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Subsurface Characterization With
Support Vector Machines

Brendt Wohlberg, Daniel M. Tartakovsky, and Alberto Guadagnini

Abstract—A typical subsurface environment is heterogeneous,
consists of multiple materials (geologic facies), and is often insuf-
ficiently characterized by data. The ability to delineate geologic
facies and to estimate their properties from sparse data is essen-
tial for modeling physical and biochemical processes occurring in
the subsurface. We demonstrate that the support vector machine
is a viable and efficient tool for lithofacies delineation, and we com-
pare it with a geostatistical approach. To illustrate our approach,
and to demonstrate its advantages, we construct a synthetic porous
medium consisting of two heterogeneous materials and then esti-
mate boundaries between these materials from a few selected data
points. Our analysis shows that the error in facies delineation by
means of support vector machines decreases logarithmically with
increasing sampling density. We also introduce and analyze the use
of regression support vector machines to estimate the parameter
values between points where the parameter is sampled.

Index Terms—Data analysis, geologic facies, geostatistics,
machine learning, support vector machine (SVM).

I. INTRODUCTION

UR knowledge of the spatial distribution of the phys-
ical properties of geologic formations is often uncertain
because of ubiquitous heterogeneity and the sparsity of data.
Geostatistics has become an invaluable tool for estimating such
properties at points in a computational domain where data are
not available, as well as for quantifying the corresponding uncer-
tainty. Geostatistical frameworks treat a formation’s properties,
such as hydraulic conductivity K (x), as random fields that are
characterized by multivariate probability density functions or,
equivalently, by their joint ensemble moments. Thus, K (x) is
assumed to vary not only across the physical space (coordinate
x), but also in probability space (this variation may be repre-
sented by another coordinate £, which is usually suppressed to
simplify notation). Whereas spatial moments of K are obtained
by sampling K (x) in physical space (across x), its ensemble
moments are defined in terms of samples collected in probability
space (across ). Since in reality only a single realization of
a geologic site exists, it is necessary to invoke the ergodicity
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hypothesis in order to substitute the sample spatial statistics,
which can be inferred from field and/or laboratory scale data,
for the ensemble statistics, which are actually required. Er-
godicity cannot be proved, and requires a number of modeling
assumptions, e.g., [1, Sec. 2.7] and references therein. One
of the most popular geostatistical approaches to lithofacies
delineation employs discontinuous geostatistical models, such
as indicator Kriging (IK) [2]-[4]. IK has also found its way
into image processing [5].

Machine learning provides an alternative to geostatistics by
allowing one to make predictions in the absence of sufficient
data parameterization, without treating geologic parameters as
random and, hence, without the need for the ergodicity as-
sumptions. Closely related to the field of pattern recognition,
machine learning refers to a family of computational algo-
rithms for data analysis that are designed to automatically
tune themselves in response to data. Neural networks are an
example of such algorithms that have been used in hydrologic
modeling. While versatile and efficient for many important
applications, including the delineation of geologic facies [6],
neural networks usually do not provide bounds on expected
classification errors.

We recently introduced [7] another subset of machine
learning techniques, the support vector machine (SVM), for ap-
plication in facies delineation. While similar to neural networks
in its goals, the SVM is firmly grounded in the rigorous math-
ematical analysis of Vapnik’s statistical learning theory (SLT)
[8], which allows one to assess its performance and bound the
corresponding errors. Like other machine learning techniques,
SVMs enable one to treat the subsurface environment and
its parameters as deterministic. Uncertainty associated with
insufficient data parameterization is then represented and quan-
tified by treating sampling locations as a random subset of all
possible measurement locations. Such a formulation is ideally
suited for subsurface imaging.

In [7], we used linear SVMs to locate a boundary between two
materials in a perfectly stratified geologic formation. Such
a boundary is by definition either a straight line (in two
dimensions) or a plane (in three dimensions), so that available
data are always linearly separable. Here we consider the general
(nonlinear) form, which is referred to simply as an SVM, to
delineate highly irregularboundaries between two heterogeneous
geologic facies, based on a sparsely sampled parameter.

We formulate the problem of facies delineation in Section II.
Section III provides a brief description of the general theory of
nonlinear SVMs, with an emphasis on their application in sub-
surface imaging. SVMs are then used in Section IV to recon-
struct a boundary between two heterogeneous geologic facies
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from a few data points extracted from a randomly generated
porous medium. In Section IV we also introduce a regression
SVM to estimate parameter values at points where parameter
data are not available. Finally, we contrast the performance of
the SVM with that of a geostatistical approach.

II. PROBLEM OF FACIES DELINEATION

Consider the problem of reconstructing a boundary between
two heterogeneous materials (geologic facies) from parameter
data K; = K (x;) collectedat N locations x; = (z;, ;) , where
i € {1,...,N}. Such problems are ubiquitous in subsurface
hydrology since the geologic structure of the subsurface plays
a crucial role in fluid flow and contaminant transport. A
typical example is the problem of locating permeable zones
in the aquiclude that separates two aquifers, the upper aquifer
contaminated with industrial pollutants, and the lower aquifer
used for municipal water supplies [9]. Parameter data can include
measurements of hydraulic conductivity, electric resistivity,
cumulative thickness of relevant geologic facies, and grain
sizes.

