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a b s t r a c t

The ability to delineate geologic facies and to estimate their properties from sparse data is essential for
modeling physical and biochemical processes occurring in the subsurface. If such data are poorly differ-
entiated, this challenging task is complicated further by the absence of a clear distinction between differ-
ent hydrofacies at locations where data are available. We consider three alternative approaches for
analysis of poorly differentiated data: a k-means clustering algorithm, an expectation–maximization
algorithm, and a minimum-variance algorithm. Two distinct synthetically generated geological settings
are used to analyze the ability of these algorithms to assign accurately the membership of such data in
a given geologic facies. On average, the minimum-variance algorithm provides a more robust perfor-
mance than its two counterparts, and when combined with a nearest neighbor algorithm, it also yields
the most accurate reconstruction of the boundaries between the facies.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Our knowledge of the spatial distribution of the physical prop-
erties of geologic formations is often uncertain because of ubiqui-
tous heterogeneity and the scarcity and sparsity of information. Yet
capturing the complexity of natural hydrogeological systems and
quantifying the associated uncertainty is of paramount importance
for reliable groundwater flow and transport assessments. While
many studies combine several types of information (including
hydraulic conductivity, electrical resistivity, hydraulic heads and/
or solute travel times) to predict the salient features of flow and
transport in heterogeneous subsurface environments, the uncer-
tainty associated with the delineation of lithofacies and their
hydraulic properties (e.g., hydraulic conductivity and porosity)
from limited geological and geophysical data is only marginally
analyzed. Such data, which include grain size distribution curves,
are typically derived from core samples and are often poorly differ-
entiated, further compounding predictive uncertainty.

Geostatistics has become an invaluable tool for estimating fa-
cies distributions and attributes of facies at points in a computa-
tional domain where data are not available, as well as for
quantifying the corresponding uncertainty [3]. In the presence of
poorly differentiated data, or data with low signal-to-noise ratios,

identification of heterogeneous aquifer structure is often per-
formed in two steps. First, a multivariate facies-based parameteri-
zation approach relying on multivariate cluster analysis [5] is
applied to classify aquifer materials and to estimate their spatial
arrangement [7]. Second, Kriging is used to estimate hydraulic
and other properties within each cluster (a sedimentological
facies).

Geostatistical frameworks treat the properties of a formation,
such as hydraulic conductivity K , as a random process that is char-
acterized by multivariate probability density functions or, equiva-
lently, by ensemble moments. Whereas spatial moments of K are
obtained by sampling K in physical space, its ensemble moments
are defined in terms of samples collected in probability space. In
reality only a single realization of a geologic site exists. Therefore,
it is necessary to invoke the ergodicity hypothesis in order to sub-
stitute the sample spatial statistics, which can be calculated, for the
ensemble statistics, which are actually required as input to a sto-
chastic model of flow or contaminant transport. Ergodicity cannot
be proved, and requires a number of modeling assumptions. Alter-
natives to geostatistics include neural networks [6], support vector
machines [9,11], and nearest neighbor classifications [10].

These and other similar approaches to facies delineation rely on
one’s ability to classify available data, i.e., to establish their mem-
bership in a given geological facies. The task of assigning the values
of an indicator function to hydraulic and soil properties data is
nontrivial if properties in question are either poorly differentiated
or characterized by low signal-to-noise ratios, a situation often
encountered in geophysical site characterization. Section 2 con-
tains a mathematical formulation of this problem. We present
three alternative approaches to classify poorly differentiated data
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in Section 3, and use this classification to reconstruct the bound-
aries between geological facies by means of a nearest neighbor
classification in Section 4. The proposed approaches are analyzed
by considering two synthetic porous media in Section 5.

