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Abstract. Many physical systems, such as natural porous media, are highly heterogeneous
and characterized by parameters that are uncertain due to the lack of sufficient data. This uncer-
tainty (randomness) occurs on a multiplicity of scales. We focus on random composites with the
two dominant scales of uncertainty: large-scale uncertainty in the spatial arrangement of materi-
als and small-scale uncertainty in the parameters within each material. We propose an approach
that combines random domain decompositions and polynomial chaos expansions to account for the
large and small scales of uncertainty, respectively. We present a general framework and use one-
dimensional diffusion to demonstrate that our combined approach provides robust, nonperturbative
approximations for the statistics of system states.
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1. Introduction. Simulations of physical processes in most heterogeneous envi-
ronments are hampered by insufficient parameterization by data. To make predictions
under such conditions, one needs to assign the parameter values to the points (cells)
on a computational grid, where parameter data are absent. This is commonly done by
treating such parameters as random fields, whose statistics are inferred from available
data. This renders the governing equations stochastic, even if the underlying physical
phenomena are deterministic. While the parameter statistics are often highly non-
Gaussian and exhibit nontrivial correlation structures, most stochastic approaches
assume the opposite.

Consider, for instance, moment equation approaches, which derive a set of de-
terministic equations for the statistical moments, usually the ensemble mean and
(co)variance, of system states. These approaches require closure approximations,
such as perturbation expansions in the variances of system parameters. This formally
limits their applicability to mildly heterogeneous environments, i.e., to environments
whose parameter variances are small. While such approaches work reasonably well
for some nonlinear problems [20], they often fail for others [15].

A nonperturbative alternative to these approaches relies on polynomial chaos ex-
pansions. The classical Wiener polynomial chaos [22] defines a span of the Hermite
polynomial functionals of a Gaussian process and converges to any L2 functional in
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the L2 sense [3]. The Wiener chaos has been applied successfully to a variety of engi-
neering applications [10, 11, 12]. Generalizations of the Wiener polynomial chaos are
based on fundamental work on stochastic theory [17, 19] and orthogonal polynomials
[1, 16] and employ many classes of orthogonal polynomials. These include polynomi-
als from the Askey scheme [1], which is a classification of hypergeometric orthogonal
polynomials, and includes the Hermite chaos as a subset. The main advantage of the
generalized polynomial chaos is that it can represent many non-Gaussian stochastic
processes, including some discrete processes, more efficiently [26, 27, 29]. Mathemat-
ical properties of such polynomial expansions applied to stochastic elliptic equations,
including their convergence rate, have been analyzed rigorously in [2, 7]. However, as
we demonstrate in this study, the generalized polynomial chaos might become com-
putationally inefficient when applied to multimodal processes. The present study is
devoted to overcoming this shortcoming.

Our two-scale approach combines the generalized polynomial chaos with the ran-
dom domain decomposition (RDD) approach [23, 24, 25]. A key advantage of RDD
is that it provides robust closures (accurate approximations) of moment equations,
even when environments are highly heterogeneous and the statistical distributions
and correlation structures of parameters are complex. RDD relies on the fact that
a high degree of heterogeneity usually arises from the presence of different materials
(populations) in the environment. Specifically, RDD replaces a non-Gaussian, mul-
timodal parameter field Y (x) with a two-scale random process. The large-scale ran-
domness arises due to uncertainty in internal boundaries of materials (populations).
The small-scale randomness corresponds to uncertainty in parameters within each
material. In other words, a non-Gaussian, multimodal probability density function
pY (y) is replaced with a joint probability density function pY (y, γ) = pY (y|γ)pΓ(γ).
The conditional probability density function pY (y|γ) describes the distribution of Y
within each material conditioned on the boundary location Γ, whose probability den-
sity function is pΓ(γ). Hence it has convenient properties, such as unimodality and
simple correlations.

We start by formulating in section 2 the problem of diffusion in random composite
media. We outline the generalized polynomial chaos expansion approach in section 3
and demonstrate its limitations for the multimodal distributions of system parameters.
In section 4, we employ a random domain decomposition to extend the range of
applicability of polynomial chaos expansions to such parameters. Section 5 provides
two computational examples and analyzes the accuracy of the proposed approach.

2. Problem formulation. Consider a state variable h (concentration, temper-
ature, fluid pressure, etc.) whose dynamics are described by the Poisson equation,

∇ ·K∇h + f = 0.(2.1)

The system parameter K (diffusion coefficient, conductivity, permeability, etc.) is
sampled at selected locations xi, i = 1, . . . , N , as shown in Figure 1(a). To simplify
the presentation, we assume that the source function f and boundary conditions are
deterministic. Randomness in these quantities is additive and can be easily incorpo-
rated in subsequent analysis [21].

