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Abstract

A multivariate Analysis of Variance (ANOVA) is used to measure the relative sensitivity of groundwater flow to two
factors that indicate different dimensions of aquifer heterogeneity. An aquifer is modeled as the union of disjoint volumes,
or blocks, composed of different materials with different hydraulic conductivities. The factors are correlation between the
hydraulic conductivities of the different materials and the contrast between mean conductivities in the different materials.
The precise values of aquifer properties are usually uncertain because they are only sparsely sampled, yet are highly het-
erogeneous. Hence, the spatial distribution of blocks and the distribution of materials in blocks are uncertain and are mod-
eled as stochastic processes. The ANOVA is performed on a large sample of Monte Carlo simulations of a simple model
flow system composed of two materials distributed within three disjoint blocks. Our key finding is that simulated flow is
much more sensitive to the contrast between mean conductivities of the blocks than it is to the intensity of correlation,
although both factors are statistically significant. The methodology of the experiment – ANOVA performed on Monte
Carlo simulations of a multi-material flow system – constitutes the basis of additional studies of more complicated inter-
actions between factors that define flow and transport in aquifers with uncertain properties.
� 2006 Published by Elsevier Inc.
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1. Introduction

Many geophysical applications deal with system parameters that are highly heterogeneous in space and are
difficult to measure. This is certainly the case in hydrogeology where hydraulic conductivity, K, the principal
system parameter in continuum representations of groundwater flow, varies greatly from one point of a
groundwater aquifer to another. An n-dimensional aquifer, C � Rn, is a simply connected volume of geologic
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materials that is saturated with water. It has become common in models of groundwater flow to represent con-
ductivity as a random field, K = K(x,x), to quantify the uncertainty that arises from sparsely sampling a
highly heterogeneous parameter. Here, x is a member of XC, the probability space defining the ensemble of
random conductivity fields associated with an aquifer, and x 2 C.

At macroscopic levels of description many aquifers can be viewed as block-structured, that is they are com-
posed of a finite number of disjoint volumes, Ci � C, made from different materials. We call these volumes
blocks, although they can have arbitrary shape. Upper Grand Canyon and Yucca Mountain, the proposed
site of the US high-level nuclear waste repository, are typical examples. Each is composed of alternating layers
of permeable and relatively impermeable materials, sandstone and limestone formations in the case of upper
Grand Canyon, and nonwelded and welded tuffs at Yucca Mountain.

We base our analysis of block-structured systems on the random domain decomposition (RDD) model
introduced by Winter and Tartakovsky [15,17]. In RDD an aquifer composed of nB blocks is described by
C ¼
[nB

i¼1

Ci þ
X
i6¼j

oCi \ oCj; Ci \ Cj ¼ ; if i 6¼ j. ð1Þ
The block edges, oCi, form boundaries, bij = oCi \ oCj, between blocks and the set of boundaries, b = {bij},
defines an aquifer’s block geometry. In RDD the points in a given Ci are all of the same material type, but
their properties like conductivity vary from point to point, Ki = Ki(x) for x 2 Ci. Uncertainty about conduc-
tivity is modeled as a two-scaled stochastic process in RDD. The small-scale process Ki specifies conductivity
at points within a given block, while the large-scale boundary process, b = b(x), specifies the uncertain geom-
etry of the blocks [17]. Although the geometry is usually uncertain, in this paper we keep it fixed in order to
concentrate on other properties of block-structured aquifers. Recent advances in aquifer characterization tech-
niques make it possible to estimate the number, nB, and approximate the spatial extent of blocks in some aqui-
fers [11,6]. Methods for measuring block boundaries are still in their development stage, and it seems likely
that they will significantly improve in the coming years.

The small-scale conductivity process is defined by the finite-dimensional distributions pi(k(x1), . . . , k(x‘))
for arbitrary points x1, . . . , x‘ 2 Ci, where k(x) = K(x,x0) is a specific value of K. The finite dimensional dis-
tributions can be assumed stationary in space, i.e. pi(k(x1), . . . , k(x‘)) = pi(k(x1 + D), . . . , k(x‘ + D)) so long as
the translated point (x1 + D, . . . , x‘ + D) 2 Ci, because each block is usually formed by a uniform geologic
process during a single geologic period. Hence, the mean of conductivity can be assumed constant within a
given block, i.e. KiðxÞ ¼ Ki, its variance, r2

Ki
, is also constant and usually small, and the correlation

qKi
ðx; yÞ ¼ K 0iðx;xÞK 0iðy;xÞ ¼ qKi

ðkx� ykÞ. The ‘‘overbar’’ indicates the operation of taking the ensemble
average. We suppose qKi

¼ qi has a finite correlation length, ki. These are standard assumptions of stochastic
hydrology when describing flow through an aquifer formed of a single material [18,19].

