
A reduced complexity model for probabilistic risk

assessment of groundwater contamination

C. L. Winter1 and Daniel M. Tartakovsky2

Received 17 October 2007; revised 6 February 2008; accepted 27 February 2008; published 6 June 2008.

[1] We present a model of reduced complexity for assessing the risk of groundwater
pollution from a point source. The progress of contamination is represented as a sequence
of transitions among coarsely resolved states corresponding to simple statements like
‘‘a spill has occurred.’’ Transitions between states are modeled as a Markov jump process,
and a general expression for the probability of aquifer contamination is obtained from
two basic assumptions: that the sequence of transitions leading to contamination is
Markovian and that the time when a given transition occurs is independent of its end state.
Additionally, we derive an asymptotic value for the probability of contamination that
is equivalent to the so-called rare event approximation. First we develop the model for
sites in statistically homogeneous natural porous media, and then we extend it to highly
heterogeneous media composed of multiple materials. Finally, we apply the model
to a simple example to illustrate the method and its potential.
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1. Introduction

[2] Risk has been defined as the probability that some-
thing bad will occur [Brillinger, 2003]. Contaminant spills
at waste sites are among the bad things that can happen to
groundwater systems. To evaluate the risk of a spill at a site
we must have a means of calculating PUC(t0, tcrit), the
probability that the site goes from an initially (at time t0)
uncontaminated state U to a contaminated state C before
some critical time tcrit. In general, probability of contami-
nation can be broken into two parts: PUS(t0, tS), the
probability that engineering protections at the site will
fail and a spill from storage (S) will occur by time tS; and
PSC(tS, tcrit), the probability that the site’s hydrogeology,
including active measures like barrier wells, will fail and a
spill will contaminate the site’s groundwater. The first
problem is the domain of engineers who must assess the
likelihood that storage systems at a given site will fail. Since
it is not intrinsically hydrologic, we do not treat PUS(t0, tS) at
all in this paper except to assume it can be solved. We
concentrate on the hydrogeologic problem of estimating
PSC(tS, tcrit), the risk that a known spill will contaminate a
local aquifer, although we give a general expression for
PUC(t0, tcrit) in equations (11)–(12) below.
[3] Attempts to estimate risk by deterministic approaches

face challenges and contradictions that are both linguistic
(risk, after all, does imply uncertainty and probability) and
operational. Deterministic approaches attempt to describe
contaminant process by solving appropriate transport equa-
tions, e.g., an advection-diffusion equation (ADE) or its

non-Fickian counterparts. Such efforts assume that a model
provides a valid description of contaminant transport at a
site, and its parameters (coefficients) and relevant initial and
boundary conditions (IBC) are known. In practice, the
parameters and IBC are never known well enough to
directly solve transport equations for a specific site. One
of two approaches is generally taken to address this lack of
data. In the first, a calibration technique is used to estimate
the parameters and IBC, and the ADE is then solved as if
the system were deterministic. This approach to groundwa-
ter modeling has been documented in many references [e.g.,
Spitz and Moreno, 1966]. Calibration is generally ill posed
because the resulting parameter estimates are rarely unique
[Moore and Doherty, 2006]; many quite different parame-
terizations will yield about the same quality of calibration,
yet lead to significantly different results on data that is
independent of the values used to calibrate the model.
Equally important, the calibration procedure by itself does
not yield probabilistic estimates of risk despite the highly
uncertain system properties.
[4] A comprehensive probabilistic risk analysis (PRA)

[Tartakovsky, 2007] provides a rigorous and scientifically
defensible means for estimating hydrogeologic risk. Specif-
ically, a comprehensive PRA should account for structural
(model) and parametric uncertainties associated with sub-
surface processes. Structural uncertainty arises from imper-
fect knowledge of the geologic makeup of the subsurface
and from incomplete understanding of physical and biogeo-
chemical processes affecting the fate and transport of
contaminants at any given site. Geologic uncertainty and
its effects on contaminant transport can be quantified by
means of the random domain decomposition [Winter and
Tartakovsky, 2002; Guadagnini et al., 2004]. Model uncer-
tainty often manifests itself via the existence of several
competing conceptual and mathematical descriptions whose
ability to accurately model naturally occurring transport

1National Center for Atmospheric Research, Boulder, Colorado, USA.
2Department of Mechanical and Aerospace Engineering, University of

California, San Diego, La Jolla, California, USA.