Problem (2.1) is underdetermined, since the values of K at points other than
{xi} are unknown. To quantify the uncertainty in K, it is common [5, 30, 6] to treat
it as a random field, whose sample statistics, including a correlation structure, are
inferred from data. This step relies on the ergodicity hypothesis, which allows one
to interchange the ensemble and spatial averages. Figure 1(b) depicts a stationary
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Fig. 1. (a) Measurements of conductivity K at selected locations through the one-dimensional
medium and (b) the corresponding statistically homogeneous probability density function p(k).

(statistically homogeneous) probability density function, p(k), constructed from the
K data in Figure 1(a).

The randomness of K renders (2.1) stochastic, so that its solution is given in
terms of the probability density function of h or, equivalently, its ensemble moments.
We use the Reynolds decomposition to represent random fields R = 〈R〉 + R′ as the
sum of their ensemble means 〈R〉 and zero-mean fluctuations R′. Taking the ensemble
mean of (2.1) yields the mean equation,

∇ · [〈K〉∇〈h〉 + 〈K ′∇h′〉] + f = 0,(2.2)

that contains the second mixed moment 〈K ′∇h′〉, an expression for which is not
known. The need to approximate this term is often referred to as a closure problem.
One of the most widely used closures relies on perturbation expansions in σ2

Y , the
variances of log conductivity Y = lnK [5, 9, 4, 6, 18]. This requires the perturbation
parameter σ2

Y to be small, which is not the case for most multimodal distributions,
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such as the one shown in Figure 1(b). Moreover, under certain conditions, the small-
ness of σ2

Y does not guarantee the convergence of perturbation solutions of moment
equations [8, 15]. Clearly, there is a need to pursue perturbation-free alternatives to
classical moment equation approaches.

The two-scale nonperturbative closure that we introduce here is based on a com-
bination of RDD and polynomial chaos expansion (PCE). RDD is used to decompose
the computational domain into subdomains, whose physical parameters have con-
venient statistical properties, such as unimodality. PCE takes advantage of these
properties to compute efficiently and accurately, without resorting to perturbation
expansions, the statistics of system states. The main features of this approach are
described in the next two sections.

3. Generalized polynomial chaos. The generalized polynomial chaos rep-
resents a second-order stochastic process X(ω), viewed as a function of a random
event ω, as

X(ω) =

∞∑
j=0

ajΦj [ξ(ω)].(3.1)

Here {Φj(ξ)} are (multidimensional) orthogonal polynomials of the multidimensional
random vector ξ, which satisfy the orthogonality relation

〈ΦiΦj〉 = 〈Φ2
i 〉δij ,(3.2)

where δij is the Kronecker delta. The ensemble average of ΦiΦj is an inner product
in the Hilbert space determined by the support of the random variables,

〈f(ξ)g(ξ)〉 =

∫
f(ξ)g(ξ)w(ξ)dξ,(3.3)

with w(ξ) denoting a weighting function. In the discrete case, (3.3) takes the form

〈f(ξ)g(ξ)〉 =
∑

ξ

f(ξ)g(ξ)w(ξ).(3.4)

In (3.1), there is a one-to-one correspondence between the type of orthogonal
polynomials {Φ} and the type of random variable ξ. The type of orthogonal polynomi-
als {Φ} is chosen in such a way that their weighting function w(ξ) in the orthogonality
relation (3.3) has the same form as the probability distribution function of the under-
lying random variable ξ. For example, the weighting function of Hermite orthogonal
polynomials is exp(−ξT ξ/2)/

√
(2π)n and is the same as the probability density func-

tion of the n-dimensional Gaussian random variable ξ. Hence, the classical Wiener
polynomial chaos is an expansion of the Hermite polynomials in terms of Gaussian
random variables. A few types of the generalized polynomial chaos corresponding to
the commonly used distributions are listed in Table 1.

The expansion (3.1) resides in an infinite-dimensional space determined by ξ.
In practice, the infinite summation in (3.1) has to be truncated. This is achieved
by reducing the expansion (3.1) to a finite-dimensional space, i.e., to an expansion
of the finite-dimensional random variable ξ, according to the nature of random in-
puts. Additionally, the highest order of polynomials {Φ} is chosen to satisfy accuracy
requirements. Thus, (3.1) is approximated by a finite-term expansion,

X(ω) =

M∑
j=0

ajΦj(ξ),(3.5)
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Table 1

Correspondence between the type of Wiener–Askey polynomial chaos and its underlying random
variables (N ≥ 0 is a finite integer).