The first step to facies delineation consists of analyzing a data
histogram to assign to each data point a value of the indicator
function

N 1, X; € Ml
I(Xl) o {0, X; € My

where M; and M, are the two facies. This step is often
nontrivial, since a typical geologic facies is heterogeneous, so
that parameter measurements vary from point to point. Here
we assume that the available parameter data {K (x;)}¥, are
well differentiated, so that the process of assigning the values
of the indicator functions to points {x;}_; does not introduce
interpretive errors.

Let Z(x, @) be an estimate of the “true” indicator field (x),
whose adjustable parameters « are consistent with, and deter-
mined from, the available data {x;, I(x;)} ;. One would like
to construct an estimate that is as close to the true field as pos-
sible, i.e., to minimize the difference, || — Z||, between the two.
Since parameters are typically sparsely sampled, this problem
is ill-posed and requires regularization. The most common
regularization procedure treats the underlying deterministic but
sparsely sampled spatial functions K (x) and I(x) as random
fields. An added benefit of such approaches is that they allow
one to estimate the uncertainty associated with insufficient data
parameterizations.

Within a general probabilistic framework, both the indicator
field I(x) and the choice of sampling locations {x;}}¥ , can
be viewed as random, and can be described by a joint proba-
bility distribution P(I,x). Then the problem of obtaining the
best estimate of the indicator field is equivalent to minimizing
the functional

(D

R= / I — Z)|dP(I, x). 2)

Unfortunately, since in reality only a single realization of a spe-
cific geologic formation exists, there is no direct way to eval-
uate P(],x). Geostatistical and statistical learning techniques
provide two alternatives for evaluating (2).

Geostatistical approaches use the L? norm in (2), and treat

1) the indicator function /(x) as a random field, and

2) the choice of sampling locations {x; } ¥, as deterministic.
Then the problem of minimizing (2) reduces to the minimization
of the indicator variance

02 = /(1 —I)%dP(I). 3)

To approximate P(I), geostatistical approaches assume er-
godicity, i.e., that the sample statistics of I, including mean
b1, variance 0%, and correlation function p; computed from
spatially distributed data {I(x;)}; can be substituted for the
ensemble statistics. Furthermore, it is necessary to assume that
these sampling statistics are representative of the whole field.

SLT [8] often uses the L' norm in (2) and treats

1) the indicator function 7(x) as deterministic;

2) the choice of sampling locations {x;}_, as random.
Then the problem of minimizing (2) reduces to the minimization
of the expected risk

1
Rexp = 3 / I — I|dP(x). @)

Rather than attempting to estimate probability distribution P(x)
from spatially distributed data, statistical learning replaces the
expected risk Ry, with the empirical risk

1 -
Remp: W;|I(X,)—I(X,)| (5)

These two quantities are related by a probabilistic bound,
Rexp < Remp + ¢, where the known function ¢ depends on
the Vapnik—Chervonenkis (VC) dimension (representing a
measure of the complexity of the family of functions 7) and
the number of data points N (see [10], [11, ch. 4], and [12,
Sec. 1.3 and ch. 5]). Analysis of the tightness of the bound
Rexp < Remp + ¢ provides a useful theoretical motivation for
the SVM described below. However, it should be noted that this
bound is often too loose to be of much practical significance.

III. SUPPORT VECTOR MACHINES

The SVM is a relatively recent technique that has attracted
a great deal of interest due to its excellent performance on a
wide range of classification problems, e.g., [10], [11], and [13].
The theoretical foundation of this technique is provided by SLT,
which provides a bound on the expected risk Rey;, [11, ch. 6,
remark 6.7], [12, ch. 7].

The simplest SVM deals with linearly separable data collected
from perfectly stratified geologic media, where different geologic
facies are separated by planes (in three dimensions) or straight
lines (in two dimensions). It is generalized to accommodate
arbitrary datasets by means of the kernel technique introduced
in the following section.

From the outset, we wish to emphasize the novelty of the
proposed use of SVMs. In the usual pattern classification appli-
cations of SVMs, each data point is of high (often very high)
dimensionality. For example, in the classical example of hand-
written digit classification, each image of a digit is considered
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Fig. 1. Schematic representation of the boundary between two heterogeneous
geologic facies M; and M, (located above and below the boundary,
respectively) in a perfectly stratified geologic formation. The 4+ and & signs
indicate the locations where a parameter K is sampled and I = 1 or = 0,
respectively. A maximum margin linear classifier for the displayed samples
consists of the boundary estimate (solid line) and the margin (dotted lines).

a single high-dimensional data point, and the sampling density
of the entire space is, by practical necessity, exceedingly small.
In subsurface characterization, each sample point represents a
location within two-dimensional (2-D) or three-dimensional
(3-D) space, and the sampling density, while usually small, is
much larger than in most pattern recognition applications.