Copyright 2008 by the American Geophysical Union.
0043-1397/08/2007WR006599$09.00

W06501

WATER RESOURCES RESEARCH, VOL. 44, W06501, doi:10.1029/2007WR006599, 2008
Click
Here

for

Full
Article

1 of 7

http://dx.doi.org/10.1029/2007WR006599


phenomena cannot be validated by data with a required
degree of fidelity. To quantify this source of uncertainty, one
can use either a Bayesian maximum entropy approach
[Christakos, 1990] or maximum likelihood Bayesian aver-
aging [Neuman, 2003]. Parametric uncertainty arises from
spatial heterogeneity coupled with limited and often noisy
measurements of hydraulic and biogeochemical parameters,
such as hydraulic conductivity and retardation coefficient. It
is commonly quantified by solving stochastic ADEs or other
stochastic models, including Lagrangian averaging and
continuous time random walk [see Cushman, 1997; Dentz
and Tartakovsky, 2006, and references therein].
[5] No matter which approach, deterministic or PRA, is

taken, the upshot is a complicated model whose solution is
computationally intensive, and often prohibitively so. This
suggests there is room for simpler models based on a higher
level of description than the detailed level of physical descrip-
tion captured in deterministic and stochastic models. We
describe such a model in this paper. Specifically, we focus
on the formalism by developing a model of reduced complex-
ity of the risk that a given spill will eventually contaminate a set
of water supply wells. A model of reduced complexity
preserves the essential features of a problem, but does not
represent the dynamics exactly. It is based on parameters that
can be either measured in the field or laboratory, or estimated
probabilistically by an expert through an ‘‘educated guess.’’
In our case, we represent groundwater flow and transport as a
sequence of transitions between discrete states of a waste site–
aquifer system. These states are easy to understand and
generally form an adequate description of such events for
decision makers. The dynamics of contamination are repre-
sented by a Markov jump process in which random state
transitions occur at random times. Such a model is consonant
with the usual limitations of data available for characterizing a

site. The model requires fewer than a dozen parameters to
specify the contamination process.
[6] First we define the elements of waste site dynamics at

a level appropriate to a model of reduced complexity. These
include the basic geometry of the model (section 2), and the
states of the reduced system and allowable transitions
between them (section 3). In section 4, we develop a model
of risk for the reduced system and derive a basic formula for
quantifying risk of contamination (equations (11)–(12)
below). The setting and framework are similar to those of
Tartakovsky [2007], and one of our contributions is to
derive his operational formulas from the dynamics of our
reduced complexity model. We also extend the analysis to
formations composed of multiple materials (section 5)
and illustrate the method by applying it to a couple of
typical contamination problems (section 6). We close by
discussing the model’s parametric requirements and com-
plexity (section 7).

2. Conceptualization of Remediation Site

[7] We begin by formalizing a typical point source
groundwater remediation problem shown in Figure 1. A
remediation system occupies a subsurface volume G that
contains a waste site and a set A = {w1, . . ., wnA

} of nA
wells used to producewater from an aquiferGa2G. Eachwell
wa = (xa, ya, la), for a = 1, . . ., nA, is characterized by xa =
(xa, ya), its location on the ground surface, and by la, its
pumping depth below the ground surface. In addition to the
aquiferGa, the subsurfaceG contains the vadose (unsaturated)
zone GV, such that G = Ga [ GV and Ga \ GV = 0. Since the
volume of the waste site is much smaller than G, we represent
its spatial extent by a point x0 = (x0, y0) on the ground
surface. Other commonly encountered contamination
problems, wherein a contamination source is located within

