2
m(Yi)dYi. Then, the corresponding K-

dimensional polynomial space is defined by

WK,p ≡
⊗
|p|≤p

W pi

i ,(3.15)

where the tensor product is over all possible combinations of the multi-index p =
(p1, . . . , pK) ∈ NK

0 such that the length of the multi-index satisfies |p| =
∑K

k=1 pk ≤ p.
The total number of basis functions in (3.15) is (K + p)!/(K!p!).

The type of orthogonal polynomials {φm(Yi)} in (3.14) is determined by the prob-
ability density function of Yi(ω), for i = 1, . . . ,K. For example, uniform distributions
are best approximated with Legendre polynomials, while Hermite polynomials are
most appropriate for Gaussian distributions. A detailed list of such correspondences
and the rates of their convergence can be found in [37, 36].

Finally, an SG formulation of (3.12) is as follows. For all ξ ∈ Ē, find up(ξ, y) ∈
WK,p such that∫

Γ

ρ(y)L (ξ, y;up) v(y)dy =

∫
Γ

ρ(y)f(ξ, y)v(y)dy ∀v(y) ∈ WK,p, ξ ∈ E,(3.16)

∫
Γ

ρ(y)B(ξ;up)v(y)dy =

∫
Γ

ρ(y)g(ξ, y)v(y)dy ∀v(y) ∈ WK,p, ξ ∈ ∂E.(3.17)

The weak formulation (3.16)–(3.17) results in a set of deterministic problems in the
fixed domain E and can be further discretized by any standard discretization tech-
nique, including finite elements and finite volumes. Construction of stochastic Sobolev
spaces for stochastic diffusion equations is discussed in detail in [3]. For more imple-
mentation details and numerical examples, see [37, 36].
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3.3.3. Selection of a numerical method. The dimensionality of the problem
(3.12) is d+K, although only d dimensions involve differentiations. The total number
K of random variables {Yi}Ki=1 that is needed to represent the random boundary
∂D(ω) by (3.1) and (3.2) with a given accuracy depends on, among other factors,
the correlation length of ∂D(ω). Although one may choose different decomposition
methods in (3.1) and (3.2), in general, the value of K increases when the correlation
length becomes smaller.

SG methods converge with increased order of p. In fact, an exponential conver-
gence has been proved for stochastic diffusion equations in [3] and shown numerically
for various stochastic equations in [36, 37, 38]. However, when K � 1 is very large,
the total number of expansion terms (K + p)!/K!p! increases quickly, and this effec-
tively reduces the convergence rate with respect to the number of expansion terms.
In this case, it may be necessary to resort to MCS, as their convergence rate, 1/

√
M ,

albeit slower, is asymptotically independent of the value of K.
Thus, for low to moderate values of K (less than 10), SG methods are preferred,

and for large values of K � 1, the Monte Carlo method is preferred. However, if high
accuracy of a stochastic solution is required, then SG methods can be more efficient
even for relatively large values of K. (For example, see [35] for computations with
K = 38 for a three-dimensional time-dependent heat transfer problem.)

4. Applications to elliptic equations in random domains. In this section,
we apply the computational framework described above to elliptic problems in single-
and double-connected random domains.

4.1. Formulation. Consider a deterministic Poisson equation with homoge-
neous Dirichlet boundary conditions in a random domain: for P-a.e. ω ∈ Ω, c, a :
D(ω) → R, find v : D̄(ω) → R such that

∇ · [c(x)∇v(x, ω)] = a(x) in D(ω),
v(x, ω) = 0 on ∂D(ω).