When x = x0 is fixed and the aquifer system can be described by (1),
Kðx;x0Þ ¼

K1ðx;x0Þ if x 2 C1;

..

.

Knðx;x0Þ if x 2 Cn.

8>><
>>: ð2Þ
Each Ki(x,x0) 2 C1(Ci). We use the Reynolds decomposition KiðxÞ ¼ Ki þ K 0iðxÞ to represent random fields
like Ki(x) as the sum of a constant mean Ki and a zero-mean random fluctuation K 0iðxÞ. It is common in
hydrogeology, to assume that the conductivity of a single geologic material is log-normally distributed, i.e.
ln Kiðx;xÞ ¼ Y iðx;xÞ � NðY i; r2

Y i
Þ. We use this assumption to generate synthetic realizations of K in a Monte

Carlo framework, although RDD does not require it. From here on we will drop dependence on x, but it will
be implicit every time we perform a probability operation such as taking an average.

In saturated porous media, conductivity is related to macroscopic groundwater flux,~q, through a general-
ized form of Darcy’s law,
~q ¼ �Krh. ð3Þ
When combined with conservation of mass, (3) yields the main state equation of groundwater flow,
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S
oh
ot
¼ r � Krhþ f ; ð4Þ
in which S is specific storage and f(x, t) represents sources and sinks. The hydraulic head h 2 H1(C), the Sobo-
lev space of weakly differentiable functions on C. To simplify the discussion, we suppose (3) is a steady-state
system without sources,
r � Krh ¼ 0. ð5Þ
Estimating the first few moments of h and~q from estimates of the low-order statistics of K is a principal task of
stochastic groundwater hydrology.

Various authors have adopted stochastic models in which natural porous media are represented as compo-
sitions of disjoint volumes, or blocks, of different materials whose individual properties vary uncertainly from
one point to another. Suk and Lee [14] and Guler and Thyne [5] have used multivariate analysis based on
chemical properties to divide aquifers into discrete zones. Conductivity is non-stationary, or heterogeneous,
in space in such models. When conductivity is sampled in a multi-material aquifer without regard to the spatial
distribution of materials, its probability density is multimodal [13,12,7,17]; and (Ritzi et al., 2004). Neuman [9]
has demonstrated that the mathematical model of Di Federico and Neuman [3], which describes the conduc-
tivity field within the framework of a multiscale mode-superposition, is consistent with a representation of
multimodal spatial variability in which space is filled by a discrete number of juxtaposed materials such as soil
types, each having its own attributes. Unconditioned sampling without regard to the approximate locations of
blocks generally leads to very high variances, r2

K , of conductivity [17], which in turn increases uncertainty
about predictions of groundwater flow. In particular, r2

K > 1 renders approximations of the system state ques-
tionable because most approximation techniques depend on small r2

K in one way or another. Given statistics of
the block locations and extents, the RDD model addresses the problem of small r2

K by explicitly taking
account of the (uncertain) spatial distribution of blocks [4,15–17]. This allows approximation of the moments
of groundwater flow in strongly heterogeneous.

This paper reports the first in a series of studies that will use multivariate statistics to investigate the relative
sensitivity of groundwater flow to the effects of different aquifer properties in block-structured aquifers. A
number of factors can affect the state of flow in block-structured aquifer systems. These include the geometry
of the blocks, stochastic variation of conductivity within each block including its mean, variance, correlation
structure and correlation length, the roughness of the boundaries, and the degree of correlation between con-
ductivities across materials and its length scale. Here we compare the effect of the degree of cross-correlation
between materials to the effect of differences between the means of conductivities in different materials. Hence
we hold all other factors fixed, including b as noted earlier.