A. Linear SVMs

Consider a boundary given by the straight line
a-x+b=0. (6)

We wish to determine the unknown coefficients a = (a1, a2)”
and b from the dataset {x;, I(x;)} . In machine learning, an
algorithm for constructing such a boundary is known as a linear
classifier.

A maximum margin linear classifier is illustrated in
Fig. 1—the boundary estimate is indicated by the solid
line, and the dotted lines indicate the extent of the margin,
i.e., the region within which the boundary could be shifted
orthogonally without misclassifying any of the data. If d; and
ds designate the perpendicular distances from the estimated
boundary (solid line) to the nearest data point(s) in materials
M; and M, respectively, then the size of the margin (dotted
lines) is d = d; + ds, and the sample points determining the
position of the margin are called the support vectors. Since
the lines bounding the margin are parallel to the boundary (6),
their normal is also a. The SVM determines the coefficients
a and b in (6) by maximizing the size of this margin. While
any choice of straight line that lies within the margin provides
the same empirical risk Remp, the straight line at the center of
the maximum margin is a principled choice for minimizing the
expected risk Rexp [12, Sec. 7.2].

The SVM is constructed as follows. Leta - x + b = £1 be
two equations for the dashed lines bounding the margin in Fig. 1.
(Note that while constants a and b in (6) are defined up to a mul-
tiplicative constant, these equations ensure their uniqueness.)
Since the margin separates the two materials, all data points sat-
isfy either

a-x;+b>+1 (7a)

or

a-x;+b< 1. (7b)
These inequalities imply that the estimated boundary lies at the
center of the margin, i.e., that d; = dy = d/2. Defining the indi-
cator function J(x) = 2I(x) — 1, so that J(x) = —1 whenever
I(x) = 0 and J(x) = 1 whenever I(x) = 1, and denoting
J; = J(x;) allows one to combine the two inequalities (7) into
one

(a~xi+b)JiZl, fOTiE{l,...,N}. ®)
The inequalities (8) become equalities for the x; that are support
vectors. Let ||a|| = /a? + a3 denote the Euclidean length of
a. Since the distances p; and p2 from the coordinate origin to

the linesa-x; +b = 1and a - x; + b = —1 are respectively
b+1 b—1
pL=—r pp=—T ©)
al [[al

and the distance between these two lines ps — p1, i.€., the margin
d, is given by

d (10)

2

lall’
Thus, the SVM can be formulated as a problem of maximizing
d (or, equivalently, minimizing ||a||) subject to the linear con-
straints (8). Introducing Lagrange multipliers ; > 0 for ¢ €
{1,..., N} leads to the objective function

1 N
L(a,b,v) = §||31||2 - Z%‘[(a X +0)J; —1]. (1)
=1

A solution of this optimization problem defines a and b and thus,
in accordance with (6), the boundary between the two layers,
located at the center of the margin.

Often, the data are not perfectly linearly separable. A more
general SVM formulation introduces slack variables &; > 0 into
the optimization, allowing for misclassification but penalizing
the sum of the classification errors, so that the problem becomes
the minimization of

N
1 2
5llall +C;fi (12)
subject to the constraints [13, ch. 2], [14, Sec. 12.2.1]
(axl+b)J721—§7 fOI'LE{l,N} (13)

As before, introducing Lagrange multipliers ;, §; > 0 fori €
{1,..., N} gives the objective function

N
Lab,6,8) = S all? = Y mil(a-x + 0 — 1+ &1

= N N
+CZ€7Z - Z&ifr (14)
i—1 i—1
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Denoting the optimal values of a and b by a* and b* respectively,
the indicator function .J(x) is given by

J(x) = sgn(a* - x + b*) (15)
and is usually referred to as a decision function in the SVM
literature.

To obtain a* and b*, it is often convenient to use the dual
optimization problem [14, Sec. 12.2.1]

N 1 XN
Hl;LX Z"}/i — 522’}%7]’(]1‘(]]')(2' .9 (16)
=1 =1 j5=1
subject to the constraints
N
0<% <C )Y mli=0. (17)

=1

Let~} (i € {1,...,N}) be solutions of (16) and (17). Then the
solutions of dL/day, = 0 for (14) give

N
* } : *
a = Yi J,L'Xi.
i=1

Let x4 and x_ denote arbitrary support vectors for which J = 1
and J = —1, respectively. Then the constraints (13), which at
these points become equalities, give

(18)

1
b= ——a* (x4 +x_).

19
7 (19)
Thus, a solution for the indicator function (15) is
N
J(x) = sgn (Z VETix - x + b*) . (20)
i=1

B. Nonlinear SVMs

In most practical problems, boundaries between geologic
facies are significantly more complex than a straight line or
a plane. To account for this geometric complexity, one can
generalize the linear SVM by noting that data which cannot
be separated by a straight line or plane in the 2- or 3-D space
of observation often become linearly separable (i.e., separable
by a hyperplane) when projected onto another, usually higher
dimensional space.