Figure 1. (top) Horizontal and (bottom) vertical cross sections of a typical remediation site.
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the vadose zone, can be handled in the identical fashion. The
production zone of A is the volume GA 2 Ga affected by the
pumping in A.
[8] The waste site x0 is contained within a remediation

volume GR 2 G, which is upstream of GA and can include
both unsaturated and saturated regions. The unsaturated
region can be represented by a separate volume if necessary.
In general, GR is bounded by some kind of barrier to
contaminants migrating from x0 into the production zone
GA. For example, the barrier may be defined by a collection of
pumping wells designed to stop flow between the waste site
and A. A monitoring network R 2 Ga is deployed to observe
the remediation effort. In most cases, R = {w1, . . ., wnR

}
consists of nR wells and is located downstream of GR and
upstream of GA. Finally, there is another region GN 2 G,
downstream of GR and upstream of GA, where contamination
that escapes remediation efforts may still be mitigated by
natural attenuation. The effectiveness of natural attenuation is
monitored by N = {w1, . . ., wnN

}, another set of nN wells. In
many cases, these are the production wells A, although we
show them as separate in Figure 1 for completeness.

3. Model’s States and Transitions

[9] The essential elements of this problem can be described
as sequences of transitions among system states that are shown
in Table 1. We represent transitions between states as pairs, for
instance SR, where the first element, S, is the initial state and
the second element,R, is the result of the transition. Only a few
of the 20 possible transitions can actually occur in our model
system. These are shown in Table 2.
[10] The relative sequence of transitions is not arbitrary, and

allowable sequences are illustrated in Figure 2. A sequence
(for instance,US! SR) is only allowed if the result of the first
transition is the initial state of the second, i.e., if the second
element of the first pair is the first element of the second.
Allowable sequences can be identified by means of fault tree
diagrams [Tartakovsky, 2007]. The sequence

US ! SR ! RN ! NC ð1aÞ

leads to aquifer contamination and forms the so-calledminimal
cut [Tartakovsky, 2007]. As noted, wewill mostly be interested
in sequences in which a spill has already occurred and escaped
the waste site, i.e., with the sequence

SR ! RN ! NC ð1bÞ

but the extension of the technique to (1a) is obvious.
[11] A transition s ! s0 from a state s 2 {U, S, R, N, C}

to another allowable state s0 2 {U, S, R, N, C} is said to

occur when a criterion based on contaminant concentration
c(x, t) is met. Typically, the criterion is that concentration at
the state s exceeds a critical value cs = const at any
monitoring well wi, i.e., that c(wi, t) > cs. If the transition
does occur, it occurs over a random interval of time tss0,
which is defined as the random time taken by the system to
move from state s to state s0. For instance, tRN is the
random interval of time required for the contaminant plume
to pass from detection by one of the wells of R to detection
by one of the wells of N, and tRN is its expected value.
Transition durations associated with sequence (1b) are
shown in Figure 2, and their precise, operational definitions
are given in section 4.
[12] Besides the duration of a transition, we are also

concerned with the random time ts, when the system first
enters a given state s. For instance, tR = tUS + tSR is the
time when a contaminant first enters GR. If a spill is known
to have occurred already, we use t0 to indicate the known
time of the spill.
[13] The critical time is set by environmental regulations.

Although in many cases tcrit = 1, that is not always so. For
instance the regulatory time at the proposed U.S. nuclear
waste repository at Yucca Mountain was once set at tcrit =
10,000 years.

4. Probability Model

[14] Our goal is to estimate the probability that a spill
occurring at t0 contaminates the aquifer by a given critical

Table 1. Possible States S(t) of the Contaminated Site Shown in
Figure 1

State, S(t) State Description

U The site is uncontaminated
S A spill has occurred
R The site is undergoing remediation
N The site is undergoing natural attenuation
C The aquifer is contaminated

Table 2. Possible Transitions Between the System States Shown
in Table 1

Transition Outcome of the Transition

US The site is contaminated by a spill
SR The contaminant escapes the waste site
SU The spill is contained on site
RN Remediation fails
NC Natural attenuation fails
RU Remediation succeeds
NU Natural attenuation succeeds

Figure 2. Allowable transitions and transition times of the
model.
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time tcrit. In general we represent the event of being in a
given state s by time t with the pair of events W(ts) = s and
ts < t,

s tð Þ # W tsð Þ ¼ s; ts < tf g: ð2Þ

Similarly, the transition from a given current state s(t) to
another, say s0 at time t0 > t, is

s tð Þ ! s0 t0ð Þ # s tð Þ;s0 t0ð Þf g
¼ W tsð Þ ¼ s; ts < t;W ts0ð Þ ¼ s0; ts0 < t0f g: ð3Þ