According to Neuman [9] cross-correlations between material attributes can arise because the classification
of soils and other natural porous media on the basis of percent sand, silt, and clay, is often subjective and
therefore somewhat arbitrary. Data used in facies classification, including grain size distribution curves, are
typically derived from core samples and are often poorly differentiated, which further prevents a clear distinc-
tion between different hydrofacies. Correlations between blocks may also occur in systems where lenses of one
material are laid down simultaneously with a base material for a while so that uncertain boundaries result [10].
Winter and Tartakovsky [17] derive approximate expressions that relate flow statistics, including cross-
correlations between block properties, to that of hydraulic conductivity, but do not explore their effects. Lu
and Zhang [7] discuss correlation between materials and then provide examples that deal with the prediction
of flow in media characterized by the lack of cross-correlation between conductivities in different materials.
Uncertainty about the spatial distribution of materials can yield apparent cross-correlations even if two mate-
rials are themselves independent [17]. The effect of such cross-correlation has been an outstanding issue in
groundwater hydrology and to our knowledge it has not been statistically compared to the effect of variations
in mean conductivity.

Our goals in this paper are methodological as well as analytical. We evaluate the ability of a classical
statistical technique, the Analysis of Variance (ANOVA), to measure sensitivity of groundwater flow to the
cross-correlation and mean conductivity factors. Although ANOVA is a classical approach to evaluating
sensitivity, our setting is not. Instead of a laboratory sample of physical subjects that have been treated
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systematically to reflect the influence of different levels of factors, we examine a collection of simulated aqui-
fers drawn by Monte Carlo sampling from an ensemble designed to reflect the differential effects on flow of
systematically defined aquifer properties like correlation and type. While it is expensive to construct even a
small number of experimental aquifers, generating a large number of realizations is relatively cheap. Further-
more the probabilistic properties of such an ensemble can be known exactly and constructed specifically to
meet the assumptions of ANOVA.

Before getting to the ANOVA-based sensitivity analysis, we provide additional background and definitions
for the probabilistic flow model (Section 2). We evaluate the sensitivity of flow through model aquifers to the
degree of correlation on one hand and aquifer type on the other (Section 3).
2. Problem setting

The ensemble average of (5) gives the mean pressure head equation
r � ðKr�hÞ � r � �r ¼ 0 ð6Þ

which includes a second-order statistic, the mean ‘‘residual’’ flux �rðxÞ ¼ �K 0rh0 representing cross-correlation
between hydraulic conductivity and head gradient fluctuations. This system is typically closed by perturbation
approximations that depend on small conductivity variances [19].

2.1. Perturbation approximations

In block-structured systems the first-order approximation of �hðxÞ depends on
r̂ð1Þj ðxÞ ¼ jjðxÞ
X2

i¼1

Z
Ci

jiðyÞqijðx; yÞryrT
x
bGð0Þðy; xÞry ĥð0Þi ðyÞdy; ð7Þ
which is a first-order approximation of �rjðxÞ conditioned on fixed b [17]. The ‘‘hat’’ indicates a mean taken
with respect to the conditional density, p(K|b), of K given b, i.e. �rð1Þj ðxÞ ¼

R
r̂ð1Þj ðxÞpðbÞdb. Note that the approx-

imation (7) is equally valid for statistically inhomogeneous blocks. The effect of cross-correlation appears in
qijðx; yÞ ¼ Y 0iðxÞY 0jðyÞ, which depends on Y 0iðxÞ ¼ ln K 0iðxÞ. The term ji ¼ expðY iÞ is the geometric mean of Ki,bGð0Þ is the zeroth-order approximation of the conditional mean Green’s function, and ĥð0Þi is the zeroth-order
approximation of the conditional mean of h. Clearly r̂ð1Þj ðxÞ, and hence �hðxÞ, depends in a complicated way on
factors such as ji, qij(x,y), and b. Multivariate statistics, in particular ANOVA, provide a systematic way to
investigate their relative effects, and in this study we concentrate on the relative effects of ji and qij(x,y).

2.2. Cross-correlation and model flow geometry

Cross-correlation does not affect flow in some important cases. Consider a stratified medium in which the
direction of seepage flow is perpendicular to the stratification. If the lateral boundaries are impermeable, con-
stant head h = 0 is maintained at the lower boundary, and water enters the system at a constant rate K1dh/
dy = �q through the upper boundary, then mean flow becomes one-dimensional. In this case direct integra-
tion of the flow equation and subsequent ensemble averaging leads to an exact solution for the conditional
mean hydraulic head
ĥðxÞ ¼ �q

x
Kh1

0 < x < bL;

bL

Kh1
þ x�bL

Kh2
bL < x < bU;

bL

Kh1
þ bU�bL

Kh2
þ x�bU

Kh1
bU < x < 1.

8>>><
>>>: ð8Þ
Here Khi denotes the harmonic mean of the hydraulic conductivity of the ith block. It is obvious from (11) that
ĥðxÞ does not depend on qij(x,y), so �hðxÞ is not influenced by cross-correlations between the materials in such a
flow system. Since the effect of cross-correlation on flow is our focus, we base the ANOVA on practically the
opposite flow geometry to this case (Fig. 1).