LetF : R™ — R™ beamapping of the n-dimensional physical
space onto an m-dimensional space (known as a feature space)
in which the linear SVM can be applied. The equation for a
hyperplane separating the two materials in the m-dimensional
space is

a-F(x)+b=0 (21)
where the dimension 1 and parameters a € R™ and b are deter-
mined from the transformed dataset { F(x;), J; }X_; by solving

the quadratic optimization of the linear SVM (14)
1 N
L(a7 b7 6/778) = 5“3”2 - Z’YL [(a ) f(xt) + b)JL -1+ SL]

i=1
N N
+CY &= 6k (22)
i=1 i=1
In analogy to (15), the indicator function is given by

J(x) = sgn(a* - F(x) + b*). (23)

While this indicator function is linear in the feature space, it

corresponds to a nonlinear function in the physical (or input)

space, the specific form being determined by the mapping F.
The dual optimization problem (16) is now recast as

N N N
1
max E %= g E E YiviJid i F(xi) - F(x;) (24)
=1

i=1 j=1
subject to the constraints

]\T
0<% <C Y vli=0.

i=1

(25)

The key observation here is that the feature space vectors
enter into the optimization only within an inner product. If a
Mercer kernel

K(x,x') = F(x) - F(x') (26)
is available for a specific mapping F, the required inner products
may be computed directly in the physical space, without explic-
itly performing the potentially computationally expensive map-

ping into the feature space. Hence, the dual optimization (24)
may be expressed as

N 1 N N
max Z%’ —3 Z Z%%JZJJK(X“XJ') 27
=1

i=1 j=1

avoiding explicit computation of the mapping F.
In analogy to (18)—(20), the indicator function is now given
by

N
J(x) = sgn <Z v LK (x,x;) + b*) . (28)

i=1

Here v* (i € {1,..., N1) is defined as a solution of the dual

optimization problem (12)

N

a* = Z%*Jz‘f(xi)

i=1

(29)

and b* is given by (19). Note that the decision function (28) is
expressed in terms of the kernel IC, without the need for explicit
mapping onto the feature space.



WOHLBERG et al.: SUBSURFACE CHARACTERIZATION WITH SUPPORT VECTOR MACHINES 51

Fig. 2. Synthetic data on a 60 X 60 grid. Values range between —2.04 and
9.89.

Among a wide variety of Mercer kernels, we will consider the
polynomial kernel of order p

Kprm(x,x') = (x-x' +1)? (30a)
the sigmoid kernel
Ksic(x,x') = tanh(px - x' + 0) (30b)
the exponential radial basis function kernel
’CERB(X, X') = exp <—M) (30¢)
202
and the Gaussian radial basis function kernel
Karp(x,x") = exp <—w) ) (30d)

IV. SYNTHETIC EXAMPLE

To demonstrate the applicability of SVMs to subsurface
imaging, and to elucidate their relative advantages with respect
to a geostatistical approach, we reconstruct, from a few data
points randomly selected according to a uniform distribution,
the boundaries between two heterogeneous geologic facies in
a synthetic porous medium shown in Fig. 2. This synthetic
example is generated as follows.

We start by generating two autocorrelated, weakly stationary,
normally distributed processes, representing two distinct spa-
tial distributions of log hydraulic conductivity Y = In K with
ensemble means of —0.1 and 7.0. When hydraulic conductiv-
ities are expressed in centimeters per day, this corresponds to
clayey and sandy materials, respectively. Both log-conductivity
distributions have unit variance and Gaussian autocorrelation
with unit correlation scale. We take these two fields to be
mutually uncorrelated. The fields are generated by the SGSIM
code [15] on a 60 x 60 grid, using a grid spacing of 1/5 of
the log-conductivity correlation length.

Next, the composite porous medium in Fig. 2 is constructed
by randomly choosing the shape of the internal boundary be-

Fig. 3. Classification of data in Fig. 2, obtained by setting a threshold value of
4.0.
50 T T T T
45 P, —
40 —.__\\\ _
@ 35 —\‘a"‘-“.ifﬁ ]
< 30k PLMp=2 —---- .
5 25 - PLMp=3 ------ -
[E] 20 + ‘\. SIG oo —
N GRB —-—-—
15 e ERB - - -— —
10 I
5 | | | |
0 2 4 6 8 10

Sampling density (%)

Fig.4. Errorrates corresponding to the SVMs with C' = 1.0 and the following
kernels: polynomial (PLM) with p = 2 and p = 3, sigmoid (SIG) withp = 1.0
and ¢ = 0.0, Gaussian radial basis (GRB) with o = 1.0, and exponential radial
basis (ERB) with o = 1.0.

tween the two materials and by assigning values of log-conduc-
tivity to cells in the domain. Using a threshold value of 4.0 for
the indicator function (1) results in Fig. 3.