2. Facies delineation from poorly differentiated data

We consider a problem of reconstructing a boundary between
two heterogeneous materials M1 and M2 from spatially distributed
parameter data. The latter can consist of hydraulic data (e.g.,
hydraulic conductivity), geophysical data (e.g., electric resistivity),
and/or sedimentological data, fKi � KðxiÞgN

i¼1 collected at N loca-
tions xi ¼ ðxi; yiÞ

T , where i 2 f1; . . . ;Ng and the superscript T de-
notes the transpose. (While all three methods presented below
are applicable to three-dimensional settings, we present our re-
sults in two dimensions to simplify the presentation.) The first step
in our facies delineation procedure is to analyze the distributions
of samples with the goal of assigning an indicator function

IðxÞ ¼
1; x 2 M1;

0; x 2 M2

�
ð1Þ

to each point where data are available. This is precisely the step that
is affected most by the poor differentiation of data. Consider, for
example, a subsurface environment consisting of two heteroge-
neous facies that are formed by clean sand and silty sand. A typical
histogram of hydraulic conductivity data for such an environment is
shown in Fig. 1. The measurements falling in the overlapping region
between the two distributions do not render themselves to a
straightforward classification by (1). We refer to such measure-
ments as poorly differentiated data.

To assign values of the indicator function (1) to such data, we
consider three alternative statistical approaches, which are de-
scribed in some detail in Section 3.

3. Classification of poorly differentiated data

By their very definition, poorly differentiated data do not lend
themselves to an unambiguous classification. Instead, such a clas-
sification has to be estimated. We compare the relative perfor-
mance of three alternative strategies: a k-means clustering
algorithm, an expectation–maximization algorithm, and a mini-
mum-variance algorithm.

3.1. k-Means clustering algorithm

The k-means clustering algorithm [4, p. 412], one of the first and
still most popular classification algorithms, consists of the follow-
ing steps:

(1) Identify the number of clusters – in our example, one cluster
for each of the two geologic facies.

(2) Treat the minimum and maximum value of hydraulic con-
ductivity as initial values for the means (centroid positions)
of the respective populations.

(3) Assign each of the conductivity measurements to the cluster
with the closest centroid.

(4) Recalculate the centroids based on the current cluster
assignments.

(5) Repeat steps 3 and 4 until the centroid positions stabilize.

In our experiments, we used the kmeans function from a Matlab
clustering toolbox [2].

3.2. Expectation–maximization algorithm

The expectation–maximization (EM) algorithm [4, p. 236] takes
advantage of the fact that material properties of individual geolog-
ical units can often be characterized by classical unimodal distribu-
tions, while their counterparts sampled across various geological
units comprising the subsurface cannot. For example, many geo-
logical facies are routinely characterized by log-normally distrib-
uted hydraulic conductivity [8] and grain sizes [1]. While the EM
algorithm is equally applicable to any number of geological facies
and distributions, our presentation below is limited to two hydrof-
acies whose log conductivities are Gaussian.

The EM algorithm treats the data fYi � ln KðxiÞgN
i¼1 as samples

from a population Y that represents a mixture of two Gaussian
populations Y1 and Y2

Y ¼ ð1� kÞY1 þ kY2; Yk ¼ NðYk;r2
kÞ; k 2 f1;2g: ð2Þ

The random variable k takes the value of 1 with the probability
Pr½k ¼ 1� ¼ p and of 0 with the probability Pr½k ¼ 0� ¼ 1� p. The
mean Yk and variance r2

k of the kth population (geological facies)
and the value of the probability p are determined by maximizing
the likelihood function L

max
p;Yk ;r2

k

L; L �
XN

i¼1

ln fYðYiÞ; f YðyÞ ¼ ð1� pÞfY1 ðyÞ þ pfY2 ðyÞ; ð3Þ

where fY is the probability density function (PDF) of the random
field Y in (2), and fYi

is the Gaussian PDF of the random variable
Yi (i 2 f1;2g).

The EM algorithm for solving (3) consists of the following steps
[4, p. 238]:

(1) Make an initial guess for p, Yk and r2
k (k 2 f1;2g).