Random variable ξ Wiener–Askey chaos {Φ(ξ)} Support

Continuous Gaussian Hermite chaos (−∞,∞)
gamma Laguerre chaos [0,∞)
beta Jacobi chaos [a, b]

uniform Legendre chaos [a, b]
Discrete Poisson Charlier chaos {0, 1, 2, . . . }

binomial Krawtchouk chaos {0, 1, . . . , N}
negative binomial Meixner chaos {0, 1, 2, . . . }
hypergeometric Hahn chaos {0, 1, . . . , N}

where ξ is an n-dimensional random vector. If the highest order of a polynomial {Φ}
is m, then the total number of expansion terms is (M+1) = (n+m)!/(n!m!). Cameron
and Martin [3] proved the convergence of Hermite-chaos expansion. For linear elliptic
equations, the convergence of general non-Hermite expansions has been demonstrated
both numerically [26, 27, 28] and analytically [2].

To demonstrate the robustness of generalized polynomial chaos expansions, we
consider a highly non-Gaussian unimodal random variable X = 1+B(1, 6)+N(0, 4)+
5U(0, 1) + E(3), where B(1, 6) is a β random variable with parameters α = 1 and
β = 6, N(0, 4) is a Gaussian random variable with zero-mean and standard devi-
ation 4, U(0, 1) is a uniform random variable in (0, 1), and E(3) is an exponential
random variable with mean 3. The variance of X is σ2

X = 26.8, which clearly dis-
qualifies it as a small parameter in perturbation expansions. On the other hand,
Figure 2(a) demonstrates that the fifth-degree Hermite polynomial is sufficient to
accurately approximate this distribution.

The situation is radically different when one deals with system parameters that
are neither Gaussian nor unimodal. Figure 2(b) demonstrates that the Hermite poly-
nomials are not adequate to represent the bimodal cumulative density function cor-
responding to p(k) shown in Figure 1(b).

4. Random domain decomposition. To apply the generalized polynomial
chaos expansions to systems whose parameters are multimodal, we reformulate the
problem (2.1) in terms of the random domain decomposition [23, 24]. Within this
framework, the randomness of K(x) stems from two factors: large-scale uncertainty

in the spatial arrangement of N subdomains {Ωi}Ni=1 (or, equivalently, the boundaries
{Γij} between subdomains Ωi and Ωj for i �= j) and small-scale uncertainty in K
within each subdomain. Then pK(k), the probability density function of K, is replaced
with a joint probability density function pK(k, γ) = pK(k|γ)pΓ(γ).

The reconstruction of pΓ(γ), the probability density function of a random bound-
ary Γ, from measurements of K(x) is a subject of an ongoing research [14], which
we do not pursue here. The reverse relationship, however, is more straightforward.
Indeed, if pKi are the probability density functions of K = Ki within each random
subdomain Ωi, then the probability density function of the mixture is

pK(k; x) =
∑
i

Pi(x)pKi(k),(4.1)

where Pi(x) is the probability that x ∈ Ωi, which is uniquely defined by pΓ(γ).
Let K(x) = Ki(x)IΩi(x), where IΩi(x) is the indicator function. Then (2.1) can
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Fig. 2. The Hermite expansions for the cumulative distribution functions of (a) a highly non-
Gaussian but unimodal random process and (b) a bimodal process corresponding to the data in
Figure 1.

be rewritten as

∇ ·Ki∇h(x) + f = 0, x ∈ Ωi, i = 1, . . . , N.(4.2)

Boundary conditions for (2.1) are supplemented by the conditions of the continuity
of both the random state variable, h, and the normal component of qij = −K∇h,
the random flux across the random boundaries Γij ∀i �= j. Previous one- and two-
dimensional applications of RDD involved both regular (a contact point in one dimen-
sion [24], as well as a contact line [13] and a square inclusion [25] in two dimensions)
and irregular (as inferred from actual field data [14]) random boundaries. In these
applications, RDD was combined with perturbation closures, whose limitations we
discussed in the introduction.
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Here generalized polynomial chaos expansions, rather than perturbation expan-
sions, are applied to the relevant random fields within each subdomain, and the
resulting probability density function of h is matched along the random boundaries Γij

∀i �= j. To simplify presentation, we consider a two-subdomain problem Ω = Ω1 ∪Ω2

and denote the boundary between these two subdomains by Γ = Γ12.