We used an SVM [13], [16] to reconstruct the boundary
between the two geologic facies in Fig. 3 from sets of randomly
selected data points. A set of sampling densities, ranging from
0.25% (nine data points) to 20% (720 data points) was selected,
and for each sampling density an ensemble of 20 randomly
generated realizations of the sample locations was constructed.
(To accentuate the sparsest datasets, the figures below only
show the results up to the 10% sampling density.) Classification
errors for each sampling density were computed as the fraction
of misclassified grid points averaged over the classification
results for each of the 20 realizations at that sampling density.
Fig. 4 compares the performance of SVMs with the polynomial
(PLM), exponential radial basis (ERB), Gaussian radial basis
(GRB), and sigmoid (SIG) kernels in (30). One can see that
the radial basis function kernels (GRB and ERB) provide the
best performance, which is not surprising given the general
popularity of these kernels in SVM applications [17].

Figs. 5 and 6 show the geologic facies reconstructed by an
ERB SVM with ¢ = 1.0 from 9 and 180 sample points, re-
spectively. The locations of sample points are indicated by the



52 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 44, NO. 1, JANUARY 2006

Fig. 5. Classification of data in Fig. 2, obtained by an ERB SVM (C' = 1.0,
o = 1.0) using nine sample points (0.25% sampling density).

Fig. 6. Classification of data in Fig. 2, obtained by an ERB SVM (C' = 1.0,
o = 1.0) using 180 sample points (5% sampling density).

lighter shades. The comparison of these reconstructions with
the true field in Fig. 3 shows that even very sparse sampling
might be sufficient for the SVMs to capture general trends in
the spatial arrangement of geologic facies. However, the per-
formance of SVMs on such sparse datasets is highly dependent
on the actual locations of data points (i.e., highly variable from
one realization to another). As the sampling density increases,
the SVMs capture finer features of the spatial arrangement of
geologic facies, and their performance is less dependent on a
sampling realization.

A. Comparison With a Geostatistical Approach

We compare the accuracy of the facies reconstruction by
means of the SVM with that obtained by a geostatistical ap-
proach (GSA) described in Appendix I. It is important to note
that this and other geostatistical approaches to facies delineation
assume that the relative volumes occupied by the two materials
obtained from a sample are representative of the whole field.
This assumption is usually difficult to validate a priori.

Fig. 7 shows the comparison of the performance of GSA and
a SVM with C' = 10.0 and the ERB kernel with o = 1.0. When

Error (%)

Sampling density (%)

Fig. 7. Error rates corresponding to the GSA and SVM (C' = 10.0, ERB
kernel with ¢ = 1.0) approaches.

45
40
35
30
25
20
15
10

5

Error (%)

Sampling density (%)

Fig. 8. Error rates corresponding to the SVMs with C' = 10.0 and an ERB
kernel with several values of o.

enough measurements are available (i.e., when the sampling
density is high enough), both methods have similar perfor-
mance, with the SVM being slightly more accurate than GSA.
Two factors, however, argue strongly in favor of SVMs. First,
they perform relatively well even on highly sparse datasets
(see the boundary reconstruction from nine sampling points
in Fig. 5), on which GSA fails because the sample statistics
(variograms in particular) become statistically meaningless.
Second, SVMs are highly automated, while GSA generally
requires manual data analysis to construct sample spatial vari-
ograms and to identify a proper interpretive theoretical model.
As a result, GSAs are highly time consuming and depend on
the subjective judgment of the practitioner.

B. SVM Parameter Sensitivity

The performance of the SVMs depends on the choice of C'
in (22) and the fitting parameters in the Mercer kernels (30).
The optimal selection of these parameters is a nontrivial issue.
The standard approach is via cross validation, which involves
excluding a subset of the training data from the training step,
and using it to evaluate the performance of the resulting clas-
sifier [12, Sec. 7.8.1]. This simplest form of cross validation is
the leave-one-out (LOO) method [18], [19], described in some
detail in Section IV-C. Alternatives to cross validation include
those discussed in [17], [20]-[22].

We address this important issue in the context of subsurface
characterization by performing a sensitivity analysis of the SVM
performance with respect to the fitting parameters. Thereafter,
as described in some detail in Section IV-C, we employ the LOO
method to automatically select these parameters.
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Fig. 9. Error rates corresponding to the SVMs with C' = 10.0 and a GRB
kernel with several values of .

Figs. 8 and 9 demonstrate the sensitivity to a fitting param-
eter o of the SVMs with the exponential radial basis (ERB) and
Gaussian radial basis (GRB) kernels given by (30c) and (30d),
respectively. One can see that when the sampling density ex-
ceeds 2%, the performance of both SVMs is relatively insensi-
tive to the choice of o (with its values varying over about two
orders of magnitude). This finding is encouraging, since the op-
timal choice of ¢ is nontrivial, and computationally expensive
when performed via LOO and related methods.