Depending on the setting, we use several alternative
notations for the transition probability, i.e., probability P
of the transition s(t) ! s0(t0) in (3),

P s tð Þ;s0 t0ð Þ½ & # P W ts < tð Þ ¼ s;W ts0 < t0ð Þ ¼ s0½ &
# Pss0 t < t < t0½ &: ð4Þ

Finally, P[s(t);s0(t0); . . .;s00(t00)] denotes the joint probability
of multiple transitions from states s, s0, . . ., s00 for times t <
t0 . . . < t00.
[15] The probability of a sequence of transitions leading

to aquifer contamination is P[S(t0); R(tR); N(tN); C(tcrit)].
Hence, the probability of aquifer contamination before tcrit,
given a spill at t0, is

PSC t0; tcritð Þ ¼
Z Z

P S t0ð Þ; r; n;C tcritð Þ½ &drdn; ð5Þ

where r and n range over all possible R(tR) and N(tN),
respectively. We spend the rest of this section making this
statement precise. We do so in two stages for clarity.
[16] At the first stage, we treat the transition times as

known, i.e., ts = ts, and decompose the joint probabil-
ities of the state transitions into constituent conditional
probabilities,

P S t0ð Þ;R tRð Þ;N tNð Þ;C tcritð Þ½ & ¼ P C tcritð ÞjS t0ð Þ;R tRð Þ;N tNð Þ½ &
' P N tNð ÞjS t0ð Þ;R tRð Þ½ &
' P R tRð ÞjS t0ð Þ½ & ' P S t0ð Þ½ &: ð6Þ

Of course, P[S(t0)] = 1 if it is known that a spill occurred
at t0.
[17] It is reasonable to assume that the state transitions

form a Markov process since for example, the probability
that the system is contaminated by time tcrit given that
W(tN) = N does not depend on time tR when W(tR) = R. All
that matters is that natural attenuation fails at tN. How the
system got to that point is irrelevant. (State transitions are
distinct from transition times that are sometimes used to
model contaminant transport [see Cushman, 1997; Dentz

and Tartakovsky, 2006, and references therein]. The latter
might or might not be Markovian depending on the con-
ceptual model used to describe transport phenomena.) The
Markovian assumption allows us to replace (6) with

P S t0ð Þ;R tRð Þ;N tNð Þ;C tcritð Þ½ & ¼ P C tcritð ÞjN tNð Þ½ & ' P N tNð ÞjR tRð Þ½ &
' P R tRð ÞjS t0ð Þ½ & ' P S t0ð Þ½ &: ð7Þ

From now on we will let t0 = 0 when convenient without
any loss of generality.
[18] At the second stage, we allow transition times ts to

be random. Consider Ps0s00[t0 < t < t00], the general transition
from state s0 to state s00 in random time t. Now we make
our second basic assumption: the probability of a transition
can be represented as the product

Ps0s00 t0 < t < t00½ & ¼ Fs00 t00ð ÞQs0s00 ; ð8Þ

where Qs0s00 is the probability of the state transition ever
occurring, and Fs0(t00) is the probability that this transition
will occur by t00. The Markovian nature of transition times
requires [Doob, 1953] that Fs00 be an exponential distribu-
tion defined below. If these conditions hold, (8) describes a
Markov jump process from the current state s0 to a possible
next state s00. The probability that the system stays in state s
until time ts, i.e., that the jump has not occurred by ts, is
given by

Fs tsð Þ ¼
Z ts

0

qse
(qstsdts: ð9Þ

The rate parameter qs > 0 has units of 1/t, and 1/qs = E[ts]#
ts is the expected time before the transition from s occurs.
Note that tC > tN > tR > tS, i.e., qS > qR > qN > qC.
[19] Substituting (8) into (7), we obtain