(4.1)

The stochastic mapping (2.2) transforms (4.1) into a stochastic Poisson equation
on a deterministic domain E: for P-a.e. ω ∈ Ω, κ, f, αij : E × Ω → R, 1 ≤ i, j ≤ d,
find u : Ē × Ω → R such that

d∑
i=1

∂

∂ξi

⎡
⎣κ(ξ, ω)

d∑
j=1

(
αij(ξ, ω)

∂u

∂ξj

)⎤⎦ = J−1f(ξ, ω) in E,(4.2)

u(ξ, ω) = 0 on ∂E,

where the random fields κ and f are the transformations of c and a, respectively; J
is the transformation Jacobian defined in (3.8); and

αij(ξ, ω) = J−1∇ξi · ∇ξj , 1 ≤ i, j ≤ d.(4.3)

The use of (3.1) and (3.2) to parameterize the random boundary ∂D(ω) with a
finite number of random variables {Yi(ω)}Ki=1 yields a strong form of (4.2),

d∑
i=1

∂

∂ξi

⎡
⎣κ(ξ, y)

d∑
j=1

(
αij(ξ, y)

∂u

∂ξj

)⎤⎦ = J−1f(ξ, y) in E × Γ,(4.4)
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subject to the boundary condition

u(ξ, y) = 0 on ∂E × Γ.(4.5)

In what follows, we solve the SBVP (4.4)–(4.5) by MCS and SG methods. Note
that the left-hand side of (4.5) typically takes the form of a complicated function
of the random vector y, even though the representation of the input, i.e., random
boundary ∂D, is linear in y. Thus, in SG methods the projection of (4.5) onto the
basis functions can be nontrivial. In this paper, we employ a typical approach that
uses the quadrature/cubature rule with sufficient accuracy to ensure the accuracy of
the projection (e.g., [37]).

4.2. Diffusion in a channel with a rough surface. Consider steady-state
diffusion, described by (4.1) with f ≡ 0, in a two-dimensional channel D(ω) =
{(x1, x2)|0 ≤ x1 ≤ Lx, s(x1, ω) ≤ x2 ≤ Ly}. To be specific, we set Lx = 5, Ly = 1,
and treat the rough bottom boundary as a random field s = s(x1, ω) with zero mean
〈s(x1, ω)〉 = 0 and an exponential two-point covariance function

CS(x1, z1) = E [s(x1, ω)s(z1, ω)] = exp

(
−|x1 − z1|

b

)
,(4.6)

where b > 0 is the correlation length. In the computational examples below, b =
Lx/5 = 1, which corresponds to a boundary of moderate roughness. Finally, we
prescribe Dirichlet boundary conditions u = 1 at x2 = Ly and u = 0 elsewhere.

We employ the finite-term KL-type expansion (3.2) to decompose the boundary
process. The expansion coefficients {ŝk}Kk=1 are given by ŝk(x1) =

√
λkψk(x1), where

{λk, ψk(x1)} are the eigenvalues and eigenfunctions of the integral equations∫
CS(x1, z1)ψk(z1)dz1 = λkψk(x1), k = 1, . . . ,K.(4.7)

Then the decomposition (3.2) becomes

s(x1, ω) ≈ σ

K∑
k=1

ŝk(x1)Yk(ω) = σ

K∑
k=1

√
λkψk(x1)Yk(ω).(4.8)

We set {Yi(ω)} ∼ U(−1, 1) to be independent uniform random variables in (−1, 1)
and use the parameter 0 < σ < 1 to control the maximum deviation of the rough
surface. (In the computational examples in this section, we set σ = 0.1.) We employ
Legendre polynomials as the basis functions (3.13) in the SG method, since they form
the optimal basis corresponding to uniform random inputs [37].