C. SVM Parameter Selection

The apparent lack of sensitivity of the SVM performance to
the selection of kernel parameter ¢ in our application can be
used to justify the manual selection of a set of SVM parameters.
We used this approach in Section IV-A to compare the relative
performance of the GSA and SVM methods. Such a procedure
might bias this comparison in favor of the SVM method. To
demonstrate that this bias is insignificant, we compare the
performance of the SVM with manually selected parameters
with the performance of an SVM, whose parameters are selected
automatically by means of the standard LOO method. The
LOO method consists of the following steps.

1) Identify the 2-D SVM parameter space (spanned by pa-
rameters C' and o), over which parameters C' and o
are allowed to vary. In our computational example, we
chose the ranges C' € [0.10, 10.00] and o = [0.32,10.00]
to exclude parameters for which poor performance is
expected a priori (see [23] for a discussion of asymp-
totic properties of GRB kernels with respect to these
parameters).

2) Discretize the parameter space on a regular grid.
In our example, we use (C,o) € {0.10,0.32,1.00,
3.16,10.00} x{0.32,0.56,1.00, 1.78, 3.16, 5.62, 10.00}.

3) Leave out the first of the data points {K;}¥ , and train
the SVM on the remaining N — 1 data points.

4) Compute the error in the SVM estimation of the first
data point for each of the grid point of parameters C'
and o.

5) Repeat this procedure by leaving out the second, third,
and so forth data point, and training the SVM on the
remaining N — 1 data points.

6) Select the set of parameters to minimize the mean of
these errors over all left-out samples.

30
28 -
26 -
24 -
22 -
20

Error (%)

16
14
0.0 0.5 1.0 1.5 2.0 2.5

Sampling density (%)

Fig. 10. Error rates corresponding to the GSA approach (GSA) and the SVM
with the ERB kernel, with parameter o selected either manually (SVM-f) or
automatically by the leave-one-out method (SVM-I).

Given the computational expense, we performed the LOO
method for the four lowest sampling densities. The results of
these simulations are presented in Fig. 10, which compares the
boundary reconstruction errors resulting from the geostatistical
approach (GSA), the SVM with manually selected parameters
C =10.0 and 0 = 1.0 (SVM-f), and the SVM with parameters
selected automatically using the LOO method (SVM-1). One can
see that both SVM approaches outperform the GSA approach,
with the difference between the SVM approaches being rela-
tively small.

D. Identification of Hydraulic Parameters

In hydrologic applications, the delineation of geologic facies
from parameter data is often not sufficient. Since many geologic
facies are heterogeneous, it is also necessary to assign parameter
values to locations (e.g., elements of a numerical grid) where
data are not available. Geostatistical approaches achieve this
goal through data interpolation algorithms, such as Kriging [ 15].
SVMs take an alternative route by employing data regression
strategies as outlined in Appendix II.

In addition to the direct use of the nonlinear regression (41),
we explore a two-step procedure. First, we use the SVM to
delineate the geologic facies from a dataset { K (x;)}Y . Then
we perform a separate nonlinear regression (41) regression on
the data subsets within each facies. In the simulations presented
here, we used the regression SVM [13] with the GBF kernel (30d)
and o = 1 for the direct data regression; and the classification
SVM [13] with the GRB kernel (30c) and ¢ = 1 followed
by the regression SVM [13] with the GBF kernel (30d) and
o =1 for the two-step data regression.

Figs. 11 and 12 show the K(x) fields reconstructed with
these two regression strategies, from a sparse dataset { K;}7_;
(the sampling density of 0.25%) denoted in Fig. 5 by the lightly
colored pixels. Figs. 13 and 14 do the same for a denser dataset
(180 data points, corresponding to a sampling density of 5%)
shown in Fig. 6. As one would expect, the visual comparison
of these four figures with the “true” K(x) field shown in
Fig. 2 suggests that the quality of the reconstruction of the
K field increases with the sampling density. The proposed
two-step SVM regression (Figs. 12 and 14) outperforms the
direct SVM regression (Figs. 11 and 13), capturing some of
the main features of the K distribution even from an extremely
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Fig. 11. Regression of nine sample points (0.25% sampling density) from data
in Fig. 2, obtained by a GRB (C' = 10.0, 0 = 10.0) SVM regression.

Fig. 12. Regression of nine sample points (0.25% sampling density) from data
in Fig. 2, obtained by an ERB (C' = 1.0, 0 = 1.0) SVM classification followed
by a GRB (C' = 10.0, 0 = 10.0) SVM regression.

Fig. 13. Regression of 180 sample points (5% sampling density) from data in
Fig. 2, obtained by a GRB (C' = 10.0, ¢ = 10.0) SVM regression.

sparse (the sampling density of 0.25%) dataset. A quantitative
comparison of the accuracy of these reconstructions is provided
below.