P S t0ð Þ;R tRð Þ;N tNð Þ;C tcritð Þ½ & ¼ QUSFS t0ð ÞQSRFR tRð ÞQRNFN tNð Þ
) QNCFC tcritð Þ: ð10Þ

Now we can complete the definition of PUC(t0, tcrit) #
P[U(t0) ! C(tcrit)]. Letting t0 = 0,

PUC 0; tcritð Þ ¼ QUSQSRQRNQNCI ; ð11Þ

where

I ¼
Z tcrit

0

dtCNqCe(qCtCN
Z tcrit(tCN

0

dtNRqNe(qN tNR

'
Z tcrit(tCN(tNR

0

dtRSqRe(qRtRS

'
Z tcrit(tCN(tNR(tRS

0

dtSUqSe(qStSU : ð12aÞ
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Evaluating the quadratures in (12a) yields

I ¼ 1( e(qCtcrit þ qC
e(qCtcrit ( e(qN tcrit

qC ( qN

þ qCqN
e(qN tcrit ( e(qCtcrit

qC ( qNð Þ qN ( qRð Þ

þ qCqN
e(qCtcrit ( e(qRtcrit

qC ( qRð Þ qN ( qRð Þ

þ qCqNqR
e(qCtcrit ( e(qN tcrit

qC ( qNð Þ qN ( qRð Þ qR ( qSð Þ

þ qCqNqR
e(qRtcrit ( e(qCtcrit

qC ( qRð Þ qN ( qRð Þ qR ( qSð Þ

þ qCqNqR
e(qN tcrit ( e(qCtcrit

qC ( qNð Þ qN ( qSð Þ qR ( qSð Þ

þ qCqNqR
e(qS tcrit ( e(qCtcrit

qN ( qSð Þ qR ( qSð Þ qS ( qCð Þ : ð12bÞ

When tcrit ! 1, I = 1 and

PUC 0; tcritð Þ ¼ QUSQSRQRNQNC ; ð13Þ

which is essentially the rare event approximation discussed
by Tartakovsky [2007]. It is clear from (13) that Qs1s2

is the
probability that the given transition (QUS, QSR, QRN, or QNC)
ever occurs.

5. Preferential Flow Paths

[20] Most natural porous media are heterogeneous
rather than uniform, and many exhibit separable macro-
scopic and microscopic scales of heterogeneity [Winter and
Tartakovsky, 2002]. On the macroscopic scale, such media
consist of nvol large subvolumes, or blocks, each of which is
composed of a single specific material. In Figure 3, two
low-conductivity blocks are separated by a high-conductivity
path. The microscopic scale of heterogeneity corresponds to
point-point variability within a block. Typically, within
block variability contributes much less to the total variance
of hydrogeologic parameters than across block variability
[Winter and Tartakovsky, 2000]. Since we are not concerned
with the detailed geometry of flow, we can ignore micro-
scopic variability.
[21] In such systems, preferential flow paths exist at

macroscopic scales if a continuous volume of highly con-
ductive material is embedded in G. When preferential paths
exist, we can break a given transition, say s0 ! s00, into the

flow occurring in high-conductivity zones and the flow that
does not. Hence, we can treat a state transition within a zone
as a Markov jump process as before but split the transition
into a set of transitions,

P ið Þ
s1s2

0; t2ð Þ ¼ F
ið Þ
2 t2ð ÞQ ið Þ

s1s2
; i ¼ 1; . . . ; nvol; ð14Þ

each one of which occurs within a given block subvolume
Vi. The hydrology of the setting limits the amount of flow
between blocks, so the probability of transport between
blocks is small and we ignore it. Several modeling options
are available when exchanges between blocks must be
accommodated, and we return to them at the end of the
section.
[22] Let t(i) be the total time required to pass from S to C

in Vi. We want to evaluate the probability

P tC < tcrit½ & ¼ P min
i

t ið Þ
C < tcrit

! "

¼ 1(
Y

i

P t ið Þ
C > tcrit

h i

: ð15Þ

Often one highly conductive flow volume is surrounded by
less conductive volumes, in which case

P min
i

t ið Þ
C < tcrit

! "

+ max
i

P t ið Þ
C < tcrit

h i

: ð16aÞ

To put this in the notation of (11)–(12),

PSC 0; tcritð Þ ¼ 1(
Y

i

1( P
ið Þ
SC 0; tcritð Þ

h i

+ max
i

P
ið Þ
SC 0; tcritð Þ ð16bÞ

with PSC
(i) (0, tcrit) denoting the transition probability in Vi.