(2) Compute the so-called responsibilities ci (the expectation
step)

ci ¼
pfY2 ðYiÞ
fYðYiÞ

; i ¼ 1; . . . ;N; C1 ¼
XN

i¼1

ð1� ciÞ; C2 ¼
XN

i¼1

ci:

(3) Modify the initial guess (the maximization step) by comput-
ing the means

Y1 ¼
1
C1

XN

i¼1

ð1� ciÞYi; Y2 ¼
1
C2

XN

i¼1

ciYi;

variances
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Fig. 1. A typical sample frequency distribution of the log hydraulic conductivity
Y ¼ ln K of a subsurface environment composed of silty sand and clean sand
(reference fields). The log hydraulic conductivity of the silty sand and clean sand
facies ranges between �7:00 and �2:70 and �4:15 and 0:60, respectively.
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r2
1 ¼

1
C1

XN

i¼1

ð1� ciÞðYi � Y1Þ2; r2
2 ¼

1
C2

XN

i¼1

ciðYi � Y2Þ2

and the membership probability

p ¼ 1
N

XN

i¼1

ci:

(4) Repeat steps 2 and 3 until convergence with a prescribed
tolerance is achieved.

In our experiments, we employed the mixtureEM function from
a Matlab clustering toolbox [2]. The convergence of the EM de-
pends on the choice of an initial guess. To facilitate the conver-
gence, we used the k-means clustering results to provide initial
mean values, instead of the default random initialization.

3.3. Minimum-variance algorithm

We compare these two algorithms with an algorithm that par-
titions data, i.e., assigns the values of the indicator function, in a
way that minimizes the variability within each geologic facies. To
the best of our knowledge, this approach is new, at least in the
present context. We accomplish this goal with the following
algorithm:

(1) Sort the values in the data set fKigN
i¼1 from the smallest to

the largest.

(2) Let N1 be a cutoff point separating this set into two, fKigN1
i¼1

and fKigN
i¼N1þ1.

(3) Consider the sum of the variances in both sets:

R ¼ 1
N1

XN1

i¼1

ðKi � l1Þ
2 þ 1

N � N1

XN

i¼N1þ1

ðKi � l2Þ
2
;

where l1 and l2 denote the corresponding means.
(4) The partition is defined by NH

1 that minimizes R.

4. Delineation of geological facies

A variety of conceptual frameworks and computational ap-
proaches have been proposed to estimate boundaries between geo-
logical facies from sparse data (see Section 1). The starting point of
such approaches is to assign the values of the indicator function
(1), a task that is prone to interpretive errors if available data are
poorly differentiated and/or the signal-to-noise ratio is small (Sec-
tion 2).

This task can be achieved with the three alternative approaches
described in Section 3. We now proceed by describing nearest
neighbor classification (NNC) as a means for reconstructing geolog-
ical facies from an estimated indicator function data set fIigN

i¼1

where Ii � IðxiÞ. We use NNC because it outperforms both a geosta-
tistical approach and support vector machines when applied to
well-differentiated data [10].

Given a set of data points fxigN
i¼1 with corresponding indicator

function values Ii, NNC uses the following algorithm to assign the

Fig. 2. Synthetic porous media, whose log hydraulic conductivity takes values between �6:9 (dark blue) and 0.6 (red). These computational examples pose different
reconstruction challenges: the porous medium (a) exhibits highly irregular internal boundary, while the porous medium (b) contains a preferentially directed small inclusion.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Facies maps (indicator functions) used to generate the two synthetic porous media in Fig. 2.
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value of the indicator function I at a point x where measurements
are not available:

(1) Define j as the index of the training data point, from the set
fxigN

i¼1, which is closest to the point x; i.e.,
j ¼ argminikx� xik2.

(2) Assign the indicator function value Ij at the data point xj to
the indicator function value at the point x.

It is worthwhile noting that in addition to better performance,
NNC makes no operational assumptions and has no free (fitting)
parameters.