Fig. 14. Regression of 180 sample points (5% sampling density) from data in
Fig. 2, obtained by an ERB (C' = 1.0, ¢ = 1.0) SVM classification followed
by a GRB (C' = 10.0, 0 = 10.0) SVM regression.

Finally, we compare the SVM regressions with two geo-
statistical approaches, which employ alternative interpolation
strategies based on Kriging. The first approach uses Kriging to
interpolate between the 180 data points, whose locations are
shown in Fig. 6. An isotropic spherical variogram provides an
appropriate interpretation of the data with parameters nugget
1.08, sill 12.01, and range 5.261. Note that the synthetic dataset
in Figs. 2 and 3 is a realization of the random field with a
Gaussian variogram. The discrepancy between the theoretical
variogram model used to interpret the sample variogram in-
ferred from the 180 data points and the variogram used to
construct the underlying reference field is due to the finite
number of samples and the aggregation into a single dataset
of the data belonging originally to two different lithofacies.

The second approach, which we call Kriging with classifica-
tion, consists of two steps. First, we use the geostatistical facies
delineation procedure described in Appendix I. Second, we use
simple Kriging on the two subsets of the 180 points shown in
Fig. 6, each of which belongs to one of the two facies.This pro-
cedure results in an isotropic exponential variogram with nugget
0.0, sill 0.7 and range 3.357 for the high conductivity facies, and
in an isotropic exponential variogram with nugget 0.035, sill 0.7
and range 1.768 for the low conductivity facies.

Figs. 15 and 16 provide the K fields reconstructed by
Kriging, and Kriging with classification, respectively. Com-
parison of these fields with the “true” K field shown in Fig. 2
reveals that Kriging with classification outperforms simple
Kriging, as is the case with their SVM counterparts. If an
eyeball measure is used to compare the reconstructed K fields
shown in Figs. 13—16 with their “true” counterpart in Fig. 2,
one may conclude that the two Kriging approaches slightly
outperform their respective SVM counterparts.

Tables I and Il provide more rigorous quantitative comparisons
of the SVM and GS A approaches without and with classification,
respectively. These comparisons are given in terms of: 1) the
L' error computed as the mean of the absolute value of the
error at each element (pixel); 2) the L? error computed as
the square root of the mean of the square of the error at
each element; and 3) the fractional error (FE) computed as
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Fig. 15. Interpolation of 180 sample points (5% sampling density) from data
in Fig. 2, obtained by Kriging.

Fig. 16. Interpolation of 180 sample points (5% sampling density) from data
in Fig. 2, obtained by Kriging with IK classification.

the fraction of the elements in the total number of elements
(3600) for which the relative error exceeds a given threshold
specified in parenthesis.

One can see that in every norm but L? the use of classification
prior to regression improves the quality of the reconstructed
K fields. The L? norm is an exception, because it unduly
accentuates the errors introduced by the misclassification of
the elements close to the boundary between two materials. The
corresponding SVM and GS A approaches introduce comparable
errors, but the Kriging approaches (especially Kriging with
classification) are prone to subjective modeling choices and
much more labor intensive than their SVM counterparts.

V. CONCLUSION

We explored the potential of support vector machines for the
delineation of geologic facies from limited data. This was ac-
complished: 1) by reconstructing, from a few data points, a syn-
thetic randomly generated porous medium consisting of two
heterogeneous materials and 2) by comparing the performance
of SVMs with that of the geostatistical approach [24].

Key differences between SVMs and geostatistics, first
pointed out in [7], are as follows.

TABLE 1
SEVERAL MEASURES OF THE RECONSTRUCTION ERRORS INTRODUCED BY
THE SVM AND GSA APPROACHES WITHOUT CLASSIFICATION

LT | L2 [ FE(0.1) | FE (0.2) | FE (0.3)

SYM | 1.51 | 2.39 057 0.44 039

GSA | 1.28 | 2.11 0.53 0.44 0.40
TABLE 1I

SEVERAL MEASURES OF THE RECONSTRUCTION ERRORS INTRODUCED BY
THE SVM AND GSA APPROACHES WITH CLASSIFICATION

LT[ LZ [ FE(0.1) | FE (0.2) | FE (0.3)
SVM | 122 | 2.53 0.45 036 033
GSA | 1.13 | 2.53 042 0.35 033

» Since SVMs do not treat the subsurface environment as
random, they do not require ergodicity and other statistical
assumptions that lie at the heart of geostatistics.

* While geostatistics provides a set of interpolation tools,
SVMs use regression.

Our analysis leads to the following major conclusions.

» For any sampling densities, SVMs slightly outperform the
geostatistical approach in reconstructing the boundaries
between two geologic facies, while being significantly less
labor intensive.

e For very low sampling densities (e.g., 0.25%), which
make the inference of statistical parameters meaningless,
the geostatistical approach fails, while SVMs still do a
reasonably good job in reconstructing the boundaries.