[23] When exchanges between blocks are significant, the
blocks are not really separate and may be treated as one
superblock with its own time parameters based on measure-
ments of the superblocks performance. Then the methods of
section 4, especially equations (11)–(12), can be applied.
Alternatively, additional states pertaining to the blocks (e.g.,
‘‘The contaminant is in the ith block’’) and transitions
among them can be defined if the data and available
expertise can support the needed parameterizations.

6. Examples

[24] A couple of examples will help understand the
method. We begin with the uniform porous medium
sketched in Figure 1 and set the time at which a spill is
known to have occurred at t0 = 0. In this case, (11)–(12)
reduce to

PSC 0; tcritð Þ ¼ QSRQRNQNCI ð17Þ

with

I ¼ 1( qNqR qN ( qRð Þe(qCtcrit

qC ( qRð Þ qC ( qNð Þ qN ( qRð Þ

þ qCqR qC ( qRð Þe(qN tcrit þ qCqN qC ( qNð Þe(qRtcrit

qC ( qRð Þ qC ( qNð Þ qN ( qRð Þ
: ð18Þ

Figure 3. A schematic representation of preferential flow
paths.
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The factor QSRQRNQNC is the probability, irrespective of
time, that a sequence of jumps will eventually lead to
aquifer contamination. Setting all of these probabilities to 1
results in the most conservative estimate of the risk of
contamination.
[25] A few general remarks are in order. Most waste sites

are small in comparison to G and do not have provisions for
containing potential spills, so we let QSR = 1.0 in this
example; that is, it is certain that a spill will escape the
waste site. On the other hand, remediation measures can be
instituted after a spill, and effective measures will lead to
small QRN, so we set QRN = 0.01. Unless the parent material
has special geochemical properties, natural attenuation will
often ultimately fail, so in our examples QNC = 1.0. The
upshot is a value,

QSRQRNQNC ¼ 0:01: ð19Þ

Since modifications needed to adapt QSRQRNQNC to other
cases are clear, we turn our attention to I , the remaining
factor in (17).
[26] Of the three rates, only the remediation rate qN =

1/tN (tN = tSR + tRN) can be controlled by engineering. The
other two, qR and qC, depend on natural properties of the
hydrogeologic system, so we keep them basically the same
in the three examples. As noted, in most cases the volume of
the waste site and the contaminant’s path through the
unsaturated zone will be much smaller than the volume
available for natural attenuation, hence qR , qC (equiva-
lently, tR << tC). We let qR = 0.1 in our examples. The rate
qC, of course, is affected by qN since it corresponds to the
expected elapsed time tC = tSR + tRN + tNC. Hence, we
maintain a constant difference tNC = 5, 10, 15 in the
example shown in Figure 4, which plots I as a function
of tRN, the time lag introduced by remediation. The longer
remediation remains effective, the lower is the probability
that the site will be contaminated before tcrit (= 15, in the
example).
[27] Finally, we illustrate a case of preferential flow paths

in the setting of Figure 3. In this example we have two
subvolumes, the first of which is highly conductive, while
the second is not. The corresponding parameters are shown

in Table 3. They result in P[mini ti < tcrit] = 0.652 and maxi
P[ti < tcrit] = 0.646, so the approximation maxi P[ti < tcrit]+
P[mini ti < tcrit] is pretty good.