It is worthwhile to stress again that the expansion (4.8) introduces two sources
of errors—the errors due to the finite K-term truncation and the errors due to the
assumption of independence of {Yk(ω)}. The truncation error is typically controlled by
selecting the value of K to ensure that the eigenvalues {λk} with k > K are sufficiently
small. For example, our numerical tests reveal that the expansion (4.8) with K = 10
captures 95% of the L2 norm. Hence, we employ a ten-term KL expansion to represent
the random boundary, and show some realizations of the boundary in Figure 4.1(a).
Theoretical error estimates of such truncations can be found in [12]. Error analysis
on the independence assumption is lacking and lies outside the scope of the present
study.
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Fig. 4.1. Channels with a rough wall generated with the ten-term (K = 10) KL expansion
(4.8). (a) Four sample realizations of the bottom boundary s(x1, ωj) (j = 1, . . . , 4). (b) A sample
realization of the channel in the physical domain (x1, x2) and in the mapped domain in (ξ1, ξ2).
Chebyshev meshes are used in both domains.
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Fig. 4.2. The mean and STD of the dependent variable u, computed with the SG method.

Figure 4.1(b) shows a realization of the channel D(ωj) mapped onto the corre-
sponding rectangular domain E = [0, Lx] × [0, Ly]. The mapping Laplace equations
(3.3) are solved by the Chebyshev collocation method. Figure 4.1(b) also shows the
Chebyshev collocation mesh points in both the physical domain D and the mapped
domain E.

The stochastic elliptic problem (4.2) is solved in the mapped rectangular domain
E with the SG method described in section 3.3.2. The Chebyshev collocation method
is used in both ξ1 and ξ2 directions. Figure 4.2 shows the first two ensemble moments
of the solution, i.e., its mean (top) and standard deviation (STD) (bottom). We
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Fig. 4.3. The STD profiles along the cross section y = 0.25, computed with the first-, second-,
and third-degree Legendre polynomials.

observe that the STD reaches its maximum close to, but not at, the random bottom
boundary.

To ascertain the convergence of the polynomial chaos expansion, we examine the
STD profile along the cross section y = 0.25, where the STD is close to its maximum.
Figure 4.3 shows the STD profiles obtained with different orders of Legendre expan-
sions. Once can see that the second order is sufficient for the Legendre expansion to
converge. Although not shown here, the convergence of the mean solution is similar
to that of the STD.

MCS are also conducted to verify the results obtained by the SG method. Fig-
ure 4.4 compares the STD profile along the cross section y = 0.25 computed via the
second-order Legendre expansion with those obtained from MCS. We observe that as
the number of realizations increases, the MCS results converge to the converged SG
results. With about 2,000 realizations, the MCS results agree well with SG results.
In this case, at second order (p = 2) and ten random dimensions (K = 10), the SG
method requires (K + p)!/K!p! = 66 basis functions and is computationally more
efficient than MCS. In CPU time, the second-order SG method is approximately 20
times faster than MCS with 2,000 realizations.

4.3. Diffusion in double-connected domains with rough exclusion. Con-
sider steady-state diffusion, described by (4.1) with f ≡ 0, in a double-connected do-
main D(ω) consisting of the square [−2, 2] × [−2, 2] with a randomly perturbed unit
circular exclusion. A sample realization of such a domain is shown in Figure 4.5(a),
and several sample realizations of the surface of the random exclusion are depicted in
Figure 4.5(b). The boundary conditions are u = 1 along the surface of the exclusion
and u = 0 along the outer square.

The inner random boundary is constructed and parameterized by superimposing
a zero-mean random perturbation process on the radius R(θ) of a unit circle centered
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Fig. 4.4. The STD profiles along the cross section y = 0.25, computed with the SG method (the
second-order Legendre chaos) and the MCS consisting of 100, 500, 1,000, and 2,000 realizations.
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Fig. 4.5. A double-connected domain with a rough circular exclusion generated with the 16-term
(N = 16) Fourier expansion (4.9). (a) A sample realization of the random computational domain.
(b) Three sample realizations of the circular exclusion R(θ, ωj) (j = 1, . . . , 4).

at (0, 0), where 0 ≤ θ ≤ 2π. In other words, the inner boundary is defined as
(x1, x2) = (R cos θ,R sin θ), for 0 ≤ θ ≤ 2π, where R(θ, ω) = 1 + σR′(θ, ω) is the
radius. Here 0 < σ < 1 is used to control the maximum deviation of the process. We
require that both 〈R′〉 = 0 and the statistics of R(θ, ω) be rotationally invariant on
the circle, i.e., that 〈R′(θ1)R

′(θ2)〉 = CR(|θ1 − θ2|).
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Fig. 4.6. (a) Periodic covariance function C(θ) (solid line) based on the nonperiodic Gaussian
function CG = exp(−θ2/b2) with b = 0.5 (dashed line with circles). (b) Decay of the Fourier cosine
coefficients of the periodic covariance function.