We also employed SVMs and geostatistics to infer parameter
values at spatial locations where parameter data are not available.
This was accomplished by two alternative approaches. The
first employed direct regression SVMs (or Kriging). The
second consisted of a sequential two-step regression SVMs
(or geostatistical approach), in which the use of SVMs (or
indicator Kriging) to delineate geologic facies was followed
by the use of SVM regression (or Kriging interpolation) to
infer parameter values. We found the following.

» Sequential approaches are more accurate than their direct
counterparts by all measures but LZ.

* The reconstructions of parameter fields obtained with
the SVM and geostatistical approaches are comparable
at medium to high sampling densities.

* Regression SVMs are highly automated, while their geo-
statistical counterparts typically require manual estimation
of variograms. Consequently, they require less user effort
and are less prone to subjective interpretive errors.

* Regression SVMs can be used at low sampling densities
(e.g., for the 0.25% sampling density or nine data points)
where geostatistical inference becomes meaningless.

APPENDIX 1
GEOSTATISTICAL APPROACH

The geostatistical approach due to [24] was used for perfor-
mance comparisons with SVMs. This approach consists of the
following steps. First, we use Kriging [15] to construct a map
of the ensemble average of the indicator function (I(x)) from
the data {I(x;)}2Y,. The ensemble mean I(x) is the probability
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that a point x lies in Material 1, (I(x)) = P[x € Mj]. Then
we define a boundary between the two materials as an isoline
P[x € M;] = ¢, where ¢ is a number of data points in Ma-
terial 1 (or 2) relative to the total number of data points, after
accounting for data clustering.

In some cases, this value does not guarantee that the Kriging
estimate of the fraction of the total area covered by the low-con-
ductivity material equals the declustered global mean of the
original indicator data, resulting from the raw data. In such
cases, c is set to a value of the Kriged indicator field which
allows one to recover a reconstruction that honors the empirical
relative volumetric fractions of the two materials.

APPENDIX I
SUPPORT VECTOR REGRESSION

SVM regression may be viewed as a generalization of
the SVM classification introduced in Section II to delineate
the boundaries between geologic facies. Let K (x,@) be an
estimate of a “true” parameter field K (x), whose adjustable
parameters « are determined from the available parameter data
{K; = K(x;)}Y,. SVM regression aims to minimize the
difference between the two, while providing a probabilistic
bound on the accuracy of the estimator K ata randomly drawn
point x [11, Sec. 4.5].

Similar to SVM classification in Section III, SVM regression
is first introduced for linear regression, and is then generalized
to nonlinear regression via the kernel technique. For linear re-
gression, we seek to approximate a dataset { K; = K(x;)}¥,
with a linear function

K(x)=a-x+b. (31)
The regression equivalent of the classification functional (12) is
[11, Sec. 6.2]

N
1 X
5||a||2+c§ Le(x;, K, K) (32)

i=1

where the pointwise sum of classification errors Zi\;l & in (12)
is replaced by pointwise sum Zf\;l Le(xi, Ki, K) of a loss
function L(x, K, K') which measures the error in approximating
K; at x; by K (x;). While it is not the only choice, we utilize
the e-insensitive loss function

0, for | K (x)

, - K| <e¢,
|K(x) — K| — € otherwise

L(x,K,K) = {

(33)
first used in SVM regression. With this loss function, the primal
optimization problem for SVM regression is the minimization
of

1 N .
Sllall? +C > (& + &)

(34)
i=1
subject to the constraints
(a-x;+b)— K(x;) <e+¢& (35a)
K(x;))—(a-x;+b) <e+§ (35b)

where 7 € {1,...,N}, and & > 0 and éi > 0 are the slack
variables similar to those first introduced in (12).

Introducing Lagrange multipliers ~;,9;, 6;, 5 > 0
(1 € {1,...,N}) gives the objective function

N
PO | .
L(a,b.6.,7.4,6.8) = Slall* + O Y (& + )
=1

N
—Z’yi(é—i'fi‘l—Ki—a-Xi—b)
i=1

N
—Z%(E-i-éi - K;+a-x;+b)
i=1
N N
=) 6= bids. (36)
i=1 i=1
In analogy with (16), the dual optimization problem is
N N
{00 - 3450
RE A et Pt
1 -
3 Z Z(W —%)xi-x; 0 (37)
i=1 j=1
subject to the constraints
N
0<% <C0<H<C Y (v—4)=0 (38

i=1

Let v and 4f (4 € {1,...,N}) denote a solution of (37) and
(38). Then the optimal parameters a and b are given by [12, Sec.
9.2]

(39)

N
Z ’Yz - ’YL
and

b*:Kj—a*-xj—e (40)
respectively, where K; and x; in (40) are chosen such that 0 <
*
7 < C.
For a nonlinear regression, we once again replace x by F(x)
to give the regression

Kix)=a-F(x)+b

and utilize the dual form of the optimization to express the
problem in terms of the kernel K associated with mapping F,
giving the regression

— 4K (xi,x) + b. 41)

See [25] for a discussion of methods for choosing C, ¢, and the
kernel parameter(s) in SVM regression.
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