Fig. 1. Basic flow system. The internal boundaries, bi, are fixed. The arrows indicate the mean flow direction.

170 C.L. Winter et al. / Journal of Computational Physics 217 (2006) 166–175
2.3. Model flow system

The model flow system is block-structured with fixed (i.e. deterministic) internal boundaries and external
boundary conditions (Fig. 1). This system is a simplification of composite aquifers that consist of two subaqui-
fers separated by a less permeable aquitard. The model domain is a square with sides of length L aligned along
the coordinate axes. Two kinds of materials, M1 and M2, are separated by internal boundaries into three
blocks, hence the number of materials is nM = 2 and the number of blocks is nB = 3. The boundaries between
them are bL = 0.29L and bU = 0.71L. The material forming the inner layer, M2, is generally less permeable
than M1, the material of the two outer layers. The statistics in our Monte Carlo simulations are consistent
with systems composed of two sand layers separated by a layer of clay. The thickness of the aquitard, the mid-
dle layer, is 0.42L. No flow is allowed across the top and bottom boundaries at yU or yL. Hydraulic head is
held constant across the inlet at xI, h(xI,y) = HI, and is held to h(xO,y) = HO across the outlet at xO > xI.
Additionally, HI > HO, so the basic direction of flow is from left to right.

These simplifications do not much alter the basic problem of estimating sensitivity of the flow system to
different sources of variability in K(x). Random external boundary conditions (and random sources and ran-
dom initial conditions when they apply) enter (4) and (5) as additive sources of noise that can be dealt with
relatively easily when compared to the multiplicative effects of K. We further simplify the model system by
representing K as a scalar in the simulations, so the conductivity field is locally isotropic. This is a fairly com-
mon assumption in hydrogeology. The grid discretization is set to 0.2k in order to have at least five grid
elements per correlation scale within each material.

We base our simulations on Darcy’s original method for determining hydraulic conductivity. K(x) is a mac-
roscopic parameter that reflects variability in the network of microscopic pores that actually make up an aqui-
fer. To obtain K, Darcy forced water through a sample of natural porous medium obtained from an aquifer
and measured the flux of water,~q, and the hydraulic pressure gradient, $h. In the simplest experiments a con-
stant hydraulic pressure difference, Dh, is maintained between the inlet and the outlet of a core of unit cross-
sectional area and of length L, and a uniform flux of water, Q, is known at the core’s outlet, so K = �QL/Dh.
Since the volume of the core is much smaller than the extent of the aquifer, K obtained in this way is essentially
a point measurement. We use total volumetric flow rate across the outlet,
Q ¼
Z yU

yL

qðxO; yÞdy; ð9Þ
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to measure system response to differences between material means and to the degree of correlation between the
materials in the ANOVA.

3. Sensitivity analysis

We combine ANOVA with a Monte Carlo experiment to assess the sensitivity of the model flow system to
the degree of correlation between conductivities of different materials and the relative difference between aver-
age conductivities of the materials. Given a sample of aquifer realizations based on the model system, the
ANOVA evaluates relative sensitivity to the two factors by decomposing the overall variability of total out-
flow, Q, into components that are due to each of the factors, to their interaction, and to residual error not
attributable to the factors. The result is a statistical assessment of the significance of the factors.

3.1. Monte Carlo realizations

Correlated conductivity fields are generated with the method of circulant embedding [1]. Given a stationary
covariance kernel, circulant embedding produces a set of correlated log conductivity fields modeled as Gauss-
ian random fields, a common assumption in groundwater hydrology [19] and one that is technically required
for significance testing in ANOVA. In our simulations the covariance kernel is k(r) = e�r/k with r denoting the
distance between two points and k the correlation length. In general, the cross-covariance of Y‘(x) = lnK‘(x)
between materials is
Table
System

Param

ji

r2
Y i

ki

bj

r

Lq
Cijðx; yÞ ¼ Y 0iðxÞY 0jðyÞ ¼ Lq

Z 1

0

ciðx� fÞcjðy � fÞdf; ð10Þ
where ci is the square root kernel of Ki. The parameter Lq determines the maximum strength of the correlation
and is one of the factors in the ANOVA.