Since the random process R′(θ, ω) is periodic, we use a Fourier-type expansion

R′(θ, ω) =

N∑
n=−N

Rn(ω)e−inθ(4.9)

for its decomposition into a finite number of random variables (see (3.1) and (3.2)).
In this expansion, the coefficients Rn(ω) = Rr

n(ω)+ iRi
n(ω) are complex random vari-

ables. It is straightforward to show that if Rr
n and Ri

n are statistically independent for

all n, and have zero mean and the variance of Cn/4, where Cn = 1
π

∫ 2π

0
CR cos(nθ)dθ

are the coefficients of the Fourier cosine series of the covariance function CR, then the
random field R′(θ, ω) given by (4.9) has the prescribed covariance function CR. (It is
worth noting that in periodic domains, Fourier expansion is in fact the KL expansion.)

A periodic covariance function CR(|θ1−θ2|) with the period of 2π is constructed by
extending the standard Gaussian covariance function CG = exp(−(θ1−θ2)

2/b2) to the
periodic domain (0, 2π), where b is the correlation length. Figure 4.6(a) shows such a
periodic covariance function and contrasts it with the standard nonperiodic Gaussian
covariance function. Figure 4.6(b) demonstrates the decay of the Fourier cosine coef-
ficients {Cn} for the periodic covariance function with the correlation length b = 0.5.
Based on the decay of Cn, we choose N = 8 (C9 = 0.0052, C1 = 0.2821, C9/C1 < 2%).

In the following examples, we set the coefficients Rr
n, R

i
n, n = 1, . . . , N, in the

expansion (4.9) to be independent uniform random variables of U(−1, 1). This results
in a 16-dimensional (K = 2N = 16) random space Γ for problem (4.2). In the
computational examples below, we set σ = 0.02. We again use Legendre expansion in
the SG method to represent the uniform random inputs.

To map the double-connected random domain D(ω) onto a single-connected de-
terministic domain E, we introduce an artificial cut in the domain D, as shown in
Figure 4.7. This cut dissects the overall boundary into four segments: the inner
boundary ÂB, the cut BC, the outer boundary ĈD, and the cut DA. Note that the
segments BC and AD are at the same physical locations, although while solving the
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Fig. 4.7. Random double-connected domain constructed with the 16-term (N = 2K = 16)
Fourier expansion, and the corresponding computational mesh.

Laplace equations (3.3) they are treated as two distinct boundaries. To emphasize
this point, these two cuts are shown as two separate lines in Figure 4.7.

The mapped domain in (ξ1, ξ2) is a rectangle of ABCD, whose length AB and
CD is 2π and width BC and DA is 1. To solve (3.6), we use the Fourier collocation
method in the ξ1-direction (because of the periodicity) and the second-order finite
difference method in the ξ2-direction. Figure 4.7 shows a sample resulting mesh in
(x1, x2).

The mapped stochastic Poisson equation (4.2) is solved with the 40-point Fourier
collocation scheme in the ξ1-direction, and the ten-point second-order finite difference
scheme in the ξ2-direction. (Numerical tests have been conducted to ensure resolution
independence of the solutions in the physical domain.) The resulting mean and stan-
dard deviation of the solution are shown in Figure 4.8. Note that in the construction
of the inner boundary, the dominating mode (n = 1) in the Fourier expansion (4.9)
has a period of 2π (the sin θ and cos θ modes). This results in the two local extrema
in the standard deviation field.