4.1. Conditional statistics. The first step of the averaging procedure consists
of the use of polynomial chaos expansions within each subdomain Ωi (i = 1, 2),

hi(x) =

M∑
m=0

ĥi,mΦm(ξ) and Ki(x) =

M∑
m=0

K̂i,mΦm(ξ), for x ∈ Ωi.(4.3)

Inserting these expansions into (4.2) and using a Galerkin projection onto each basis
of {Φm}Mm=0 yields

M∑
m=0

M∑
n=0

∇ · K̂i,m∇ĥi,n〈ΦmΦnΦl〉 + fiδl0 = 0, i = 1, 2.(4.4)

Here we assume the source function f to be deterministic. A random f can be treated
as well by expanding it in a series analogous to (4.3). Denoting Hi = [ĥi,0, . . . , ĥi,M ]T

and Fi = [fi, 0, . . . ]
T allows us to rewrite (4.4) in a matrix form,

∇ ·BT
i ∇Hi + Fi = 0, i = 1, 2,(4.5)

where Bi(x) = [bi,nl]
M
n,l=0 is a symmetric matrix of size (M + 1) × (M + 1), whose

entries are

bi,nl =

M∑
m=0

K̂i,m〈ΦmΦnΦl〉, i = 1, 2.(4.6)

The continuity of head and flux along the random boundary Γ,

h|x=Γ− = h|x=Γ+ , K(x)
dh

dx

∣∣∣∣
x=Γ−

= K(x)
dh

dx

∣∣∣∣
x=Γ+

,

gives rise to

H1|x=Γ− = H2|x=Γ+ , BT
1

dH1

dx

∣∣∣∣
x=Γ−

= BT
2

dH2

dx

∣∣∣∣
x=Γ+

.(4.7)

Equation (4.5), together with (4.7) and external boundary conditions, defines a com-
plete system of algebraic equations for h conditioned on the random interface Γ. The
conditional statistics of h can be readily obtained upon solving this system, e.g.,
〈h(x)|Γ〉 = ĥ0(x), σ2

h|Γ =
∑M

m=1 ĥ
2
m(x)〈Φ2

m〉.

4.2. Averaging over geometries. In the second step, the statistics of h are
obtained by averaging the conditional statistics of h over the random geometry Γ,
e.g.,
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〈h(x)〉 =

∫∫
h(x; k, γ)p(k, γ)dkdγ =

∫∫
h(x; k, γ)p(k|γ)pΓ(γ)dkdγ

=

∫
〈h(x)|γ〉pΓ(γ)dγ.

(4.8)

To evaluate the above integral, we employ a quadrature rule,

〈h(x)〉 =

Q∑
q=1

〈h(x)|αq〉wq.(4.9)

Here {αq, wq}Qq=1 are quadrature points and the corresponding weights of the orthog-
onal polynomials gQ(γ), respectively. The orthogonality condition gives∫

gm(γ)gn(γ)pΓ(γ)dγ = d2
mδmn.

For example, if Γ can be parameterized by either Gaussian or uniformly distributed
random variables, {gm} take, respectively, the form of either the Hermite or Legendre
polynomials. Expressions for σ2

h and other higher-order statistics can be obtained in
a similar manner.

5. Computational examples. To simplify the presentation, we consider the
one-dimensional version of (2.1) defined on Ω = (0, 1) and set f = 0. This equation
is subject to the boundary conditions q(0) = q0 and h(1) = 0. Two examples are
considered.

5.1. Random contact point. In the first example, the random materials [0, α)
and (α, 1] are joined at the random location α. Then pK(k), the probability den-
sity function of K shown in Figure 1(b), is replaced with a joint probability density
function pK(k, α) = pK(k|α)pα(α). We assume that Yi = lnKi(x) are mutually un-
correlated Gaussian random fields with exponential correlation functions and that α
is either a (a) truncated Gaussian or (b) uniformly distributed random variable.

This problem admits an analytical solution for random h,

h(x) = q0H(α− x)

[∫ α

x

ds

K1(s)
+

∫ 1

α

ds

K2(s)

]
+ q0H(x− α)

∫ 1

x

ds

K2(s)
,(5.1)

where H(z) is the Heaviside function,

H(z) =

{
1, z ≥ 0,
0, z < 0.

(5.2)

For Gaussian α and arbitrary correlation functions of Yi, taking the ensemble average
of (5.1) gives an exact solution for the mean,

〈h(x)〉
q0

=

√
2σα√
πW

[
1

KH1

− 1

KH2

] [
e−u2 − e−u2

1

]
− 〈α〉 − x

W

[
1

KH1

− 1

KH2

]
erf(u)

+
1

W

[
〈α〉 − x

KH1

+
1 − 〈α〉
KH2

]
erf(u1) − 1

W
1 − x

KH2

erf(u0),(5.3)

where KHi
= KGi exp(σ2

Yi
/2) are the harmonic means of the Ki(x) fields, KGi =



670 DONGBIN XIU AND DANIEL M. TARTAKOVSKY

exp(〈Yi〉) are their geometric means, and

u =
x− 〈α〉√

2σα

, u0 = − 〈α〉√
2σα

, u1 =
1 − 〈α〉√

2σα

, W = erf(u1) − erf(u0).