7. Discussion

[28] We have presented a simplified probabilistic model
that is suitable for evaluating the risk to an aquifer of a
contaminant spill at a waste site. The model is based on
decomposing the process of contaminant transport into
sequences of transitions among discrete states. The model
represents transitions between states as the outcomes of a
Markov jump process, which is a standard model for
processes composed of discrete states. Model definition
consists of two steps: (1) state specification and ordering
and (2) parameterization of the jump process. Selection of
both is a matter of an interplay between diverse sets of data
and expert opinion.
[29] The actual state-wise decomposition depends on

details of a given site, but the basic methodology of
decomposition is the same for any site. State selection and
ordering are largely the job of an expert relying on whatever
sources of hydrogeologic information are available for
characterizing features of the site. Decomposition requires
about the same level of expertise and information as
specifying the distribution of hydrogeologic parameters
and IBC in a typical deterministic groundwater model.
[30] The reduced model is based on two assumptions:

(1) state transitions are Markovian and (2) the time when a
transition occurs does not depend on the transition’s end
state. The first assumption seems reasonable, since the
underlying process of contamination is Markovian, regard-
less of whether it is described by an advection-dispersion
equation, or particle tracking, or stochastic Lagrangian
models. Given the concentration of contaminant at two
times t0 < t00 in the past, predictions of future states of
contaminant concentration only depend on the more recent
state t00. The second assumption is stronger. It can be
understood in light of regulatory requirements. Consider
transitions from state N, ‘‘The system is undergoing natural
attenuation.’’ The system can only go in one of two
directions from N: either to U, ‘‘The system is uncontam-
inated,’’ or to C, ‘‘The system is contaminated.’’ We say the
system is in C if contaminant concentration exceeds a
threshold, cN, by time tcrit, otherwise it goes to U. In either
event, the direction of the transition does not depend on the
time.
[31] The reduced model has the great advantage of

relying on a small number of fairly intuitive parameters.
The first are simple transition probabilities Qs0s00 of ever
going from the current state s0 to a possible next state s00.
They can be based on field experiments, simulations, or
expert opinion. Time is introduced through another set
of parameters, the expected time ts0s00 needed to go from

Figure 4. Probability of contamination PSC(tcrit), scaled
with QSRQRNQNC = 0.01 as a function of tRN, the time lag
introduced by remediation.

Table 3. Probabilities for Two Subvolumes Shown in Figure 3
With tcrit = 2.0

Subvolume qR qN qC

Conductive 3.0 2.0 1.0
Nonconductive 0.3 0.2 0.1
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s0 to s00. These can be measured by simple tracer tests, or
estimated through simulation or by expert opinion. In all,
only a dozen or so parameter values must be set, even in a
complex groundwater setting with preferential flow paths.
As noted, the intuitive meaning of the parameters allows
values to be set, discussed, and defended by experts. Of
course, the parameters are only estimates and hence are
uncertain, so Bayesian methods should be used to account
for parametric uncertainty.
[32] The complexity of the model is reduced in several

senses when it is compared to models based on determin-
istic or stochastic differential equations. In the first place,
the reduced model requires many fewer degrees of freedom
than a deterministic transport model in which parameters,
e.g., hydraulic conductivity and dispersivity, must be set at
every point of a computational domain. The reduced model
is also computationally simpler than solving transport
equations numerically, which requires a number of itera-
tions through time over at least a two-dimensional grid. The
computational demand of applying Monte Carlo techniques
to calculate the statistics of stochastic equations is even
greater. By contrast, (11)–(12) can be solved with a calcu-
lator and a pencil. The data requirements of (11)–(12) are
also much lower than those needed to parameterize trans-
port equations, be they stochastic or not. Furthermore, the
reduced model needs simpler kinds of data. A large number
of observations must be collected to characterize heteroge-
neous flow and transport parameters deterministically or
statistically. Then the spatial statistics of the parameters
must be calculated to generate realizations or moment
approximations. A high degree of expert judgment must
go into choosing the number of samples, their locations,
and then the form of the parameter’s structure functions.
Compare that with the reduced model which, in principle,
can be parameterized by tracer tests or expert opinion. To
sum up, the reduced complexity risk assessment is to the
comprehensive risk quantification, what a simple mass
balance equation (i.e., a lumped-parameter model) is to a
spatially distributed transport model.
[33] Being a model of reduced complexity, the proposed

approach to risk assessment provides a coarse-grained

analysis. When a more detailed assessment is required,
one can employ the comprehensive framework for risk
analysis [Tartakovsky, 2007], which allows one to deal with
structural (model) and parametric uncertainties. Not surpris-
ingly, this approach is significantly more computationally
demanding.
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