These numerical solutions are compared with those obtained from MCS. Fig-
ure 4.9 compares the STD profiles obtained with both methods along the radius of
R ≈ 1.21. Due to the smallness of the random input (σ = 0.02), both MCS and the
SG method converge quickly. In fact, the solutions (mean and STD) obtained with the
first- and second-order Legendre-chaos expansions almost completely coincide. Also,
we observe the convergence of the Monte Carlo method as the number of realizations
increases. This example has 16 dimensions in random space (K = 16). At first order
(p = 1), the SG method needs (K + p)!/K!p! = 17 terms, and is more efficient than
the Monte Carlo method.
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Fig. 4.8. (a) The mean 〈u(x)〉 and (b) STD σu(x) of the random state variable u(x, ω), com-
puted with the SG method.
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method (the first- and second-order Legendre chaos) and the MCS consisting of 100, 500, and 1,000
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5. Summary. We have proposed a computational framework for the computa-
tion of deterministic/stochastic differential equations defined on random domains. A
key component of the proposed approach is the use of stochastic mappings to trans-
form the original problem into a (better understood) problem of stochastic equations
in deterministic domains. While a variety of such stochastic mappings can be de-
signed, here we have implemented a mapping defined by solutions of the Laplace
equations. We have used numerical examples involving single-connected and double-
connected random domains to demonstrate the versatility of the mapping technique.

This random mapping enables us to apply the existing analytical/numerical meth-
ods for the resulting transformed stochastic equations in fixed domains. In random
spaces, we have presented methods based on Monte Carlo simulations and stochas-
tic Galerkin methods, although we emphasize that other suitable techniques can be
used. In physical spaces, we have used a variety of discretizational methods, including
the Chebyshev collocation method, Fourier collocation method, and finite difference
method. We applied our approach to the elliptic problems in the single- and double-
connected random domains, and examined the convergence and efficiency of MCS and
SG methods.

Several issues need to be addressed:
• Error estimates. There are several sources of errors, in addition to the dis-

cretizational errors in solving the transformed SBVP (2.4). In particular, the
errors in solving the mapping problems (3.3) and their effect on the Jacobian
evaluation (3.8) and the solution of SBVP (2.4) are important. Also, the ac-
curate approximation of the random processes defining rough boundaries by
a finite number of random variables in (3.1) and (3.2) plays a key role in the
proposed approach. This by itself is an active research area. Furthermore,
the effect of the representation errors on the overall accuracy of the present
approach is unclear. For example, for an elliptic equation, a small error in the
approximation of the shape of a Neumann boundary may be magnified in the
final solution [1]. Hence a complete error analysis of the proposed method is
required, in addition to the error analysis of the boundary representation.

• The well-posedness of problems with random geometries. We have assumed
that the random boundary ∂D(ω) is sufficiently regular for the RDP (2.1) to
be well-posed. For example, for the elliptic problems considered in section 4,
the precise regularity requirements on the boundary ∂D(ω) to guarantee the
well-posedness, e.g., coercivity, of the transformed stochastic elliptic equation
(4.2) is unclear. We thus have restricted ourselves to domains with random
boundaries of low to moderate roughness in the numerical examples. The
rigorous regularity requirements of the boundary are problem-specific and
remain an open issue for a wide class of important problems.

• Domain decompositions and hybrid methods. In many cases, the transformed
stochastic equations are expected to be more complicated than their original
counterparts (compare, for example, (4.1) and (4.2)). However, such trans-
formed equations need to be solved only in the region close to the random
boundary. Figure 5.1 shows a schematic of the decomposition of the computa-
tional domain into a “boundary region” and a “far-field region,” in which the
transformed and original equations, respectively, are to be solved. These two
equations are coupled through random boundary conditions on the interface
between the two domains.
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shown in bold.
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