5. Computational examples

To test our approach for facies delineation from poorly differen-
tiated data, we consider the two synthetic porous media shown in
Fig. 2. The following two-step procedure was used to generate both
examples, i.e., to assign a value of log hydraulic conductivity to
each point (pixel). First, we generated two autocorrelated, weakly
stationary Gaussian fields with ensemble means of �4:96 and
�2:30, respectively. (The mutually uncorrelated random fields
had unit variance and Gaussian autocorrelation with unit correla-
tion scale.) Second, these fields were superimposed onto the facies
map in Fig. 3.

The goal of our numerical experiments is to reconstruct the
boundaries between the two materials in Fig. 3 from a few (ran-
domly selected) measurements of log conductivity (Fig. 2). We
considered data sets consisting of 10, 20, 30, 40, 50, 60, 70, 80,
90, 100, 200, 300, 400, and 500 measurements. Figs. 4 and 5 pres-

ent typical histograms of data sets used to reconstruct the two
media in Fig. 2.

The reconstruction quality clearly depends on the locations of
the sampling points. To minimize this effect, we averaged simula-
tion results over 10,000 randomly generated realizations of the
locations of data points for each sample size. Sample locations
were selected from a uniform distribution, and each random real-
ization was assigned an equal weight.

Our facies delineation approach consists of an initial step to
estimate the classification of the poorly differentiated data, fol-
lowed by a facies delineation step using the estimated classifica-
tions. We provide results for the initial data classification step in
Section 5.1, and results for the full facies delineation problem in
Section 5.2.

5.1. Data classification

Fig. 6 presents the classification errors (for classification of the
poorly differentiated data) corresponding to the three alternative
classification approaches described in Section 3. The error for each
realization is defined as the number of misclassified data points
relative to the total number of sample points in that realization,
and the overall error reported for each sample size is the average
over all realizations for that sample size. The classification errors
for the porous medium in Fig. 2a are larger than those for its coun-
terpart in Fig. 2b. This is to be expected since the boundary in the
former is much more extensive and irregular than in the latter.
When averaged over the two examples presented in Fig. 2, the
minimum-variance approach performs slightly better than both
k-means and expectation–maximization algorithms. The k-means
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Fig. 4. Histograms of the log hydraulic conductivity values in the bluish (a) and reddish (b) regions of Fig. 2a.
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Fig. 5. Histograms of the log hydraulic conductivity values in the bluish (a) and reddish (b) regions of Fig. 2b.
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provides the best performance on the computational example in
Fig. 2b, but the worst performance on the computational example
in Fig. 2a.

With a notable exception of the EM algorithm’s performance in
Fig. 6b, all three approaches to classification of poorly differenti-
ated data exhibit uniformly convergent behavior in that the classi-
fication error decreases as the number of available measurements
increases (Fig. 6). After a certain limit, the addition of more data
provides little discernible gain in reducing the classification error.
However, it is worthwhile recalling that in our analysis the mea-
surement locations are selected at random. In actual field applica-
tions, one would expect a sampling strategy that relies on
geophysical site characterization, expert opinion and other soft
data to guide the selection of new sample locations.

Also shown in Fig. 6 is minimum threshold-based classification
error, measured as the fraction of points misclassified with respect
to the ground-truth classification (i.e., the true reference classifica-
tion, determined by the facies maps in Fig. 3, from which the syn-
thetic fields were generated). This error increases with sampling
density, which may seem counterintuitive. To understand this
behavior, it is important to recognize that the ground-truth classi-
fication may be such that it cannot be obtained from a threshold on
the corresponding scalar values. This can be demonstrated by the
two sample sets (sorted conductivity values and corresponding
ground-truth classification) shown in Table 1. While the data in
Sample 1 can be perfectly classified by a threshold of (�4.2

�3.4)/2, the data in Sample 2 has a minimum threshold-based clas-
sification error of 2/6. We observe the increase of the minimum
possible threshold-based estimation error as the number, N, of
samples grows, the total number of ways of classifying the points
(2N) grows much faster than the number of ways of partitioning
the points based on a threshold (N þ 1).