3.2. Aquifer types

The parameters determining Q in the model system are listed in Table 1. We make several simplifying
assumptions about these parameters that are compatible with our emphasis on comparisons between cross-
correlation and mean conductivity contrasts. Roughness of the internal boundaries is set to zero, i.e. the inter-
nal boundaries are flat and parallel to the x coordinate. We also set r2

Y 1
¼ r2

Y 2
¼ 1, k1 = k2 = 0.135 · b1, and

use the same exponential covariance function e�kr for log-conductivity in the two materials. With these
assumptions, the functional dependence of the normalized flow rate, Q/j1, on the aquifer parameters can
be reduced to the dimensionless form,
Q
j1

¼ f
j2

j1

; Lq

� �
. ð11Þ
The only dimensionless parameters which act as sources of variation within our model system are 1) the level
of correlation, Lq, between the logarithms of hydraulic conductivities of each material and 2) the relative con-
trast, j2/j1, between the geometric mean conductivities of the two materials. The Lq parameter determines the
maximum correlation allowed between the two materials; we use five levels of Lq = 0, 0.25, 0.5, 0.75, 1 to de-
1
parameters

eter Description

The geometric mean of conductivity within the ith material
The dimensionless variance of Yi = lnKi, the logarithm of hydraulic conductivity in the ith material
The correlation scale of Yi

The location of internal boundary bj (j = 1,2)
The roughness of bj

The maximum level of correlation between the conductivities of the two materials, which is dimensionless
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fine the correlation factor in the ANOVA. The ratios j2/j1 = 1, 0.018, 0.007 describe average conductivity
contrasts of zero, one and two orders of magnitude, in agreement with frequently observed properties of nat-
ural porous materials (cf. [2]). The simulated values are: (1) j1 = j2 = 1.16 · 10�5 [cm/s] corresponding to a
relatively impermeable material like silty-sand; (2) j1 = 6.32 · 10�4 [cm/s] representing a sandy material
and j2 = 1.16 · 10�5 [cm/s], a silty-sand; (3) another simulated sand/silty-sand system, but with a more con-
ductive sand, j1 = 1.72 · 10�3 [cm/s] and the same conductivity of the silty-sand j2 = 1.16 · 10�5 [cm/s].
3.3. ANOVA

The combination of three mean conductivity ratios and five levels of correlation yields an experimental
design with 15 subpopulations in the overall space of cross-correlated aquifers. We created 1000 realizations
of each sub-population for our Monte Carlo simulations, resulting in a total sample size of 15,000 aquifer real-
izations. We calculated the total dimensionless flux at the outlet Qijk (i = 1, . . . , 3; j = 1, . . . , 5;
k = 1, . . . , 1000) for each realization and obtained the grand mean,
eQ ¼ 1

15000

X3

i¼1

X5

j¼1

X1000

k¼1

Qijk; ð12Þ
and the total variability of the sample,
S ¼
X3

i¼1

X5

j¼1

X1000

k¼1

Qijk � eQ� �2

. ð13Þ
The ANOVA decomposes S into components arising from the conductivity type, Sj, from the degree of cor-
relation between the materials, SL, and from their interaction, SjL,
S ¼ Sj þ SL þ SjL þ Se. ð14Þ

The residual error, Se, contains the part of the variability in the sample of Qijk that is not accounted for by the
two factors. The terms on the right of (14) have the same form as S, that is, they are sums of squared differ-
ences between various means of the Qijk. For instance,
Sj �
X3

i¼1

eQi � eQ� �2

ð15Þ
depends on means that summarize the aquifer type factor, eQi ¼ 1
3000

P3
j¼1

P1000
k¼1 Qijk and the total sample mean,eQ. Similar expressions define SL and SjL.

3.4. Sensitivity by ANOVA

The issue is whether dimensionless total flow responds significantly to variations in either correlation level,
or conductivity contrast, or both. Fig. 2 reveals large differences among the different aquifer subgroups. The
box-plots are organized by the three conductivity contrast groups and within these are plotted the individual
responses to the five different levels of correlations. The boxes have limits at the 25 and 75 percentiles of the
data with a line segment within the box locating the median. The vertical lines extending from the boxes indi-
cate a range for the distribution and extreme data values outside this range are plotted separately. In this figure
there is substantial variability due to the contrast in conductivity. Visually the first group has a different mean
level and there is also different variability among the groups. The two sand/silty-sand aquifers (groups 2 and 3)
perform about the same.