(5.4)

Assuming the exponential covariance functions, CYi
(x, y) = σ2

Yi
exp(− | x− y | /lYi

),
where lYi

is the correlation length of the ith material, (5.1) gives an exact expression
for the variance,

σ2
h(x)

q0
= 2

σ2
Y1

l2Y1

WK2
G1

{[
〈α〉 − x

lY1

− 1

]
[erf(u1) − erf(u)] +

√
2

π

σα

lY1

[
e−u2 − e−u2

1

]

+ exp

(
x− 〈α〉

lY1

+
σ2
α

2l2Y1

) [
erf

(
u1 +

σα√
2lY1

)
− erf

(
u +

σα√
2lY1

)]}

+ 2
σ2
Y2

l2Y2

WK2
G2

{[
1 − 〈α〉
lY2

− 1

]
[erf(u1) − erf(u)] −

√
2

π

σα

lY2

[
e−u2 − e−u2

1

]

+ exp

(
〈α〉 − 1

lY2

+
σ2
α

2l2Y1

) [
erf

(
u1 −

σα√
2lY1

)
− erf

(
u− σα√

2lY1

)]}

+ 2
σ2
Y2

l2Y2

WK2
G2

[
1 − x

lY2

+ e(x−1)/lY2 − 1

]
[erf(u) − erf(u0)] .(5.5)

Exact expressions for 〈h〉 and σ2
h corresponding to the uniformly distributed α are

derived from (5.1) in a similar manner.

Figure 3 demonstrates that the ensemble mean, 〈h〉, and standard deviation,
σh, of h computed with the RDD-PCE approach outlined in section 4 practically
coincide with their exact counterparts given by (5.3) and (5.5), respectively. The
first 20 terms are retained in the polynomial expansion. In these calculations, we
set Y1(x) = N(0, 0.1), Y2(x) = N(2, 0.2), lY1

= 5, lY2 = 1, and q0 = 1, and we
approximate the truncated Gaussian α with α = N(0.5, 0.05).

To examine the accuracy and convergence of our RDD-PCE approach, we plot in
Figure 4 the error introduced by approximating (4.8) with (4.9) as a function of the
number of quadrature points. To isolate errors introduced by (4.9), we fix the PCE
expansion at third order and employ a sufficient resolution of the spatial discretization
in a finite-difference method. Figure 4 shows a nearly exponential convergence rate
for the number of quadratures up to 4. Truncation of the tails of the Gaussian
distribution of α introduces an additional small error term, which accounts for the
deviation from the exponential convergence for the larger number of quadratures.
Since the uniformly distributed α does not require any truncation approximations,
it results in the error convergence that is close to exponential (Figure 4). In these
calculations, we set α ∼ U(−0.45, 0.55). Such an exponential error convergence is in
line with the earlier theoretical [2] and numerical [26] findings.

5.2. Random inclusion. In the second example, an inclusion of the width 1/3
and random conductivity K2 is embedded in the material of random conductivity K1.
The location of the inclusion, as characterized by its center α, is random. The statistics
of K1, K2, and α are the same as in the previous example.
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Fig. 3. The ensemble mean (a) and standard deviation (b) of h given by the exact analytical
solutions (circles) and by the polynomial chaos expansion (solid lines).

In this case, we compare the h statistics computed by a low-order polynomial
chaos expansion with those obtained from 2000 Monte Carlo simulations. Figure 5
shows that just five terms in the polynomial chaos expansion are enough to calculate
accurately the ensemble mean, 〈h〉, and standard deviation, σh, of h.

6. Conclusions. Polynomial chaos expansions provide a valuable tool for quan-
tifying uncertainty in physical systems with uncertain (random) system parame-
ters. However, they might become less efficient if these parameter have highly non-
Gaussian, multimodal distributions and/or short correlation lengths. To extend the
range of applicability of the PCE approaches, we combined them with a random do-
main decomposition. We used one-dimensional diffusion to demonstrate that this
combined approach provides robust, perturbation-free approximations for the statis-
tics of the system states.
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Fig. 4. The error convergence of 〈h〉 for the (a) Gaussian and (b) uniformly distributed contact
point α.
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Fig. 5. The ensemble mean (a) and standard deviation (b) of h computed with the RDD-PCE
approach (solid lines) and Monte Carlo simulations (circles).
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