5.2. Facies reconstruction

After identifying the facies membership of the data points, i.e.,
after assigning the values of the indicator function to each data
point, we use the NNC described in Section 4 to estimate the
boundaries between the two facies in the two distinct geological
settings shown in Fig. 2. Fig. 7 exhibits the boundary reconstruc-
tion errors introduced by this procedure when applied to the indi-
cator function data estimated with the k-means clustering,
expectation–maximization, and minimum-variance algorithms.
The errors are reported as a number of misclassified pixels relative
to the total number of pixels. Also presented in this figure are the

Table 1
Examples of threshold-based minimum classification errors.

Sample 1
Measurement �5.1 �4.5 �4.2 �3.4 �2.0 �1.9
Indicator �1 �1 �1 +1 +1 +1

Sample 2
Measurement �5.4 �5.2 �4.3 �4.1 �3.6 �2.1
Indicator �1 �1 +1 �1 +1 +1

Fig. 7. Boundary reconstruction errors for the two synthetic porous media shown in
Fig. 2. The errors are defined as a fraction of misclassified pixels relative to the total
number of pixels.

Fig. 6. Errors (the number of misclassified data points relative to the total number
of sample points) in classification of conductivity samples from the porous media in
Fig. 2a and b, respectively. The figure compares the performance of three alternative
approaches to data classification – a k-means clustering algorithm, an expectation–
maximization algorithm (EM), and a minimum-variance algorithm (Min. var.) – and
the smallest possible threshold-based classification error (Thresh. min.).
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reconstruction errors one would obtain with NCC if none of the
data points were misclassified. This ground-truth reconstruction
relies on the true indicator values shown in Fig. 3.

As can be expected, the misclassification errors decrease with
the number of samples (data points) increases. The introduction
of more data leads to the reduction in the reconstruction error,
with a rate that is much faster at low sampling densities in the
example in Fig. 2b than in the example in Fig. 2a. At higher sam-
pling densities, adding more poorly differentiated data reduces
the reconstruction errors in the example in Fig. 2a, while the effect
on the reconstruction errors in the example in Fig. 2b is minimal.
This effect is a result of the much greater complexity of the region
boundary in Fig. 2a than in Fig. 2b, and is also observed for well-
differentiated data. At low sampling densities, each additional
point more accurately constrains the simple boundary in Fig. 2b
than the complex boundary in Fig. 2a. At higher sampling densities,
additional points are more likely to lie along the boundary, and
therefore play a more prominent role in reducing the error in
Fig. 2a than in Fig. 2b. In both cases the asymptotic error rate is
non-zero, as a result of the non-zero asymptotic error rate for
the underlying poorly differentiated data classification, on which
the reconstruction is based. (In contrast, the reconstruction error
rate at 100% sampling density is zero for well-differentiated data,
for which the true classification is known a priori.) Finally, while
the three alternative approaches to classification of poorly differ-
entiated data result in considerably different outcomes in terms
of classification error (Fig. 6), their impact on the reconstruction er-
ror is less pronounced (Fig. 7).

6. Conclusions

We analyzed the value (information content) of poorly differen-
tiated data or data with low signal-to-noise ratios for the task of fa-
cies delineation. To classify such data, we considered two existing
approaches, k-means clustering and expectation–maximization
algorithms, and proposed a new one, the minimum-variance algo-
rithm. Once classified, the data were used in conjunction with
nearest neighbor classification to reconstruct two synthetic ran-
domly generated porous media consisting of two heterogeneous
materials. Our analysis leads to the following major conclusions:

(1) The selection of a proper classification algorithm has a sig-
nificant impact on the data classification, with the mini-
mum-variance algorithm being the most robust.

(2) The impact of this selection on errors in reconstruction of
geological facies is significantly smaller.

(3) At low sampling densities, the addition of new data leads to
a nearly exponential decrease in both classification and
reconstruction errors.

(4) The value of additional data at high sampling densities is
limited, with both errors reaching their asymptotic values.

It is worthwhile recalling that our results and conclusions hold
on average, so that the impact of a fortuitous selection of measure-
ment locations is either minimized or eliminated all together.
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