However, within a group the response to correlation is subtle. Fig. 3 isolates the effect of the correlation
factor by first subtracting a mean response, eQi due to the different contrast in conductivity groups. The var-
iation in the mean due to different correlation levels and different cases is apparent once the large differences
among conductivity contrast subgroups are removed. These adjusted means for each group will add to zero
and so the interest is the deviation from zero as a function of the strength of the correlation. The broken lines



Fig. 2. Samples means bQij and ranges classified by the factors of flow regime, A, and cross-material correlation, q. The basic grouping is
by the three subgroups of A. Data within a subgroup is further subdivided by correlation level.

Fig. 3. The effect of the correlation factor.
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connect the adjusted means for the same group and so trace out the pattern of how the response may change
as a function of correlation for a given group. Although there is no obvious pattern, the response to different
correlation levels does appear to deviate from zero.

The ANOVA results (Table 2) are a formal test for whether the deviations in these values can be explained
purely by chance. If that hypothesis can be rejected, the natural inference is that the variation is due to a
changing mean response due to the correlation levels. To insure that the assumptions for the ANOVA are sat-
isfied, the data in each conductivity group have been standardized to have a standard deviation of one. The
application of the model of (14) to our sample partitions the variability among the 15,000 values of Qijk as
shown in Table 2.
Table 2
Analysis of variance

Source of variability nl Sl Sl/nl F Value

Aquifer type (j) 2 657.635 328.818 53484.687
Correlation (L) 4 0.222 0.056 9.028
Interaction (jL) 8 0.078 0.010 1.586
Residuals (e) 14,985 92.126 0.006
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The ANOVA consists of comparing the variability arising from residual error to the variability due to a
given factor. A factor is insignificant if it does not account for more variability than the residual does. This
is tested by the F statistic,
F ‘ ¼
S‘=n‘
Se=ne

; ð16Þ
which compares the variability of the ‘th factor (‘ = j,L,jL) to the variability that is left unaccounted by any
factor, essentially Se. Note that the sums in (16) are over different numbers of elements and so must be scaled.
The scaling constant is the factor’s degrees of freedom, nj = 3 � 1 = 2, nL = 5 � 1 = 4, njL = (3 � 1)(5 � 1)
= 8, and ne = 3 · 5 · (1000 � 1) = 14,985. The term S‘/n‘ is called the mean square of the ‘th factor.

The first line of Table 2 indicates that the means describing the conductivity contrast groups are different,
which comes as no surprise after our discussion of Fig. 2. The second line indicates that the average response
across the different correlation levels is also statistically significant (p < 0.001). Note, however, the large
difference between the mean squares of the correlation factor and of the conductivity contrast factor. This fur-
ther quantifies the subjective impression given by Fig. 2. The third line reflects variation in the mean for each
of the 15 combinations after accounting for the average for each conductivity contrast group and each corre-
lation level. The overall interaction is not significant (p = 0.122), but a more specific test of the individual
interactions suggests a heterogenous response to correlation across the conductivity groups. In particular,
the groups appear to responding differently when the correlation factor is 1.0.

Finally, we note that the ANOVA depends on approximate Gaussian distributions for the responses to the
extent that the F statistics computed in the ANOVA table follow an F distribution. In this case the assump-
tions are justified based on histograms of the observed responses and also the large number of Monte Carlo
replicates (1000).
4. Summary

Flow in the model system is sensitive at a statistically significant level to the contrast between material
means and to the maximum intensity of cross-correlation between materials. However the effect of correlation,
while statistically significant, is far weaker than the contrast between material means. This accords with intu-
ition and also agrees with concepts arising from issues related to connectivity (e.g. [8]), since the relative pro-
portion of high conductivity material is the main factor controlling flow, the fact that is better reflected in the
means than in the correlation structure of the field.

The exact response to the correlation factor appears to be complicated and could not be resolved com-
pletely based on the number of Monte Carlo samples used in this study. However, the cases when the corre-
lation factor is 1.0 (perfectly correlated) appear to respond differently than other levels of correlation. The
method was not too computationally expensive, although part of that was due to the simple geometry of
the model flow system.

We intend to expand this work in several directions. For one thing intensity is not the only feature of cross-
correlation that affects flow. The shape of the correlation function and especially the correlation length may
have greater influence. We can test their effects against j using a multifactor ANOVA. Additionally, we will
investigate the relative effects of geometrical properties like roughness of the material interface and variability
in b, the system geometry. In that way we can test the relative effects of each scale of uncertainty in the RDD
model. Based on the effectiveness of ANOVA summaries used in this work, we anticipate that this statistical
technique will be useful in interpreting and organizing the results of more comprehensive Monte Carlo based
studies.
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